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Abstract

I search for concepts that would allow self-consistent generation of dressed
fermions in theories of gravitation. Self-consistency means here having the
Compton wave lengths of the same order of magnitude for all particles and
the four interactions. To build the quarks and leptons of the standard model
preons of spin 1/2 and charge 1/3 or 0 have been introduced by the author.
Classification of preons, quarks and leptons is provided by the two lowest repre-
sentations of the quantum group SLq(2). Three extensions of general relativity
are considered for self-consistency: (a) propagating and (b) non-propagating
torsion theories in Einstein-Cartan spacetime and (c) a Kerr-Newman metric
based theory in general relativity (GR). For self-consistency, the case (a) is not
excluded, (b) is possible and (c) has been shown to provide it, reinforcing the
preon model, too. Therefore I propose that semiclassical GR with its quantum
extension (c) and the preon model will be considered a basis for unification of
physics. The possibility remains that there are ’true’ quantum gravitational
phenomena at or near the Planck scale.

PACS 04.70.-s

Keywords: Preons, Knot Theory, Standard Model, Gravity, Torsion

∗E-mail: risto.raitio@gmail.com

1



Contents
1 Introduction 2

2 Preon Model 3

3 Knot Theory: Preons, Quarks and Leptons 5

4 Einstein-Cartan Gravity with Torsion 8
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Non-propagating Torsion . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Propagating Torsion . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 General Relativity and the Kerr-Newman Metric 15
5.1 Kerr-Newman Metric . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 The Dirac–Kerr-Newman Fermion . . . . . . . . . . . . . . . . . 16
5.3 The Dirac Equation in the Weyl Basis . . . . . . . . . . . . . . . 18
5.4 Dirac Equation and the Kerr-Newman Twistorial Structure . . . 19
5.5 The Gravitating Bag Model . . . . . . . . . . . . . . . . . . . . . 20

6 Conclusions 22

1 Introduction
The purpose of this note is to to study possible connections between three
subjects: (i) a preon model, (ii) the standard model (SM) of particles, and (iii)
gravity. More exactly, I attempt to provide group theoretic structure for basic
matter particles and to embed the preon model [1] into a theory of gravity.
Embedding means here to determine whether pointlike preons would obtain in
a gravity theory dressed structure similar to the SM particles. By similar I
mean Compton wave lengths being roughly of the same order of magnitude.

Merging gravity with quantum theory has been a major problem in theo-
retical physics for more than half a century. Several attempts have been made
using various formalisms - but without hoped for success. Therefore a simple
phenomenological model building may be worth trying for the moment.

In [1] the quarks and leptons were formed of three fermionic preons. Sec-
ondly, the preon concept was introduced as an object which would provide a
connecting link between the SM fermions and micro black holes (BH).1 The
preon model was further developed in [2, 3].

Key issues in general relativity (GR) which I wish to address here are the
singularity at the center of black holes and the quantization. Black holes at

1The main stream modern theories consider the AdS/CFT duality as a holographic connection
between gravity and quantum theory.
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accelerator length scales, and smaller, are an open, admittedly unsafe territory
for model building.

BHs can be described by three quantum numbers: mass, spin and charge.
Therefore a conservative choice is that preons take the very same quantities. I
assume for preons charge values ±1/3 and zero, to make available the known
quark charges. Preons have a light mass and spin 1/2. The preon states are
doublets Ψ =

(
ψ+1/3

ψ0

)
, both components ψ(x) being four component spinors.

Preons have only electromagnetic and gravitational interactions. In order to
find a way to introduce gravity in the preon model, three candidate theories
of gravity are considered: the extended Einstein-Cartan (EC) gravity with tor-
sion, including both the non-propagating and propagating torsion. And thirdly,
a Kerr-Newman (KN) metric based construction in Einstein-Hilbert (EH) grav-
ity. Our model with the KN completion suggests unification of particle theory
with four interactions in terms of matter fields (preons) rather than gauge in-
teractions, as traditionally.

The present preon model [1, 2, 3] is described in section 2. It suggests coher-
ently the gauge group structures SU(2) and SU(3) for the weak and strong in-
teractions, respectively. Group theoretic global structure for preons, quarks and
leptons has been given by Finkelstein [4, 5] using the quantum group SLq(2).
This is reviewed in section 3. For gravity two extensions of general relativity
with torsion are discussed in section 4. We will see that towards Planck scale
and high matter density torsional effects become important both in the non-
propagating theory of Poplawski [6] and in the propagating theory of Fabbri [7]
(see also [8]). In section 5 a model by Burinskii [9], based on the Kerr-Newman
over-spinning metric, is reviewed. Desired, interesting results are obtained. Fi-
nally, conclusions are given in section 6. Briefly, preons are connected to SM by
SLq(2) and self-consistently to gravity by the Kerr-Newman metric based bag
construction.

