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Abstract

In the reading Nyambuya (2015), we proposed a hypothetical state of the Hydrogen atom
whose name we coined ‘Neutronium’. That is to say, in the typical Hydrogen atom, the
Electron is assumed to orbit the Proton, while in the Neutronium, the converse is assumed,
i.e., the Proton orbits the Electron. In the present reading, we present some seductive
argument which lead us to think that this Neutronium may actually be the usual Neutron
that we are used to know. That is to say, we show that under certain assumed conditions, a
free Neutronium may be unstable while a non-free Neutronium is stable in its confinement.
Given that a free Neutron is stable in it confinement of the nucleus and unstable where
free with a lifetime of ∼ 15min, one wonders whether or not this Neutronium might be the
Neutron if we are to match the lifetime of a free Neutronium to that of a free Neutron.
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1 Introduction

In the reading Nyambuya (2015) [hereafter Paper (I)], we proposed a hypothetical state of the
Hydrogen atom whose name we coined ‘Neutronium’. In the present reading, we ask whether
or not this Neutronium is actually the usual Neutron that we are used to know. If indeed the
Neutronium is the Neutron, then, its properties must match that of the Neutron. We argue
here-in that the Neutronium may be an unstable state. If the lifetime of the Neutronium is
set equal to the lifetime of the free Neutron, then, one can safely entertain the idea of the
Neutronium being the Neutron. The instability of a free Neutron is a hallmark of the Neutron
that until this day has not been satisfactory explained. In our feeble view, we are of the opinion
that by demonstrating this instability of the Neutronium, we might have moved a step closer to
understanding not only the Neutronium state, but the Neutron itself.

In the Hydrogen atom, the Electron is assumed to orbit the Proton while in the Neutronium,
the converse is assumed – i.e., the Proton orbits the Electron. The Neutronium atom was
conceived after the following series or steps of careful logical reasoning:

1. The orbit of the Electron around the Proton in the Hydrogen atom are quantized according to the
relation: (rn = aBn

2), where aB is the usual Bohr radius, (n = 1, 2, 3, . . . , etc) and rn is the nth

radius of orbit of the Electron around the Proton in the Hydrogen. The radius of the Hydrogen
atom in the ground state (n = 1) can thus be assumed to be equal to the Bohr radius, aB.

1Correspondence: E-mail: physicist.ggn@gmail.com
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2. From the above, assuming a spherically Hydrogen atom with a radius equal to the Bohr radius
and located in this sphere are the Proton and Electron, it follows from this that the density
(̺H) of a single Hydrogen atom in the ground state is thus [̺H = 3(mp + me)/4πa

3
B] where

(mp,me) are the masses of the Proton and Electron respectively. Evaluating this, one obtains
[̺H = 2.70× 103 kg/m3].

3. Since the minimum possible orbit of the Electron in the Hydrogen atom is aB, we began to wonder
what would happen to this Electron the minute the Hydrogen atom is compressed to densities
greater than the (̺H)? We know the Hydrogen burning core of stars should have densities (&
5.00× 103 kg/m3) much greater than this. It is at this point that we conceived of the Neutronim.

4. We realised that in the Hydrogen atom, the Electron is considered to be in the Coulomb electrical
potential of the Proton and this literally and technically translates to the Electron orbiting the
Proton. We felt that – from a logical and physics point of view, there really is nothing wrong
or sinister in considering a Proton in the Coulomb electrical potential of the Electron and this –
likewise, literally and technically translates to the Proton orbiting the Electron.

After the conception of the Neutronium state, we did the maths (Nyambuya 2015) and
realised that indeed, the Electron and Proton’s centre of mass can come together and be much
closer than permitted by the quantum mechanical constraints on the Hydrogen atom, i.e. instead
of one Bohr radius, they came closer to about 1836th of the Bohr radius and in the process, emit
about 0.02MeV of energy (radiation). Our initial thoughts (Nyambuya 2015) on the possible
use of this energy output from the Neutronium by Nature, where that this energy might power
Pre-Main-Sequence (PMS) Low Mass Stars (LMS). We no longer hold this view and the reason
for this new position being that, our insight into what this Neutronium might are getting deeper
and better.

