To Those in Search of the Truth To Generations of Civilization

UNIVERSAL AND UNIFIED FIELD THEORY Philosophical and Analytical Overview

Wei XU wxu@virtumanity.us

Metropolitan Area of Washington DC, USA

All rights reserved Copyright@ 2017

The author grants this presentation redistributable as a whole freely for non-commercial use only.

AGENDA

- 1. Generations of Physics
- 2. Universal Topology
- 3. Topological Framework
- 4. Quantum Fields
- 5. Photon, Light and Electromagnetism
- 6. Law of Conservation of Light
- 7. Graviton and Gravitational Fields
- 8. Law of Conservation of Gravitation
- 9. General symmetric Dynamics
- 10. Our Challenges
- 11. Our Glorious Mission

1. First Generation: Classical Physics

- From Euclidean space to Newtonian mechanics in 1687: Motion and Force,
 Space and time are individual parameters without interwoven relationship
- Basic concept for Real Existence of space and Virtual Existence of time without expression of virtual reality
- Unification Maxwell's Equations of Analytical Physics in 1861

2. Second Generation: Modern Physics

- Limited to physical existence only, Quantum and Relativity are **pioneered** since 1838 without using the interwoven continuum of quantum state fields
- Coupled virtual existence of time with real existence of space into an interwoven continuum: spacetime Manifold introduced in 1905.
- Unification Virtual and Physical Entanglements of Topological Duality

3. Third Generation: New Era of Physics

- Virtual Formation of elementary particles (e.g. quarks, leptons, bosons) in 1961
- Virtual Massage Compositions, introduced as Universal Massaon in 2013

GENERATIONS OF PHYSICS

MISSION OVERVIEW

- Unified Fields superseding and imposing an integrity of all empirical models of relativity, quantum, light, electromagnetism, graviton, gravitation, thermodynamics, cosmology, and others.
- 2. Universal Theory evolving and prevailing an generality of all ubiquitous laws of topology, event, duality, horizon, conservation, continuity, symmetry, asymmetry, entanglement, and beyond.

Virtual and Physical Worlds

- A world is an environment composed of events or constituted by hierarchical structures of massless objects, massive matters, or both.
- These hierarchical structures can be respectively defined as virtual world, physical world, and together: the universe.
- Because of this duality nature, a universe manifold always has a mirrored pair in the imaginary part, a conjugate pair of complex manifolds, or reciprocal Manifolds of Yin and Yang

