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AIRBORNE SOUND TRANSMISSION THROUGH WINDOWS 
AT VERY LOW FREQUENCIES.  

Roman Vinokur 

The sound transmission loss of windows at very low frequencies cannot be interpreted by the 

theory of infinitely large partitions.  Here, the bending wave resonances are essential but not 

the only contributors. The low sound radiation coefficient and “niche effect” are also im-

portant. The goal is to illustrate such phenomena via simplified theoretical models and exper-

imental results. In particular, the role of low sound radiation is interpreted using the sound 

radiation model of a piston inside the aperture cut in a rigid baffle between the source and 

receiving rooms. The “niche effect” is compared to the low-frequency sound transmission via 

symmetric triple windows (where the middle element is the real window and the role of the 

edge leaves is played by the air masses entrained at the aperture edges). In addition to the 

previously published results, the new experimental data are provided to support this theory in 

the “double-niche” case: the aperture consists of two in-series halves with different areas, and 

the window is installed in the smaller one. Such simple models can also be utilized to interpret 

the experimental sound transmission data for relatively small partitions mounted in the aper-

ture made in a thick wall between two rooms. The paper may be helpful for students and 

engineers engaged in measurements of the sound transmission loss. 

1. Introduction 

The first engineering theories of airborne sound transmission via single and double walls were 

developed for uniform partitions of infinite area by Cremer in 1942 [1] and London in 1950 [2]. For 

single partitions at low frequencies, the theoretical sound transmission loss was described by the Mass 

Law as a function of the surface density, frequency, and incident sound field (normal or diffuse); the 

normal-incidence Mass Law values are 5 – 6 dB over the diffuse-incidence those at the same frequen-

cies..  

However, in 1954 Peutz published a paper [3] with his paradoxical experimental findings: the 

transmission loss of thin plates at low frequencies notably (up to 10-15 dB) exceeded the Mass Law 

predictions, even those for normal incidence.  

The elevated sound transmission loss could be affected and partially masked (to some extent) by 

the bending vibration resonances. But if the fundamental resonance frequency of bending vibration 

is relatively low, the effect of such resonances in the important frequency range is limited.      

The other important phenomenon (the niche or tunnelling effect [4-7]) is mostly reported at low 

frequencies but some researchers observed it at the medium frequencies too. As was found, the air-

borne sound transmission loss of a thin partition filling the opening in a thick wall between two re-

verberation rooms gets low if the partition is installed in the centre of the opening. 

The goal of this paper is twofold: 

(1) Using simplified mathematical models, to interpret the elevated transmission loss at very low 

frequencies. 

(2) To illustrate experimentally and interpret the “double-niche” effect. 

2. Sound transmission loss increase caused by the reduced radiation 
coefficient at very low frequencies 

At very low frequencies, the sound radiation coefficient of small-area partitions can be much lower 

than for large-area partitions. This should be the main reason why the sound transmission loss of 
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small-area partitions at very low frequencies can be notably over the values calculated for the infinite-

area models.   

2.1 Sound transmission via a circular rigid piston freely moving in the congruent 
aperture made in an infinite sound-proof wall 

Suppose that a circular, flat, and absolutely rigid piston of radius R can freely move in the congru-

ent aperture made in a sound-proof wall of infinite area separating two semi-infinite spaces: here, 

the noise source is on the left (Fig. 1A). Consider also that the sound wavelength is much bigger 

than the piston radius: Rλ  . In this case, the acoustic pressure is about equally distributed over 

the piston area, so, the incident sound field can be approximately considered like normal. Suppose 

also that the wall and piston thicknesses are about similar (in order to neglect the niche effect ef-

fects).  

Since the amplitude of the incident and reflected waves in the source semi-space are about equal, 

the equation of vibration motion is expressed in the form 

(1)    V   ZS p 2 inc    

 where ω m i-   Z   is the piston mechanical impedance, V is the piston velocity amplitude, 

incp  is the acoustic pressure amplitude of the incident wave, 1- i   is the imaginary unit,  

 m and   R π  S 2 are respectively the piston mass and area,  ω is the angular sound frequency; 

the time-oscillating factor    t)ω (-i exp is omitted. 
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where the wave number 0c / ωk   and (u)J1 is the Bessel function of the first kind, order one. 

The transmission loss is calculated as 
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is the excess of the transmission loss over the transmission loss of infinite single partition at normal 

incidence   1/τ  log  10TL infinf  . 

As known [8], at relatively high frequencies ( ka ), the coefficient 1X   and therefore 

infTL  TL   that fits the normal-incident Mass Law.  