2 Preon Model
Starting from the known quark and lepton charges it is natural to try the follow-
ing charge quantization {0, 1/3, 2/3, 1}. Fermionic permutation antisymmetry
for same charge preons must be included. These arguments lead to four bound
states of three light preons which form the first generation quarks and leptons
[1, 2]

uk = εijkm
+
i m

+
j m

0

d̄k = εijkm
+m0

im
0
j

e = εijkm
−
i m
−
j m
−
k

ν̄ = εijkm̄
0
i m̄

0
jm̄

0
k

(2.1)

A useful feature in (2.1) with two same charge preons is that the construction
provides a three-valued index for quark SU(3) color, as it was originally discov-
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ered [10], the corresponding gauge bosons being in the adjoint representation.
The weak SU(2) left handed doublets can be read from the first two and last
two lines in (2.1). The standard model (SM) gauge structure SU(N), N = 2, 3
is emergent in this sense from the present preon model. In the same way quark-
lepton transitions between lines 1↔3 and 2↔4 in (2.1) are possible.

The preon and SM fermion global group structure is better illuminated using
the representations of the SLq(2) group in the next section 3.

The above gauge picture is supposed to hold in the present scheme up to the
energy of about 1016 GeV. The electroweak interaction has the spontaneously
broken symmetry phase below an energy of the order of 100 GeV and symmet-
ric phase above it. The electromagnetic and weak forces take separate ways at
higher energies (100 GeV� E � 1016 GeV), the latter restores its symmetry but
melts away due to ionization of quarks and leptons into preons. The electromag-
netic interaction, in turn, stays strong towards Planck scale, MPl ∼ 1.22× 1019

GeV. Likewise, the quark color and leptoquark interactions suffer the same des-
tiny as the weak force. One is left with the electromagnetic and gravitational
forces only near Planck scale.

The proton, neutron, electron and ν can be constructed of 12 preons and 12
anti-preons. The construction (2.1) is matter-antimatter symmetric on preon
level, which is desirable for early universe. The model makes it possible to
create from vacuum a universe with only matter: combine e.g. six m+, six
m0 and their antiparticles to make the basic β-decay particles. Corresponding
antiparticles may occur equally well, but the matter dominance case seems to
have been made. Neutral dark matter is formed of preon-antipreon pairs more
likely than ordinary matter when the temperature of the universe is lowered to
a proper free mean path value between preon collisions.

The baryon number (B) is not conserved in this model: a proton may decay
at Planck scale temperature by a preon rearrangement process into a positron
and a pion. This is expected to be independent of the details of the preon
interaction. Baryon number minus lepton number (B-L) is conserved.

I suppose the preon-preon interaction is attractive, non-confining and strong
enough to keep together the charged preons but weak enough to liberate the
preons at high temperature. A candidate for this interaction is the axial-vector
field mediated force discussed in section 4.3. On the other hand, it has been
suggested [4] that preons may not appear as free particles, i.e. have any inde-
pendent degree of freedom, but are concentrations of energy-momentum at the
crossings of a flux tube.

One may now consider the case that, as far as there is an ultimate unified
field theory within the standard model, it is a preon theory with gravitational
and electromagnetic interactions only.
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3 Knot Theory: Preons, Quarks and Leptons
Early work on knots in physics goes back in time to 19th and 18th century
[11, 12]. More recently Finkelstein has proposed a model based on the quantum
group SLq(2) [4, 5]. The idea is that Lie groups can be considered as degenerate
forms of quantum groups [13]. Therefore it is of interest to study a physical
theory by replacing its Lie group by the corresponding quantum group. Finkel-
stein has introduced the global group SLq(2) as an extension to the SM gauge
group obtaining the group structure SU(3) × SU(2) × U(1) × SLq(2).

Knots are objects in three dimensional space. Their projections onto two
dimensional plane are considered here. Oriented knots can be characterized
by three numbers as follows. Where two dimensional curves cross there is an
overline and an underline at each point, the vertex. A vertex has a crossing
sign +1 or -1 depending on whether the overline direction is carried into the
underline direction by a counterclockwise or clockwise rotation, respectively.
The sum of all crossing signs is the writhe w which is a topological invariant.
The number of rotations of the tangent of the curve in going once around the
knot is a second topological invariant and it is called the rotation r. An oriented
knot can be labeled by the number of crossings N , the writhe w and rotation
r. The writhe and rotation are integers of opposite parity.