UNIVERSAL TOPOLOGY

TOPOLOGICAL FRAMEWORK

Category	Classical and Contemporary Physics		Universal and Unified Field Theory		
Contents	Description	Formulations	Elevations	Formulations	References
Manifold Topology	Minkowski Spacetime	$\{\mathbf{r} - \mathbf{k}\}$ $\mathbf{k} = \begin{cases} x_0 = -ct \\ x_0 = ct \end{cases}$	Virtual and Physical Manifolds	$\{\mathbf{r} \mp i\mathbf{k}\} \qquad i\mathbf{k} = ict = x_0 = -x^0$	Eq. (1.1) Eq. (1.2)
Scalar Fields	A Pair of Scalar Fields	ϕ,ϕ^*	Two Pairs of Scalar Fields	$\phi^{+}(\hat{x},\lambda),\varphi^{-}(\check{x},\lambda) \phi^{-}(\check{x},\lambda),\varphi^{+}(\hat{x},\lambda)$	Eq. (2.1) Eq. (2.2)
Operations	Math Operators	$\partial_m \in \left\{\partial_\kappa = \partial/\partial x_0, \partial_r = \nabla\right\}$	Event Processes	$\dot{\partial} \in \{\dot{x}^{\mu}\partial^{\mu}, \dot{x}_{m}\partial_{m}\}$	Eq. (3.1) Eq. (3.16)
Vector Potentials	Math Operations	$\partial_m \psi$	Event Operations	$\begin{split} \hat{\partial}_{\lambda} \psi &= \dot{x}_a \left(J_{\mu a}^+ + K_{\mu a}^+ \right) \partial^{\mu} \psi \\ \check{\partial}^{\lambda} \psi &= \dot{x}^a \left(J_{m a}^- + K_{m a}^- \right) \partial_m \psi \end{split}$	Eq. (3.6) Eq. (3.18)
Entangle Generators	N/A		Boost and Torque Tensors	$J^{\pm}_{\mu a} = \partial x^{\mu}/\partial x_{a} \qquad K^{\pm}_{\mu a} = \Gamma^{\pm\sigma}_{\mu a} x_{\sigma}$	Eq. (3.5) Eq. (3.17)
Symmetric Commutation	Commutator, Anti-commutator	$[A_1, A_2]$ $\langle A_1, A_2 \rangle$	Commutator and Density Fluxion	⟨⟩ [∓] [] [∓]	Eq. (4.1) Eq. (4.3)
Asymmetric Commutation	N/A		Asymmetry & Anti-asymmetry	$\left\langle \hat{\lambda} \right\rangle^+ = \varphi_n^- \hat{\lambda} \phi_n^+ \qquad \left\langle \check{\lambda} \right\rangle^- = \varphi_n^+ \hat{\lambda} \phi_n^-$	Eq. (4.3) Eq. (4.4)