But at very low frequencies ( 1 kR  ), the coefficient   1   /2kRX
2

 . In this case, 1,     L   

so, the low-frequency sound transmission loss can notably exceed the normal-incidence Mass-Low. 

 

 
 

Figure 1. Mathematical models: A – for the sound transmission via a circular piston in the congruent 

aperture made in an infinite wall, B – for the sound radiation by a square rigid piston freely moving 

in the congruent aperture made in the centre of the edge wall of a semi-infinite tunnel. 

 

A similar conclusion can be deduced for a double piston system consisting of two single pistons 

installed in the same opening and separated with an air gap. In this case, at low frequencies the sound 

transmission loss of such double piston system should exceed the sound transmission loss for the 

appropriate infinite double wall.  

2.2 Sound radiation by a square rigid piston freely moving in the congruent aper-
ture made in the edge wall of a semi-infinite tunnel 

As shown above, the low-frequency sound transmission loss notably depends on the sound radiation 

coefficient of the panels tested.  Now consider a more feasible mathematical model: a square rigid 

piston is installed in the congruent aperture made in the square edge wall of a semi-infinite tunnel 

with absolutely rigid side walls (Fig. 1B). The goal is to calculate its sound radiation coefficient.  
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The side lengths of the piston and edge wall are denoted by b and a , respectively.  Such a study 

was done by the author earlier [9-11].  

At frequencies where only the sound wave with plane fronts (zero modes, or mode-0) is evanescent 

(can travel in the tunnel), the dimensionless radiation coefficient equals  

(6)                                                           .b/aS / Sr 
2

w     

Here, 
2

w a  S   is the wall area, 
2

w b  S   is the piston (aperture) area. 

The other modes can travel in the channel if the sound frequency exceeds their cut-off frequencies. 

The modes are symmetric (mode-0, mode-2, mode-4, etc.) or asymmetric (mode-1, mode-3, etc.) 

relative to the axial line of the channel (Fig. 2). If the aperture with the rigid piston is arranged sym-

metrically in the centre of the wall, only the symmetric evanescent modes can be generated in the 

channel. If the aperture is in the corner of the wall (as shown in Fig. 3), both asymmetric and sym-

metric evanescent modes are in play. The cut-off frequencies for the mode-1 and mode-2 are 

a) (2 / cf 0m1   and ,f 2a / cf m20m2   respectively. At frequencies over the appropriate cut-off 

frequency, the sound radiation coefficient goes up from the value given by Eq. (6) to 1. That is, the 

sound transmission loss increase reduces from   (a/b) log  20  L to zero as shown in Fig. 3 for the 

particular case  4.  b / a   

Since the cut-off frequency for the mode-2 is twice that for the mode-1, the frequency range of 

lower sound radiation has a higher upper bound for the central arrangement. In this frequency 

range, the sound transmission loss of a real partition is expected to be relatively high. 

Commonly, the transverse dimensions of reverberation rooms are at least 3 m in each rectangular 

direction, so, the cut-off frequency a / cf 0m2   > 340 m/s / 3 m ≈ 110 Hz, so, a notable increase in 

the sound transmission loss is not much drastic in the common frequency range 100 – 5000 Hz. 

However if the sound wavelength remains to be notably larger than the partition dimensions (that is, 

at frequencies below b) (2 / cf 01  ), the sound transmission loss of single partitions can rather fit 

the normal-incidence Mass Law and exceed the diffuse-incidence Mass Law by 5-6 dB.   

2.3 The effect of bending vibration resonances in windows  

   At the natural frequencies of bending vibration of thin plates, the sound transmission loss may be 

well below the values calculated the rigid pistons of the same surface density.  But according to the 

Asymptotic Shoch’s Law [12], at relatively high frequencies a finite thin plate, excited by the nor-

mal-incidence sound waves, vibrates as the solid piston of the same surface density.  In practice, 

this holds approximately true if the measurements are performed in relatively wide (in particular, 

one-third octave) frequency bands if their central frequencies are 2-3 times the fundamental natural 

frequency of the plate.  The fundamental natural frequencies of ordinary window panes, standard 

gypsum boards, and many other single partitions are commonly below 30 - 40 Hz, so, the solid pis-

ton model may be approximately applicable at frequencies over 60 - 80 Hz.  
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Figure 2. The mode shapes in the channel. 