We have now began to think of – and to see – this Neutronim state as most likely the
Neutron that we are used to know. This Neutronium might be present in all Hydrogen burning
stars helping or taking part in the fusion of Hydrogen to Helium. We shall not venture – yet –
into these – potentially polemical – ideas now, but – rather – concentrate first on putting some
logically credible and acceptable arguments pointing to the possibility of this Neutronium being
a Neutron.

To that end, in §(2), we shall give an exposition of the extension of Maxwellian Electrody-
namics (MED) where in this extension, MED is not described by just one electrical potential –
the Coulomb electrical potential, but has two other potentials, one of which is the Yukawa (1935)
potential that we are used to know and the other a new sinusoidal potential [Paper (II)]. It is
this sinusoidal potential that is key to our likening the Neutronium to the Neutron. Thereafter,
in §(4), we apply the sinusoidal potential to the Neutronium and there-in, make our comparison
of the resulting atom with the Neutron.

2 Extended Maxwellian Electrodynamics

We here give an exposition of theory given in the reading Nyambuya (2016) [herefater Paper (II)]
where Maxwellian Electrodynamics (MED) has been extended so that it is described by not just
by one electrical potential – the Coulomb electrical potential, but two other potentials, one of
which is the Yukawa (1935) potential that we are used to know and the other is a new sinusoidal
potential. As is well known, Maxwell (1865)’s Electromagnetic theory is usually understood to
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constitute two forces i.e., the Coloumb electrical force and the magnetic force. In this theory of
Maxwell (1865), the electrical and magnetic forces interact interchangeably as a unified force field
that submits to a description by a four vector potential Aµ. This potential Aµ, is known as the
electromagnetic four vector potential. The other two forces present at the nuclear scale i.e., the
Strong andWeak force fields, these forces are generally assumed to be separate phenomenon from
Maxwell (1865)’s theory. The extent to which these forces – the Strong and Weak nuclear forces;
are thought to be separate from Maxwell (1865)’s Electromagnetic theory is that, physicists, have
had to find a unified description of Maxwell (1865)’s Electromagnetic theory and the Strong and
Weak nuclear forces (e.g., Weinberg 1967, Glashow 1959, Salam & Ward 1959).

Maxwell (1865)’s celebrated and embellished classical theory of electrodynamics can be
summed up in two beautiful and simple looking tensor equations, namely:

∂µFµν = µ0Jν , (2.1)

which is the source-coupled set of field equations, and:

Fµν,λ + Fλµ,ν + Fνλ,µ = 0, (2.2)

which is the source free set of field equations, where µ0 is the permeability of free space and:

Fµν = ∂µAν − ∂νAµ, (2.3)

is the electromagnetic field tensor (Jµ = ̺evµ), is the four current and the Greek indices (µ, ν, λ)
are such that [(µ, ν, λ) = 0, 1, 2, 3]. In the four current (Jµ = ̺evµ), ̺e is the electronic charge
density and [vµ = (c,v)] is the four velocity with c being the speed of Light in vacuo and v the
velocity of the charges, and the object [Aµ = (Φe,A)], is the electromagnetic four vector potential
with Φe being the electric potential and A the magnetic vector potential. The electromagnetic
four vector potential Aµ satisfies the Lorenz (1867) gauge, namely:

∂µAµ = 0. (2.4)

In showing or demonstrating that Maxwell’s theory submits to a description of three electrical
potentials, one will not need equation (2.2). With the Lorenz (1867) gauge (2.4) taken into
account, equation (2.1) yields the well known four Poisson-Laplace equation for electrodynamics,
namely:

�Aν = µ0Jν , (2.5)

where � is the four Laplacian or the D’Alembert operator defined as:

� = ∇
2 −

1

c2
∂2

∂t2
. (2.6)

Now, taking the component (ν = 0) of equation (2.5), we will have:

∇
2Φe −

1

c2
∂2Φe

∂t2
=

̺e
ε0

. (2.7)

where ε0 is the permittivity of free space.
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We will consider the natural time-dependent radial solutions of (2.7) for a point charge.
By natural solutions we mean those solutions which are separable when expressed in spherical
coordinates i.e. [Φe(r, θ, ϕ, t) = Φe(r)Φe(θ)Φe(ϕ)φe(t)]. Since we are considering only the time-
dependent radial solutions, this means we are considering the solutions [Φe(r, t) = Φe(r)φe(t)].
For simplicity, we will consider the vacuum solutions (̺e ≡ 0) of equation (2.7).