Potential	The 4-potential	$\partial_{\nu}D_{\mu}-\partial_{\mu}D_{\nu}$	Boost Entanglements	$\langle F \rangle_{m\alpha}^{\mp} = \left\langle \dot{x}^{\alpha} J_{m\alpha}^{\mp} \partial_{m}, \dot{x}_{\alpha} J_{m\alpha}^{\pm} \partial^{m} \right\rangle^{\mp}$	Eq. (9.3) Eq. (9.17)
Entanglements	N/A		Torque Entanglements	$\langle T \rangle_{\mu\alpha}^{\mp} = \left\langle \dot{x}^{\alpha} K_{\mu\alpha}^{\mp} \partial_{\mu}, \dot{x}_{\alpha} K_{\mu\alpha}^{\pm} \partial^{\mu} \right\rangle^{\mp}$	Eq. (10.3) Eq. (10.17)
Lorenze Generator	Between Frames	$L_s^{\pm} = A_s \mp iB_s$	Between Manifolds	Derived the Same Forms	Eq. (5.1) Eq. (5.3)
General Relativity	Einstein's Equation (Statically Frozen)	$G_{n\nu} = R_{n\nu} - \frac{1}{2} R g_{n\nu}$	Neither Static nor Frozen	$\left\langle \hat{\partial}^{\lambda} \hat{\partial}^{\lambda}, \check{\partial}_{\lambda} \check{\partial}_{\lambda} \right\rangle_{\nu}^{-} = \dot{x}_{n} \dot{x}_{\nu} \left(\frac{R}{2} g_{n\nu} - R_{n\nu\sigma}^{\mu} + G_{n\nu\mu}^{+\sigma} \right)$	Eq. (5.25)
Motion Operation	Euler-Lagrange Equation	$\frac{\partial \mathcal{L}}{\partial f_i} - \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial \mathcal{L}}{\partial f_i^r} \right) = 0_i$	Dual Motion Entanglements	$\check{\partial}^-(\frac{\partial W}{\partial (\hat{\partial}^+\phi)}) - \frac{\partial W}{\partial \phi} = 0 \hat{\partial}^+(\frac{\partial W}{\partial (\check{\partial}^-\phi)}) - \frac{\partial W}{\partial \phi} = 0$	Eq. (6.3) Eq. (6.4)
Geodesic Equation	Single World-line	$\ddot{x}_m + \Gamma^m_{ab} \dot{x}_a \dot{x}_b = 0$	Dual World-lines	$\ddot{x}^{\mu} + \Gamma^{+\mu}_{\alpha\beta}\dot{x}^{\alpha}\dot{x}^{\beta} = 0 \ddot{x}_m + \Gamma^{-m}_{ab}\dot{x}_a\dot{x}_b = 0$	Eq. (6.5)
Lagrangian Density	Empirical Variations	e.g. Gauge Theory	Generic World Equations	$W = k_w \int d\Gamma \sum_n h_n \left[W_n^{\pm} + \kappa_1 \dot{\partial}_{\lambda_1} + \kappa_2 \dot{\partial}_{\lambda_2} \dot{\partial}_{\lambda_1} \cdots \right] \phi_n^{+} \phi_n^{-}$	Eq. (7.7)