 

 

 

 
 

Figure 3. The potential increase of the sound transmission loss at very low frequencies if the aperture 

is made: in the centre (common case) and in the corner of the wall. 
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3. Niche effect 

In the “double-niche” design, the aperture consists of two in-series halves with different areas, and 

the window is installed in the smaller one.  In this case, the niche effect can be alleviated even if the 

window is centred in the aperture.  

3.1 Simplified physics of the niche effect 

Currently, there is no undisputed theory of the niche effect. The author’s interpretation is based on 

the model of an infinite triple window with a massive inner pane and two lightweight outer panes 

separated with air gaps [7, 9, 13]. Certainly, the niche effect can also be controlled by sound-absorb-

ing material installed inside the niche [14] but such an arrangement is not typical, in particular for 

windows. 

In this interpretation, the inner pane stands for the partition tested. The role of the outer panes is 

played by adjacent air masses at the aperture edges (Fig. 4).  At low frequencies such a partition is 

simulated by a lumped mass-spring-mass-spring-mass system with two non-zero natural frequencies. 

If the system is fully symmetric (the outer masses are similar and both springs are equivalent) and the 

central mass is much over the outer masses, the natural frequencies get close together. Such a phe-

nomenon can notably increase the resonance effects and therefore the transmissibility of the system.  

On the other hand, if one of the springs is much stiffer than the other spring, one of the two natural 

frequencies gets high, and resonance effects at low frequencies are not as harsh as in case of the 

similar springs. In triple windows (or partitions), such an effect occurs if the middle pane (leaf) is 

close together to one of the outer panes (leaves) as sketched in Figs 3B and 3C. The same holds true 

for the partition arrangements in a single niche (4- 7, etc.]. 

3.2 When the pane is centred in the aperture consisting of two in-series halves 
with different areas  

The other way is to reduce one of the outer masses in the lumped mechanical model. As a result, 

one of the two natural frequencies gets high even if the springs remain similar. For windows, such a 

situation can be achieved in the “double-niche” sketched in Fig. 4D.  Here, the niche cavity facing 

the receiving room is made of larger area than the other cavity. The surface density of the adjacent 

air layer reduces with its area. Certainly, the coefficient of the sound radiation into the receiving room 

increases with the cavity area but this unfavourable effect is compensated by reduction of the sound 

velocity with the area expansion.   

 

 

Figure 4. Window in the aperture made in a massive wall between two reverberation rooms.  
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Figure 5. Sound transmission loss spectra for the window installed as shown in Fig. 4.  

 

In Fig. 5, the transmission loss spectra are plotted for the same sound insulating glass unit in all 

the four cases sketched in Fig. 4.  The glass unit configuration is coded as 10+20+5+2+6; here, 10, 5, 

and 6 mm are the glass pane thicknesses, mm, and 20 and 2 are the air gap thicknesses, mm). The 

total thickness of the brick wall between the source and receiving rooms is 0.6 m. The unit is 1.3 m 

high and 0.9 m wide. It is installed in the narrow semi-niche of the same area 1.3 x 0.9 ≈ 1.2 m2. The 

wide half-niche was proportionally increased to the twofold area: 1.8 x 1.3 ≈ 2.4 m2.    

As seen, the niche effect occurs between 160 and 400 Hz where the sound transmission loss for 

the configurations B, C, and D is 4 dB higher on average than that for the configuration A. 

It is noteworthy that sound transmission loss at frequencies below 100 Hz goes up with the fre-

quency reduction. This may occur due to the mass-spring-mass-spring resonance at the frequency of 

114 Hz.  

But the other important cause can be the effect of low sound radiation at very low frequencies 

described in Chapter 2 because a similar trend was observed for single panes (6, 8, and 10 mm thick) 

installed as in Fig. 3A. . 

4. Conclusions 

The simplified interpretations of two important phenomena affecting the sound transmission loss 

of windows and other lightweight partitions installed in the congruent aperture made in a thick wall 

were discussed and illustrated with the experimental data.   

The first interpretation explains the effect of relatively high sound transmission loss at very low 

frequencies because of the low sound radiation coefficient. Two simplified models were discussed: 

(1) a circular rigid piston that can freely move in the aperture made in an infinite rigid wall, (2) a 

square rigid piston vibrating in the aperture made in the edge rigid wall of a semi-infinite rectangular 

channel.  

The second simplified interpretation is related to the “double-niche” effect (for relatively thick 

walls). As shown, if the niche cavity facing the receiving room is made of larger area than the other 

cavity, the unfavourable niche effect can be notably reduced even if the window is centred in the 

aperture.  

The results may be interesting and helpful for students and practical engineers.   
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