Substituting [Φe(r, t) = Φe(r)φe(t)] into equation (2.7) and separating the time and space
variables, we will have:

∇
2Φe(r)−

1

c2

[

1

φe(t)

∂2φe(t)

∂t2

]

Φe(r) =
̺e

ε0φe(t)
. (2.8)

For the time-dependent component, the solutions that we obtain for the vacuum (̺e ≡ 0)
solutions are the same as those for the non-vacuum (̺e 6= 0) solutions; so there really is no need
to find the complicated solution for the general case of the non-vacuum. We shall assume:

1

φe(t)

∂2φe(t)

∂t2
= µ2c2, (2.9)

where µ is a ‘constant’ and:

ε(t) = ε0φe(t). (2.10)

Substituting (2.9) and (2.10) into (2.8), we will have:

∇
2Φe(r)− µ2Φe(r) =

̺e
ε(t)

. (2.11)

Setting (̺e ≡ 0), one finds that there are three natural cases to be considered and these are
(µ2 = 0), (µ2 > 0) and (µ2 < 0). This implies that there will be three solutions for Φe(r, t) and
these will correspond to three solutions for Φe(r) and φe(t). Let us – for a particle with electrical
charge q, write these three solutions with a superscript label as [Φej(r, t) = Φej(r)φej(t)] where
“j” takes three values i.e., (j = 0) corresponding to (µ2 = 0); (j = 1) corresponding to (µ2 > 0);
and (j = 2) corresponding to (µ2 < 0). For Φe0(r, t), which corresponds to the case for (µ2 = 0),
we have the Coulomb potential:

Φe0(r, t) =
1

4πε0(t)

q

r
, where

1

ε0(t)
=

(ω0t± 1)

ε0(0)
. (2.12)

For Φe1(r, t), which corresponds to the case for (µ2 > 0), we have the Yukawa (1935) potential:

Φe1(r, t) =
1

4πε1(t)

qe−µ1r

r
, where

1

ε1(t)
=

e−ω1t

ε1(0)
. (2.13)

Lastly, for Φe2(r, t), which corresponds to the case for (µ2 < 0), we have a new sinusoidal
potential:

Φe2(r, t) =
1

4πε2(t)

q cos(µ2r + θ)

r
, where

1

ε2(t)
=

cos(ω2t+ φ)

ε2(0)
. (2.14)

With three potentials, one may wonder which of the three acts on a given particle and if so, what
are the reasons for that potential acting on that potential. The hypothesis that we here make
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is that all these three potentials are present simultaneously in any fundamental particle system
that carries electronic charge such as Proton, Electron etc. The resultant or effective electrical
potential Φeff(r, t), should therefore – be given by the sum total of the three potentials, i.e.:

Φeff(r, t) =

2
∑

j=1

Φej(r, t). (2.15)

The ‘constants’ εj and µj are assumed to be such that:

c =
1

√

εj(t)µj(t)
. (2.16)

It is important to note that, for every potential Φej, there is a corresponding ‘magnetic vector’
potential Aj, so that we have a complete four vector: [Aµj = (Φej,Aj)].

3 Neutronium

The Schrödinger (1926) equation for the Electron [mass me and electronic charge (q = e)]
orbiting inside the Proton’s Coloumb potential (V = −e2/4πε0r), is given by:

−
~
2

2me

∇
2Ψe + VΨe = i~

∂Ψe

∂t
, (3.1)

where Ψe is the Schrödinger (1926) wavefunction of the Electron in the Proton’s Coulomb poten-
tial, ~ is Planck’s normalized constant and t is the time coordinate. With the help of Professor
Hermann Klaus Hugo Weyl (1885 − 1955), Schrödinger (1926) was able to solve equation (3.1)
and demonstrate that the energy En(H) of the Electron orbiting the Proton is quantized and is
given by:

En(H) = −

(

mee
4

8π2ε2
0
~2

)

1

n2
, where (n = 1, 2, 3, etc). (3.2)

The theory of the Hydrogen atom assumes that the Electron orbits the Proton and these orbits
are quantized i.e. from the center of mass of the Proton, these orbits have a well ordered
placement given by [rn(H) = n2aB ].