One can transform to quantum coordinates (j,m,m′). These indices label
the irreducible representations of Dj

mm′ of the symmetry algebra of the knot,
SLq(2), by defining

j = N/2, m = w/2, m′ = (r + o)/2 (3.1)

This linear transformations makes half-integer representations possible. The
knot constraints require w and r to be of opposite parity, therefore o is an odd
integer.

The standard model field operators ψ(x) are complemented in his model by
knot factors D as follows [5]

ψ(x)→ ψ̂(x)Dj
mm′ (3.2)

where Dj
mm′ is a 2j+1 dimensional representation of the SLq(2) algebra (ψ̂(x)

also has the (j,m, m’) indices, see [5]).
Any knot (N,w, r) may be labeled by DN/2

w/2,(r+o)/2(a, b, c, d). Therefore, to
the (N,w, r) knot the following expression of the algebra is associated

Dj
mm′(a.b, c, d) =

∑
δ(na+nb,n+)
δ(nc+nd,n−)

Ajmm′(q, na, nc)δ(na + nb, n
′
+)anabnbcncdnd (3.3)

where (j,m,m′) is given by (3.1), n± = j±m, n′± = j±m′ and Ajmm′(q, na, nc)
is given by

Ajmm′(q, na, nc) =

[
〈n′+〉1〈n

′
−〉1

〈n+〉1〈n−〉1

]1/2 〈n+〉1!
〈na〉1!〈nb〉1!

〈n−〉1!
〈nc〉1!〈nd〉1!

(3.4)
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where n+ = na + nb, n− = nc + nd, 〈n〉q = qn−1

q−1 and 〈〉1 = 〈〉q1 .
One assigns physical meaning to the Dj

mm′ in (3.3) by interpreting the a, b,
c, and d as creation operators for spin 1/2 preons. These are the four elements
of the fundamental j = 1/2 representation D1/2

mm′ as indicated in table 1.

m m’ preon
1/2 1/2 a
1/2 -1/2 b
-1/2 1/2 c
-1/2 -1/2 d

Table 1.

For notational clarity, I use in the tables 1. and 2. the preon names of [4]. The
preon dictionary from the notation of [1] is the following:

m+ 7→ a, m0 7→ c

m− 7→ d, m̄0 7→ b
(3.5)

The standard model particles are the following D3/2
mm′ representations

m m’ particle preons
3/2 3/2 electron aaa
3/2 3/2 neutrino ccc
3/2 -1/2 d-quark abb
-3/2 -1/2 u-quark cdd

Table 2.

The preon, quark and lepton knot structures are presented graphically in
figure 1.

All details of the SLq(2) extended standard model are discussed in [4], in-
cluding the gauge and Higgs bosons and a candidate for dark matter. I do
not, however, see much advantage for introducing composite gauge bosons in
the model (gauge invariance is a local property). Introduction of color is done
slightly differently in [5]. In the early universe developments there is similarity
between the knot and the present preon model. Therefore the model of [1] and
the knot algebra of [4] are equivalent in the fermion sector.

Preon binding into bound states is not completely clear. The trefoil field
structure may be regarded as a trefoil flux tube carrying energy, momentum
and charge so that all three are concentrated at the three crossings. Then one
can regard these three concentrations at the three crossings as actually defining
the three preons, without postulating their existence with independent degrees
of freedom. In the next section 4 I describe the possibility that the preon
interactions are gravitationally caused by torsion.

The most elementary configuration of type considered above is a simple loop
having j = 0. Some pairs of these loops with opposite rotation may be brought
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Figure 1: Preonic structure of elementary fermions (taken from [4]. Preprint of an article submitted
for consideration in Int.J.Mod.Phys.A. © 2017 http://www.worldscientific.com)

together, e.g. in the early universe, by gravitational attraction making two
opposing j = 1/2 twisted loops as indicated in figure 2.

In summary, knots having odd number of crossings are fermions and knots
with even number of crossings are correspondingly bosons. Instead of consid-
ering spin 1 bound states of six preons I assume that the SM gauge bosons are
genuine point like gauge fields. The leptons and quarks are simple quantum
knots, the quantum trefoils, with three crossings and j = 3/2. At each crossing
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Figure 2: Creation of preons as twisted loops (Origin of picture as in figure 1).

there is a preon. The preons are twisted loops with one crossing and j = 1/2.
The j = 0 states are simple neutral loops with zero crossings, called yons in [4].
.