QUANTUM MECHANICS

Category	Classical and Contemporary Physics		Universal and Unified Field Theory		
Contents	Description	Formulations	Elevations	Formulations	References
General Quantum Equations	Operators	$\hat{\mathbf{p}} = -i\hbar \nabla \hat{E} = i\hbar \partial/\partial t$	$\kappa_1 \left(\check{\delta}^{\lambda_2} - \hat{\partial}_{\lambda_2} \right) \phi_n^+ + \kappa_2$	$\left(\check{\partial}_{\lambda_3}\check{\partial}^{\lambda_2} + \hat{\partial}_{\lambda_3}\hat{\partial}_{\lambda_2} - \check{\partial}_{\lambda_3}\hat{\partial}_{\lambda_2}\right)\phi_n^+ = W_n^+\phi_n^+$	Eq. (8.7)
	N/A		$\kappa_1 \left(\check{\partial}_{\lambda_1} - \hat{\partial}^{\lambda_1} \right) \varphi_n^+ + \kappa_2$	$\left(\check{\partial}^{\lambda_2}\check{\partial}_{\lambda_1} + \hat{\partial}^{\lambda_2}\hat{\partial}^{\lambda_1} - \check{\partial}^{\lambda_2}\hat{\partial}^{\lambda_1}\right)\varphi_n^+ = W_n^+\varphi_n^+$	Eq. (8.9)
(First Universal	N/A		$\kappa_1 \left(\hat{\partial}^{\lambda_1} - \check{\delta}_{\lambda_1} \right) \phi_n^- + \kappa_2$	$ \left(\hat{\partial}^{\lambda_2} \hat{\partial}^{\lambda_1} + \check{\partial}_{\lambda_2} \check{\partial}_{\lambda_1} - \hat{\partial}^{\lambda_2} \check{\partial}_{\lambda_1} \right) \phi_n^- = W_n^- \phi_n^- $	Eq. (8.12)
Field Equations)	N/A		$\kappa_1 \left(\hat{\partial}_{\lambda_2} - \check{\partial}^{\lambda_2} \right) \varphi_n^- + \kappa_2$	$\left(\hat{\partial}_{\lambda_3}\hat{\partial}_{\lambda_2} + \check{\partial}^{\lambda_3}\check{\partial}^{\lambda_2} - \hat{\partial}_{\lambda_3}\check{\partial}^{\lambda_2}\right)\varphi_n^- = W_n^-\varphi_n^-$	Eq. (8.13)
Spinor	Pauli Matrix	$\sigma_n = \left\{ \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}_0, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}_1, \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}_2, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_3 \right\}$	Lorenze Boost Generator	Derived the Same Form	Eq. (5.5) Eq. (5.6)
Parity Conservation	Empirical Data	Dirac Equation	Intuitive to Dual Manifolds	Derived the Same Form	Section 5 (page 3)
Energy-Momentum Conservation	Klein-Gordon	$\frac{1}{c^2} \frac{\partial^2 \varphi_n^+}{\partial t^2} - \nabla^2 \varphi_n^+ + \left(\frac{m c}{\hbar}\right)^2 \varphi_n^+ = 0$	Derived with Correction	$\frac{1}{c^2} \frac{\partial^2 \varphi_n^+}{\partial t^2} + \nabla^2 \varphi_n^+ - \left(\frac{m c}{\hbar}\right)^2 \varphi_n^+ = 0$	Eq. (9.2)
	Energy-Momentum Equation	$E^2 = \mathbf{P}^2 + m^2 c^4$	Derived in Complex Forms	$\mathbf{P} \pm i\tilde{E}^{\pm} = m_c c^2$	Eq. (9.5)
Wave-Practical Equation	Schrödinger Equation	$i\hbar \frac{\partial \phi_n^-}{\partial t} = \hat{H}\phi_n^- \hat{H} \equiv -\frac{\hbar^2}{2m}\nabla^2 + \hat{V}(\mathbf{r})$	Yin Quantum Fields	Derived the Same Form	Eq. (9.9)
Relativistic Wave Equation	Dirac Equation	$\left(i\hbar\gamma^{\nu}\partial_{\nu}\mp mc^{2}\right)\psi=0$	Yang Quantum Fields	Derived the Same Form	Eq. (9.14)
Spinor Fields	Weyl Spinor	$I_2 \frac{1}{c} \frac{\partial \psi}{\partial t} + \sigma_x \frac{\partial \psi}{\partial x} + \sigma_y \frac{\partial \psi}{\partial y} + \sigma_z \frac{\partial \psi}{\partial z} = 0$	Spin Generators	Derived the Same Form	Eq. (5.4) Eq. (5.5)