Now, in the case of the Proton orbiting the Electron i.e., the Proton under the direct influence
of the Electron’s Coulomb potential, the corresponding Schrödinger (1926) equation for such a
system is [Paper (II)]:

−
~
2

2mp

∇
2Ψp + VΨp = −i~

∂Ψp

∂t
, (3.3)

where Ψp is the Schrödinger (1926) wavefunction of the Proton in the Electron’s Coulomb po-
tential. Just as is the case with the Hydrogen atom, the energy levels [Enp

(N )] of the Proton
inside the Electron’s Coulomb potential are such that:

En(N ) = −

(

mpe
4

8π2ε2
0
~2

)

1

n2
p

=

(

mp

me

)

En(H) = µpeEn(H), (3.4)

ISSN: 2153-8301 Prespacetime Journal www.prespacetime.com

Published by QuantumDream, Inc.



Prespacetime Journal| **** 2017 | Vol. ∗ ∗ ∗ | Issue ∗ ∗ ∗∗ | pp. ∗ ∗ ∗ ∗ − ∗ ∗ ∗ ∗ 6

Nyambuya, G. G., Neutronium or Neutron?

where2:

µpe =
mp

me

= 1836.15267389(17), (3.5)

is the Proton-Electron mass ratio. The spacing [rnp
(N )] of these energy levels is such that:

rnp
(N ) =

(

aB
µpe

)

n2
p where (np = 1, 2, 3, . . . , 42). (3.6)

The state (np = 43) corresponds to the Hydrogen atom, therefore, the Neutronium system has
only 42 energy states. The total amount of energy released by the Neutronium – as the Proton
is forced to the energy level (np = 42) – by the all-and-ever muzzling gravitational force – and
thereafter falling down to the ground state (np = 1) of the Neutronium atom; is ∼ 0.02MeV.

4 Neutronium as a Neutron

The above described Neutronium atom is wholly under the action of the Coulomb potential, Φe0.
To this Coulomb potential, we are now going to introduce the new potential Φe1 to operate in
the Neutronium region, i.e. [µ−1

pe aB < r < aB]. We shall do this by way of assumption about the
strength of these three potentials, Φe0, Φe1 and Φe2. That is to say, we shall assume the following:

1. For the region [r > aB], the Coulomb electric force Φe0 is the most dominate, the meaning of which
is that the other two potentials (Φe1,Φe2) can be neglected in this region.

2. For the region [µ−1
pe aB < r < aB], the Φe1-force is stronger than the Coulomb electric force Φ

(1)
e .

While this is the case, its influence is significant in the region and must be considered while Φe2 is
neglected.

3. For the region [r < µ−1
pe aB], the Yukawa (1935) potential Φe2 is stronger than both the Coulomb

electric potential Φe0 and the new sinusoidal Φe1 potential. In the present investigations, we are
not interested in what happens in this region, so, we shall not bother about the physics of this
region – at least for the present reading.

Now – from the foregoing, the resultant potential under both the Coulomb electric potential
energy eΦe0 and the eΦe1 potential energy for the Neutronium in the region [(µ−1

pe aB < r < aB],
is:

Veff(r, t) = −
e2

4πε0r
−

e2 cos(ω1t+ θ) cos(µ1r + φ)

4πε1r
. (4.1)

We shall not work with this potential energy (4.1) in its exact form but considered its first order
approximation under two specially chosen conditions. To that end:

2See “CODATAValue: proton-electron mass ratio” at: https://physics.nist.gov/cgi-bin/cuu/Value?mpsme

ISSN: 2153-8301 Prespacetime Journal www.prespacetime.com

Published by QuantumDream, Inc.

https://physics.nist.gov/cgi-bin/cuu/Value?mpsme


Prespacetime Journal| **** 2017 | Vol. ∗ ∗ ∗ | Issue ∗ ∗ ∗∗ | pp. ∗ ∗ ∗ ∗ − ∗ ∗ ∗ ∗ 7

Nyambuya, G. G., Neutronium or Neutron?