4 Einstein-Cartan Gravity with Torsion

4.1 Preliminaries
The basic quantity of general relativity (GR) is the metric tensor field gµν(x)
the variations of which are caused by the matter fields. Covariant derivatives are
defined with respect to the Christoffel connection, which is the unique metric-
compatible and no-torsion connection. A simple modification to GR is to con-
sider the connection a fundamental variable rather than an expression of some
function of the metric. There are several forms of these type theories. An early
modified GR is the Palatini formulation (for a review, see [14]) of Einstein-
Hilbert gravity: the action is the same but the connection is varied indepen-
dently of the metric. The equations of motion include the usual expression plus
extra terms depending algebraically on the matter fields. The new terms con-
tributing to the connection include a new tensor, called the torsion tensor. The
Palatini formulation gives rise to non-propagating torsion.

From gauge theory point of view, the Einstein-Hilbert theory of gravity
provides rotational curvature (cf. rolling a piece of dough) to spacetime in
terms of the metric tensor. This is the prevalent dogma in gravity. It is not,
however, the most general case of gauge symmetry available. The EH theory
can be generalized by including in the action terms of torsion, which leads to
translational curvature (cf. turning a screw) in spacetime. This way the full
symmetry of the ten parameter Poincaré group can be taken into account.

From a different point of view, curvature arises in the form of metric from
energy density and torsion in the form of a connection from spin density. Torsion
is therefore defined on microscopic scales only. Torsion requires extension of
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the Riemann geometry to Riemann-Cartan (RC) geometry [15]. RC gravity, or
Einstein-Cartan-Kibble–Sciama (ECKS) [16, 17, 18] gravity can be reduced to
general relativity gravity plus torsional contributions.

Poplawski has considered the case of non-propagating torsion in ECKS thery
[6]. Free fermions in the ECKS theory extend in two spatial dimensions at least
on the scale of their Cartan radii rC ∼ 3

√
GN~2/mc4. The Cartan density for an

electron, ρC ∼ me/r
3
C ∼ 1049g/cm3, approximates the order of the maximum

density of matter composed of standard model particles [6]. This gives an idea
of how high spinorial matter densities may be required for torsional effects to
occur.

Fabbri [7] has developed a theory with propagating torsion and spinor matter
fields, which yields a massive axial-vector coupled to spinors. His goal is to
explain most of the open problems in the standard model of particles (and
cosmology) as well as to analyze the nature of spinor fields. Here I consider the
axial-vector coupling of [7] as a possible preon binding interaction.

The field equations of the EH theory of gravity are

Rµν− 1

2
gµνR−gµνΛ=

1

2
kTµν (4.1)

where Rµν is the Ricci tensor, R its trace, Tµν is the matter energy density and
k = 8πG. They will now be extended to include torsion.

Connections are used to define covariant derivatives. A suitable connection
must be constructed. In general form, a covariant derivative of a vector is
defined by

DαV
µ = ∂αV

µ + V ρΓµρα (4.2)

The connection Γµρα has three indices: µ and ρ shuffle, or transform, the compo-
nents of the vector V ρ and α indicates the coordinate in the partial derivative.

Metric and connection should be unrelated. This is implemented by de-
manding that the covariant derivative of the metric vanishes. In this case the
connection is metric-compatible. Metric-compatible connections can be divided
into antisymmetric part, given by the torsion tensor, and symmetric part which
includes a combination of torsion tensors plus a symmetric, metric dependent
connection.

In a general Riemannian spacetime R, at each point p with coordinates xµ,
there is a Minkowski tangent space M = TpR, the fiber, on which the local
gauge transformation of the TxµR coordinates xa takes place

x′a = xa + εa(xµ) (4.3)

where εa are the transformation parameters, µ is a spacetime index and a a
fiber frame index.

The dynamics of the theory is based on vierbeins (tetrads) eaµ, not on the
metric tensor gµν . The Cartan, or affine, connection has a primary role and it
is

Γµλν = eaµ∂λeaν (4.4)
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The tensor associated with this connection is torsion tensor

Tµλν = e µ
a (∂λe

a
ν − ∂νeaλ) (4.5)

The connection

Λραβ = 1
2g
ρµ (∂βgαµ + ∂αgµβ − ∂µgαβ) (4.6)

is symmetric and written entirely in terms of the partial derivatives of the metric
tensor, and it is called metric connection, or Christollel symbol, while the torsion
tensor with all lower indices is taken to be completely antisymmetric.