PHOTON, LIGHT AND ELECTROMAGNETISM

Category	Classical and Contemporary Physics		Universal and Unified Field Theory			
Contents	Description	Formulations	Elevations	Formulations	References	
General Horizon Equations	N/A		Eleta Elemente	$\left \dot{\hat{\sigma}}_{\lambda}\mathbf{f}_{s}^{+}=\mathbf{g}^{+}/\kappa_{g}=\left[W_{0}\right]^{+}-\left\langle \left(\kappa_{1}+\kappa_{2}\check{\sigma}_{\lambda}\right)\left(\check{\sigma}^{\lambda}-\hat{\sigma}_{\lambda}\right)\right angle ^{+}$	Eq. (10.3)	
	N/A			$\dot{\partial}_{\lambda} \mathbf{f}_{s}^{-} = \mathbf{g}^{-}/\kappa_{g} = [W_{0}]^{-} - \left\langle \left(\kappa_{1} + \kappa_{2}\check{\delta}^{\lambda}\right) \left(\hat{\partial}^{\lambda} - \check{\delta}_{\lambda}\right) \right\rangle^{-}$	Eq. (10.8)	
	Magnetic Flux	$\nabla \cdot \mathbf{B}_c^- = 0^+$	Conservation of Yin Fluxion	$(\mathbf{u}\nabla)\cdot\mathbf{B}_c^-=0$	Eq. (11.6)	
	Farads's Law	$\frac{\partial \mathbf{B}_{c}^{-}}{\partial t} + \nabla \times \mathbf{E}_{c}^{-} = 0^{+}$		$\frac{\partial \mathbf{B}_{c}^{-}}{\partial t} + \left(\frac{\mathbf{u}}{c}\nabla\right) \times \mathbf{E}_{c}^{-} = 0$	Eq. (11.7)	
	Electric Flux	$\nabla \cdot \mathbf{D}_c^+ = \rho_q$	Conservation of Yang Fluxion	$\nabla \cdot \mathbf{D}_c^+ = \rho_q$	Eq. (11.17)	
Electromagnetic Fields	Ampère's Circuital Law	$\frac{\partial \mathbf{D}_{c}^{+}}{\partial t} - \nabla \times \mathbf{H}_{c}^{+} = -\mathbf{J}_{q}$		$\frac{\mathbf{u} \cdot \mathbf{u}}{c^2} \nabla \times \mathbf{H}_c^+ - \frac{\partial \mathbf{D}_c^+}{\partial t} = \mathbf{J}_q + \mathbf{H}_c^+ \cdot \left(\frac{\mathbf{u}}{c} \nabla\right) \times \frac{\mathbf{u}}{c}$	Eq. (11.18)	
	Lorentz Force	$\mathbf{F}_q^+ = Q\Big(\mathbf{E}_c^- + \mathbf{u} \times \mathbf{B}_c^-\Big)$	Yin Fluxion Force	$\begin{aligned} \mathbf{F}_q^+ &= \kappa_q^+ \mathbf{g}_{\times}^+ = Q \mu_e \left(c^2 \mathbf{D}_c^+ + \mathbf{u} \times \mathbf{H}_c^+ \right) \\ \mathbf{F}_q^+ &= Q \Big(\mathbf{E}_c^- + \mathbf{u} \times \mathbf{B}_c^- \Big) \\ \mathbf{D}_c^+ &= \varepsilon_e \mathbf{E}_c^- \qquad \qquad \mathbf{B}_c^- = \mu_e \mathbf{H}_c^+ \end{aligned}$	Eq. (11.11) Eq. (11.12) Eq. (11.13)	
Photon	Planck and Einstein Relations	$E=mc^2\rightleftharpoons\hbar\omega$	Dual Complex Equations	$\tilde{E}_c^{\mp} = \hbar\omega \pm imc^2 \qquad \mathbf{P} \pm i\tilde{E}^{\pm} = m_cc^2$	Eq. (12.6) Eq. (12.7-8)	
Conservation of Light	N/A	Constant speed at c	Conservation of Wave-Particle	$\frac{1}{c^2} \frac{\partial^2 \Phi_c^-}{\partial t^2} + \nabla^2 \Phi_c^ \left(\frac{E_c}{\hbar c}\right)^2 = 0^+$	Eq. (12.4)	
Continuity of Light	N/A		Equation of Fluxion Continuity	$\frac{\partial \rho_c^+}{\partial t} + \nabla \cdot \mathbf{j}_c^+ = i c^2 E_c^-$	Eq. (12.5)	
Law of Conservation	N/A		YinYang Boost Entanglements	Eight Principles	Section 7. Table at p3	