Case (1): Let us consider the case where (θ = φ ≡ 0) and (µ1r ≪ 1). For these conditions, we will have
[cos(µ1r + φ) ≃ 1], hence:

Veff(r, t) ≃ −
e2

4πε0r
−

e2 cos(ω1t)

4πε1r
= −

e2 [1 + κ01 cos(ω1t)]

4πε0r
. (4.2)

where3 [κ01 = ε0/ε1 ≫ 1]. If we submit this potential energy into the Schrödinger (1926) equation
of the Neutronium, we obtain the energy Ẽnp

(N ) of the Neutronium under the additional action
of the Φe1-generated force, we obtain:

Ẽnp
(N ) = [1 + κ01 cos(ω1t)]

2
Enp

(N ), (4.3)

and the orbits are located at:

r̃np
(N ) =

1

µpe

(

aB
1 + κ01 cos(ω1t)

)

n2
p, (4.4)

and under the above stated conditions, the corresponding force (Feff) acting in this region is given
by:

Feff(r, t) ≃ −
e2 [1 + κ01 cos(ω1t)]

4πε0r2
. (4.5)

This force (4.5) will periodically (with a period of 2π/ω1) change from being a repulsive to being
attractive. What this means is that during the cycle when [Feff(r, t) < 0], the Proton will orbit
the Electron and once [Feff(r, t) < 0], the Proton will be ejected out of its orbit, hence – in this
instance, the Neutronium will be unable on time-scales determined by the period 2π/ω1.

Case (2): Let us consider the case where (θ = φ ≡ π/2) and (µ1r ≪ 1). For these conditions, we will have
[cos(µ1r + φ) ≃ µ1r], hence:

Veff(r, t) ≃ −
e2

4πε0r
−

µ1e
2 sin(ω1t)

4πε1
. (4.6)

If we submit this potential into the Schrödinger (1926) equation of the Neutronium, we obtain the
energy Ẽn(N ) of the Neutronium under the additional action of the Φe1-Force, we obtain:

Ẽnp
(N ) = Enp

(N )−
µ1e

2 sin(ω1t)

4πε1
= Enp

(N )− ǫ sin(ω1t). (4.7)

where (ǫ = µ1e
2/4πε1) and the orbits are located at:

r̃np
(N ) =

(

aB
µpe

)

n2
p = rnp

(N ), (4.8)

and under the above stated conditions, the corresponding force (Feff) acting in this region is given
by:

3This condition is required if in the region [µ−1

pe aB < r < aB], the Φe1 potential energy is to be much stronger
than the Coulomb potential energy.
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Feff(r, t) ≃ −
e2

4πε0r2
. (4.9)

Unlike the force (4.5), the force (4.9) is not periodic – it is the typical Coulomb attractive force
between a Proton and an Electron. In this instance – despite the periodicity in the energies of the
energy levels, we expect the Neutronium to be ‘stable’, that is, unlike in the Case (1), the Proton
will not be eject out of its orbit.

If the stated conditions leading to equations (4.2) and (4.6) are what obtains in the Neutronium
atom – then, what equations (4.2) and (4.6) are telling us is that, the energy of the energy
levels of the Neutronium will vary sinusoidally with time and this directly translates to the fact
that these energy levels have no fixed energies like happens in the typical Hydrogen atom. Of
these two conditions presented leading to equations (4.2) and (4.6), the most desired for us are
the conditions leading to equations (4.2), because these lead to an unstable Neutronium atom
which ejects the Proton out of its orbit. The Neutronium atom is unstable on the time scale,
τ : (τ = 2π/ω1). If τ is set such that it equals the lifetime of the Neutron that we are used
to know i.e. τ ∼ 882.00 ± 2.00 s (see e.g., Nakamura & Particle Data Group 2010), then, the
Neutronium (free or bound) will be unstable on this timescale. It is this property that ‘seduces’
us in the direction of thinking that the Neutronium can be thought of as being a Neutron, and
not just some strange form of matter belonging perhaps to the realm and domains of science
fiction movies.

5 General Discussion

We have here-in shown that an equanimous and meticulous application of Maxwell’s Extended
Theory of Electrodynamics can lead one to a description of the Neutronium that fits that of the
Neutron under carefully chosen conditions. What this means is that – until such a time that the
existence of the Neutroniun state is proved or disproved – we can, in the meantime, think of the
Neutronium as being a Neutron or a quasi -Neutron.
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