Unfortunate for the development of gravitation theory, spin was not discov-
ered in the laboratory before 1916. Spinors were introduced in mathematics by
Cartan in the 1920’s and spinor wave equation was found by Dirac in 1928.

4.2 Non-propagating Torsion
The dynamical variables describing the spacetime of ECKS theory are the tetrad
eia and the spin connection [6]

ωabk = eaj (∂ke
j
b + Γjike

i
b) (4.7)

where Γjik is the affine connection. The torsion tensor is T ijk = Γi[j,k], where []
denotes antisymmetrization. The spin connection ωabk is a generalization of Γijk.
The tetrad eaj connects the spacetime coordinates i, j, ... to the local Lorentz
coordinates a, b, ... as follows V a = V ieai .

The dynamical energy-momentum density is obtained from the Lagrangian
density of matter Lm (without fermions for the present) with respect to tetrad

Σ i
ab = 2

δLm

δωabi
(4.8)

Conservation of spin density follows from the Lorentz invariance of Lm

∂kΣ
ijk − ΓilkΣ

jlk + Γjlk − 2Θ[ij] = 0 (4.9)

The ECKS Lagrangian density is

L = Lm −
c4

2k
eR (4.10)

where e = detai , R = Rbje
j
b is the Ricci scalar. The energy-momentum density

is determined locally through the Einstein equation

e
(
Rai −

1

2
Reai

)
=

k

c4
Θ a
i (4.11)

which follows from variation of L with respect to the tetrad. The torsion of
spacetime is locally related to the spin density (4.8) by the Cartan equation

e
(
Si ab − SaEib + Sbe

i
a

)
= − k

c4
Σ i
ab (4.12)
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where Si = Sk ik is the torsion vector. This follows from the stationarity of
the action under variation of the spin connection. Combining (4.11) and (4.12)
gives

Gik =
k

c4
Tik + Uik (4.13)

where Gik = Rik − 1
2Rgik is the Einstein tensor and Tik = (2/e)δLm/δg

ik is
the metric energy-momentum tensor. The tensor Uik is

Uik = −
(
Slij + 2S l

{ij}
)(
Sjkl + 2S j

{kl}
)

+ 4SiSk +

1

2
gik
(
Smjl + 2S{jl}m

)(
Sljm + 2S{jm}l

)
− 2gikS

jSj (4.14)

where {} means symmetrization. Uik is quadratic in Σ k
ij . The Lagrangian

density (4.10) choice for a torsional theory. When torsion vanishes (4.13) reduces
to the usual Einstein equation.

The Cartan equation (4.12) is linear algebraic equation. Therefore torsion is
simply proportional to spin density and it vanishes in vacuum, outside material
bodies. In other words, torsion is non-propagating.

Now introduce fermions obeying the Dirac equation iγi(~∂iψ+(iq/c)Aiψ)−
mcψ = 0, where Ai is the electromagnetic potential and the γi are the 4 × 4
Dirac matrices. The Dirac Lagrangian is

Lm = Lψ =
1

2
i~ce

(
ψ̄γi∂iψ − ∂iψ̄γiψ

)
−

1

2
ψ̄
(
γiΓi + Γiγ

i
)
ψ − qeψ̄γiψAi −mc2eψ̄ψ (4.15)

where the spinor connection is Γi = −(1/4)ωabiγ
aγb, which is called the Fock-

Ivanenko expression. The spin density from (4.15) is the totally antisymmetric
form

Σijk =
1

2
i~ceψ̄γ[iγjγk]ψ (4.16)

The definition (4.8) indicates that only the totally antisymmetric part of the
torsion tensor couples to Dirac fields. The spin density (4.16) does not in-
clude m and q, it does not depend on weak and strong interactions of fermions
either. Therefore our assumption that the weak and strong interactions fade
away at high enough energy like, 1016 GeV, is not that restrictive. As to the
present scheme, results based on (4.16) apply to both charged and neutral pre-
ons. Substituting (4.16) into (4.15) yields a four fermion axial self-interaction
term, called the Heisenberg-Ivanenko term, in the Lagrangian density

LS =
3

2
πGe(~c)2

(
ψ̄γiγ5ψ

)(
ψ̄γiγ

5ψ
)

(4.17)

Now in [6] the author assumes for tests three types of solutions (i) a point
particle, (ii) field of string form, and (iii) toroid with certain inner and outer
radii. Conservation of spin density excludes solution types (i) and (ii). The type
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(iii) solution can be assessed as follows. One has to choose between EH and
ECKS theories. In ECKS a Dirac field cannot form a singular Kerr-Newman
ring because the ring would have to have spatial extension along the r- and z-
coordinates. In ECKS the extension is expected to be of the order of the Cartan
radius. The value of the this size is obtained from the condition when the two
terms on the right hand side of (4.13) are of the same order of magnitude. In
other words, the size is determined by the condition when the repulsive four-
fermion term equals the attractive gravitational mass term. The value of Cartan
radius is rC ∼ 3