LAW OF CONSERVATION OF LIGHT

- 1. Light remains constant and conserves over time during its transportation
- 2. Light is consisted of virtual energy duality as its irreducible unit: photon
- 3. Light has at least two photons for entanglement at zero net momentum
- 4. Light transports and performs a duality of virtual waves and real objects
- 5. A light energy of potential density neither can be created nor destroyed
- 6. Light transforms from one form to another carrying potential messages
- 7. Without an energy supply, no light can be delivered to its surroundings
- 8. The net flow across a region is sunk to or drawn from physical resources

GRAVITON AND GRAVITATIONAL FIELDS

Category	Classical and Contemporary Physics		Universal and Unified Field Theory			
Contents	Description	Formulations	Elevations	Formulations	References	
Weak Fields		$\nabla \cdot \mathbf{\Omega} = 0$	Conservation of	$(\mathbf{u}\nabla)\cdot\mathbf{B}_g^-=0$	Eq. (14.6)	
	Lorentz's Theory	$\frac{\partial \mathbf{\Omega}}{\partial t} + \nabla \times \mathbf{\Gamma} = 0$	Yin Fluxion	$\frac{\partial \mathbf{B}_{g}^{-}}{\partial t} + \left(\frac{\mathbf{u}}{c_{g}} \nabla\right) \times \mathbf{E}_{g}^{-} = 0$	Eq. (14.7)	
	(LITG)	$\nabla \cdot \mathbf{\Gamma} = -4\pi G \rho$	Conservation of	$\nabla \cdot \mathbf{D}_{g}^{+} = 4\pi G \rho_{g} c^{2} / c_{g}^{2}$	Eq. (14.17)	
		$\nabla \times \mathbf{\Omega} = \frac{1}{c_g^2} \left(-4\pi G \mathbf{J} + \frac{\partial \mathbf{\Gamma}}{\partial t} \right)$		$\frac{\mathbf{u} \cdot \mathbf{u}}{c_g^2} \nabla \times \mathbf{H}_g^+ - \frac{\partial \mathbf{D}_g^+}{\partial t} = 4\pi G \frac{c^2}{c_g^2} \mathbf{J}_g + \mathbf{H}_g^+ \cdot \left(\frac{\mathbf{u}}{c_g} \cdot \nabla\right) \times \frac{\mathbf{u}}{c_g}$	Eq. (14.18)	
Gravitational Force	Lorentz's Theory (LITG)	$\mathbf{F}_{m}=m\left(\mathbf{\Gamma}+\mathbf{v}_{m}\times\mathbf{\Omega}\right)$	Yin Fluxion Force	$\mathbf{F}_{g}^{+} = \kappa_{m} \mathbf{f}_{\times}^{+} = M \mu_{g} \left(c_{g}^{2} \mathbf{D}_{g}^{+} + \mathbf{u} \times \mathbf{H}_{g}^{+} \right)$	Eq. (14.11) Eq. (14.13)	
Graviton	N/A		Dual Complex Equations	$\tilde{E}_g^{\pm} = \frac{4\pi G}{V_g} \left(\frac{\hbar}{c_g}\right)^2 \mp i m_g c_g^2 m_g c_g^2 \rightleftharpoons 2\hbar \sqrt{\pi G \rho_g}$	Eq. (15.7) Eq. (15.8) Eq. 15.9)	
Conservation of Gravitation	N/A		Equation of Conservation	$\frac{1}{c_g^2} \frac{\partial^2 \Phi_g^-}{\partial t^2} + \nabla^2 \Phi_g^- = \left(\frac{E_g}{\hbar c_g}\right)^2$	Eq (15.4)	
Continuity of Gravitation	N/A		Equation of Fluxion Continuity	$\frac{\partial \rho_g^+}{\partial t} + \nabla \cdot \mathbf{j}_g^+ = i c^2 E_g^-$	Eq (15.5)	
Law of Conservation	N/A		YinYang Spiral Entanglements	Nine Principles	Section 15. Table. p3	
Force of Gravity	Newton's Law of Gravity	$\mathbf{F}^- = -m \nabla \Phi_g = -m G \rho_g \frac{\mathbf{r}}{r^2}$	Restricted Law of Conservation	$\mathbf{F}^{-} = - m c_g^2 \nabla \Phi_g^{-} = - m G \rho_g \frac{\mathbf{r}}{r^2}$	Eq. (15.5) Eq. (15.6)	

LAW OF CONSERVATION OF GRAVITATION

- 1. Gravitation remains constant and conserves over time during its transportation
- 2. Gravitation transports in wave formation virtually and acts on objects physically
- 3. A gravitation energy of potential density neither can be created nor destroyed
- 4. Gravitation is consisted of virtual energy duality as an irreducible unit: graviton
- 5. Gravitation has at least two gravitons for entanglement at zero net momentum
- 6. Gravitation transports from one form to another carrying potential messages
- 7. Without an energy supply, no gravitation can be delivered to its surroundings
- 8. The net flow across a region is sunk to or drawn from the physical resources
- 9. External to objects, gravity is inversely proportional to the square of the distance