√
GN~2/mc4. Poplawski concludes (i) that torsion may modify

Burinskii’s model [9] replacing the Dirac–Kerr-Newman ring singularity with
a non-singular toroid with the inner radius of the order of Cartan radius, for
electrons rC ∼ 10−25 cm, and outer radius of the order of Compton wave length
λ = ~/mc ∼ 2.4×10−10 cm, which is valid also for neutral fermions, (ii) the full
Einstein-Maxwell-Yang-Mills-Dirac-Heisenberg-Ivanenko field equations would
have to be solved. But (ii) is just what one wants to avoid in the present preon
model. In section 5 we take a close look at the Burinskii model singularity.

4.3 Propagating Torsion
In this subsection the propagating torsion in ECKS spacetime iis discussed.
The system of field equations can be derived by the variational method from a
dynamical action, whose Lagrangian function is [7]

L =−1
4(∂B)2+ 1

2M
2B2− 1

kR−
2
kΛ− 1

4F
2 +

+iψγµ∇µψ−gBψγµπψBµ−mψψ (4.18)

where F is the electromagnetic tensor

Fαβ = ∂αAβ − ∂βAα (4.19)

Torsion has the important property that it can be separated from gauge and
metric factors. Let us start from the metric connection

Λραβ = 1
2g
ρµ (∂βgαµ + ∂αgµβ − ∂µgαβ) (4.20)

The torsion tensor is completely antisymmetric only if some restrictions are
imposed, called the metric-hypercompatibility conditions [19]. Then it can be
written in the form

Qασν = 1
6B

µεµασν (4.21)

where Bµ is torsion pseudo-vector, obtained from the torsion tensor after a
Hodge dual. With the metric connection and the torsion pseudo-vector the
most general connection can be written as a sum of Λραβ and Qασν as follows

Γραβ= 1
2g
ρµ
[
(∂βgαµ+∂αgµβ−∂µgαβ)+ 1

6B
νενµαβ

]
(4.22)

12



Functions Ωa
bµ that transform under a general coordinate transformation like

a lower Greek index vector and under a Lorentz transformation as

Ω′a
′

b′ν = Λa
′
a

[
Ωa
bν − (Λ−1)ak(∂νΛ)kb

]
(Λ−1)bb′ (4.23)

are called a spin connection. The torsion in coordinate formalism is defined as
follows

Qaµν =−(∂µe
a
ν−∂νeaµ+ebνΩa

bµ−ebµΩa
bν) (4.24)

and the spin connection is given by

Ωa
bµ = eνb e

a
ρ

(
Γρνµ − eρk∂µe

k
ν

)
(4.25)

which is antisymmetric in the two Lorentz indices after both of them are brought
in the same upper or lower position. The most general spinorial connection is

Ωµ = 1
2Ωabµσ

ab+iqAµI (4.26)

where Aµ is the gauge potential. The spinorial curvature is using the spinorial
connection

F αβ = ∂αΩβ − ∂βΩα + [Ωα,Ωβ] (4.27)

Let us define the decomposition of the spinor field in its left and right parts

πLψ=ψL ψπR=ψL (4.28)
πRψ=ψR ψπL=ψR (4.29)

so that

ψL+ψR=ψ ψL+ψR=ψ (4.30)

Now one has 16 linearly-independent bi-linear spinorial quantities

2ψσabπψ=Σab (4.31)
2iψσabψ=Sab (4.32)
ψγaπψ=V a (4.33)
ψγaψ=Ua (4.34)
iψπψ=Θ (4.35)
ψψ=Φ (4.36)

To have the most general connection decomposed into the simplest sym-
metric connection plus torsion terms we substitute (4.22) in (4.25) and this in
(4.26). The field equations reduce to the following

∇ρ(∂B)ρµ+M2Bµ=gBψγ
µπψ (4.37)
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for torsion axial-vector and