GENERAL SYMMETRIC DYNAMICS

Category	Classical and Contemporary Physics		Universal and Unified Field Theory			
General Horizon Equations	N/A		Occord Oniversal	$\dot{\partial}_{\lambda} \mathbf{f}_{s}^{+} = \mathbf{g}^{+} / \kappa_{g} = [W_{0}]^{+} - \left\langle \left(\kappa_{1} + \kappa_{2} \check{\partial}_{\lambda}\right) \left(\check{\partial}^{\lambda} - \hat{\partial}_{\lambda}\right) \right\rangle^{+}$	Eq. (10.3)	
	N/A			$\dot{\partial}_{\lambda} \mathbf{f}_{s}^{-} = \mathbf{g}^{-} / \kappa_{g} = [W_{0}]^{-} - \left\langle \left(\kappa_{1} + \kappa_{2} \check{\delta}^{\lambda}\right) \left(\hat{\sigma}^{\lambda} - \check{\delta}_{\lambda}\right) \right\rangle^{-}$	Eq. (10.8)	
	N/A		Boost Transform and Spiral Transport	$\nabla \cdot \mathbf{B}^- = 0^+ \mathbf{B}^- = \mathbf{B}_c^- + \mathbf{B}_g^- \mathbf{E}^- = \mathbf{E}_c^- + \mathbf{E}_g^-$	Eq. (16.1)	
	N/A			$\nabla \cdot \mathbf{D}^{+} = \rho_q + 4\pi G \rho_g c^2 / c_g^2 \qquad \mathbf{D}^{+} = \mathbf{D}_c^{+} + \mathbf{D}_g^{+}$	Eq. (16.2)	
General	N/A			$\nabla \times \mathbf{E}^{-} + \frac{\partial \mathbf{B}^{-}}{\partial t} = 0$ $\mathbf{H}^{+} = \mathbf{H}_{c}^{+} + \mathbf{H}_{g}^{+}$	Eq. (16.3)	
Symmetric Dynamics	N/A			$\nabla \times \mathbf{H}^{+} - \frac{\partial \mathbf{D}^{+}}{\partial t} = \mathbf{J}_{q} + 4\pi G \frac{c^{2}}{c_{g}^{2}} \mathbf{J}_{g}$	Eq. (16.4)	
	Lorentz Force	$\mathbf{F}_q^+ = Q\left(\mathbf{E}_c^- + \mathbf{u} \times \mathbf{B}_c^-\right)$	Motion and Toqure Entanglements	Derived the Same Form	Eq. (16.5)	
	Lorentz's Theory (LITG)	$\mathbf{F}_{m}=m\left(\boldsymbol{\Gamma}+\mathbf{v}_{m}\times\boldsymbol{\Omega}\right)$		$\mathbf{F}_g^+ = M \Big(\mathbf{E}_g^- + \mathbf{u} \times \mathbf{B}_g^- \Big)$	Eq. (16.6)	
	General Equation	$dS = \frac{1}{T} \left(dE + PdV - \sum_{n} \mu_{n} dN_{n}^{\pm} \right)$	General Equation	Derived the Same Form	Eq. (A.12)	
Thermodynamics	Boltzmann Distribution	$p_n^{\pm} = \frac{h_n^{\pm}}{\sum h_m} = \frac{e^{i\beta E_n}}{Z}$ $Z \equiv \sum_m e^{i\beta E_m}$	Horizon Factor	Derived the Same Forms	Eq. (8.8) Eq. (8.10)	
Thermodynamic Entanglements	N/A		Density of Yin Supremacy	$d\rho_E^- = T d\rho_s^- + \sum\nolimits_i \mu_i d\rho_{n_i}^-$	Eq. (A.14)	
	N/A		Density of Yang Supremacy	$P + \rho_E^+ = T\rho_s^+ + \sum_i \mu_i \rho_{n_i}^+$	Eq. (A.15)	

Everything turned out to be simple and concise, yet extremely challenge — desensitized by its puzzling complexity of current traditional concepts

- Our challenge is, in fact, to leave behind the ambiguous philosophy that we were born with.
- Our challenge is to open up our minds to the facts hidden in the fabric of daily life.
- Our challenge is to soften our metaphysical prejudices, for the assumption that there is no metaphysical reality is also a metaphysics itself
- Dur challenge is all the ignominious desensitized by the clamor of the excessive hype.

OUR CHALLENGE IS EVEN GREATER

OUR GLORIOUS MISSION

No mater

Where you come from, where you are, and where you go, Human society is at the dawn of a series of revolutions for a new era.

- 1. Advancing scientific philosophies to the next generation
- 2. Standardizing topological frameworks for modern physics
- 3. Developing information technologies through virtual reality
- 4. Theorizing biology and biophysics in innovative life sciences
- 5. Reformulating metaphysics on the basis of scientific naturalism
- It is time to reevaluate and give Rise of the Ancient Philosophy
- ▶ It is time to teamwork together to Back to the Scientific Future...

Wei XU

A branch of sciences in dialectics of virtual and physical existences

wxu@virtumanity.us