Rρσ− 1
2Rg

ρσ−Λgρσ=

= k
2 [14F

2gρσ−F ραF σα + (4.38)
+1

4(∂B)2gρσ−(∂B)σα(∂B)ρα +

+M2(BρBσ− 1
2B

2gρσ) +

+ i
4(ψγρ∇σψ−∇σψγρψ+ψγσ∇ρψ−∇ρψγσψ)−

−1
2gB(Bσψγρπψ+Bρψγσπψ)] (4.39)

for the torsion-spin and curvature-energy coupling, and

∇σF σµ=qψγµψ (4.40)

for the gauge-current coupling; and finally

iγµ∇µψ−gBBσγσπψ−mψ=0 (4.41)

for the spinor field equations.
From (4.37) one sees that torsion behaves like a massive axial-vector field

satisfying Proca field equations. It is noted that torsion does not couple to
gauge fields. Torsion and gravitation seem to have the same coupling constant.
However, in [7] it is shown that using the Einstein-Kibble-Sciama field equations
these two independent fields with independent sources can have independent
coupling constants.

The preon-preon interaction is attractive and of short range due to the mass
of the axial-vector field. The interaction includes two free parameters, the
coupling constant gB and the mass M of the axial-vector. Therefore, bound
states of preons may be formed by the axial-vector interaction.

The preons interact by coupling to an axial-vector bosonB arising in Einstein-
Kibble-Sciama theory of gravity. The preon-preon interaction is attractive [7]
providing the binding for three preon states. The mass of the axial-vector boson
is estimated to be of the order of the grand unified theory (GUT) scale 1016 GeV
(see below in this section). This makes the torsion interaction range very short.
At all scales the B couples to preons relatively strongly but to the standard
model particles always weakly. The role of curvature, or gravitons, is beyond
the scope of this study.

The field equation for torsion axial-vector is (4.37), from subsection 4.3

∇ρ(∂B)ρµ+M2Bµ=gBψγ
µπψ (4.42)

whereM is the axial-vector mass, gB the preon–axial-vector coupling and ψ the
preon wave function. The coupling gB must be larger than the electromagnetic
coupling α to keep the charged preons bound. In EKS gravity, gB is independent
of the gravitational coupling [7]. The key point of this note is that (4.42) depends
only on the axial-vector B and preon field ψ, not on gauge and metric factors.
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Couplings in GUT theory are of the order 0.02 at the GUT scale. With
a Yukawa potential in the Schrödinger equation V (r) = −V0 exp(−ar)/r [20],
or in our notation −gBexp(r/M)/r with the physicality condition n + l + 1 ≤√
gBmM , one may estimate that large M correlates with small preon mass

m� mproton. These matters deserve naturally quantitative attention.

5 General Relativity and the Kerr-Newman
Metric

5.1 Kerr-Newman Metric
In this subsection we consider stationary rotating black holes which have axial
symmetry aound the axis of rotation. The solution of Einstein equation for
rotating black holes was discovered by Kerr as late as 1963 [21]. The Kerr
metric is

ds2 = −
(

1− 2GMr

ρ2

)
dt2 − 2GMar sin2θ

ρ2
(dtdφ+ dφdt)

+
ρ2

∆
dr2 + ρ2dθ2 +

sin2θ

ρ2

[
(r2 + a2)2 − a2∆sin2θ

]
dφ2 (5.1)

where
∆(r) = r2 − 2GMr + a2 (5.2)

and
ρ2(r, θ) = r2 + a2cos2θ (5.3)

The quantities mass M and angular momentum J determine the possible so-
lutions. The angular momentum per unit mass a = J/M is also important
for elementary particles. When a = 0 the metric goes to the Schwarzschild
metric. In (5.1) there are two Killing vectors K = ∂t and R = ∂φ because the
corresponding metric coefficients are independent of t and φ.

Electric and magnetis charges Q and P can be included by replacing 2GMr
with 2GMr − G(Q2 + P 2). The resulting metric is called the Kerr-Newman
(KN) metric [22].

The coordinates (t, r, θ, φ) are called the Boyer-Lindquist coordinates. In
the limit a fixed and M → 0 we find flat spacetime but not in ordinary polar
coordinates but with line element

ds2 = −dt2 +
r2 + a2cos2θ

r2 + a2
dr2 + (r2 + a2cos2θ)2dθ2 + (r2 + a2)sin2θdφ2 (5.4)

The coordinates have been chosen so that the event horizons occur for fixed
values of r for which grr = ∆/ρ2 = 0, or

∆(r) = r2 − 2GMr + a2 = 0 (5.5)
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There are three cases: (i) GM > a, GM = a and GM < a. Usually the case
GM > a is of interest, (ii) is unstable and (iii) has a (ring) singularity, which
we will meet in subsection 5.2. In case (i) there are two solutions for ∆ = 0

r± = GM ±
√
G2M2 − a2 (5.6)

Figure 3: The Kerr singular ring and the Kerr congruence of twistors (PNC). Singular ring is
a branch line of space, and PNC propagates from the “negative” sheet of the Kerr space to the
“positive” one, covering the space-time twice (taken from [25]).

5.2 The Dirac–Kerr-Newman Fermion
The Kerr-Newman solution has been used as a model for the electron after
the discovery [23] that it has the gyromagnetic ratio g = 2. This leads to the
question are the Dirac equation and the KN solution somehow connected? In
this subsection we review a model which connects the Dirac equation and the
spinor (twistor) structure of the KN solution [24]. We consider the Burinskii
model based on the assumption that the Dirac equation and the KN solution
are complementary to each other. The Dirac spinors fit together with the spinor
structure of the KN spinning particles. Tho role of the Dirac equation is to play
as an order parameter and to control the system. The combined Dirac–Kerr-
Newman system is indistinguishable from the behavior of the Dirac electron.

The angular momentum J = ~/2 of an electron is so big, compared to its
mass, that the black hole horizons disappear. This can be called over-rotating
Kerr geometry. The source of the KN spinning particle is a naked singularity
ring. The ring represents a string which is able to have excitations generating
the spin and mass of the extended object. The ring is a focal line of the principal
null congruence which is a bundle of light-like rays, or twistors. The form of
the metric, the Kerr-Schild form of KN metric, is determined by a null vector
field kµ(x) which is tangent to the vortex of light-like rays which are twistors,
see figure 3.

gµν = ηµν + 2Hkµkν (5.7)
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where ηµν is the Minkowski metric, the vector potential for the charged KN
solution is

Aµ = A(x)kµ (5.8)

and the function H is

H =
mr − e2/2
r2 + a2cos2θ

(5.9)

where r, θ are ellipsoidal coordinates

x+ iy = (r + ia)eiφsinθ, z = rcosθ, t = ρ− r (5.10)

The vector field kµ is tangent to the principal null congruence (PNC) which
is geodesic and shear-free (GSF). The PNC is obtained from a complex function
Y (x)

k = du+ Ȳ dζ + Y dζ̄ − Y Ȳ dv (5.11)

where in the null Cartesian coordinates
√

2ζ = x+ iy,
√

2ζ̄ = x− iy√
2u = z + t,

√
2v = z − t (5.12)

The twisting Kerr congruence is determined by the Kerr theorem. It repre-
sents a technical instrument which allows one to obtain the KN solution (and its
generalizations). The general geodesic and shear-free congruence on Minkowski
spacetime M4 is generated by the algebraic equation

F (Y, λ1, λ2) = 0 (5.13)

where F (Y, λ1, λ2) is a holomorphic function of the projective twistor coordi-
nates

Y, λ1 = ζ − Y v, λ2 = u+ Y ζ̄ (5.14)

The solution of (5.13) is a function Y (x) which allows to obtain PNC using
(5.11). Function F is called the generating function of the Kerr theorem.

The complexification (x, y, z)→ (x, y, z + ia) to the source of the Coulomb
potential at origin

Φ(x, y, z) = Req
r̃

(5.15)

where r̃ =
√
x2 + y2 + (z − ia)2 is complex. On the real slice (x, y, z) this

solution gains a singular ring for r̃ = 0. The radius of the ring is a and it
is located in the plane z = 0. The solution can be presented in the oblate
spheroidal coordinate system (r, θ) where r̃ = r + ia cosθ. The space is seen
to have twofold structure with the ring-like singularity as the branch line. For
each real point (t, x, y, z) ⊂M4 there are two points, one lying on the positive
sheet with r > 0 and the other on the negative sheet with r < 0.

The potential (5.15) corresponds exactly to the electromagnetic field of the
KN solution. The complex shift ~a = (ax, ay, az) corresponds to the angular
momentum of the KN solution.
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5.3 The Dirac Equation in the Weyl Basis
The Dirac equation in the Weyl basis reads(

γµΠ̂µ +m
)
Ψ = 0 (5.16)

where Ψ =

(
φα
χα̇

)
, and Π̂µ = −i∂µ − eaµ. It splits into

σµαα̇
(
i∂µ + eAµ

)
χα̇ = mφα

σ̄µα̇α
(
i∂µ + eAµ

)
φα = mχα̇ (5.17)

The Dirac current is

Jµ = e
(
Ψ̄Ψ
)

= e(χ̄σµχ+ φ̄σ̄µφ) (5.18)

where Ψ̄ = (χ+, φ+) is a sum two light-like components of opposite chirality

JµL = eχ̄σµχ

JµR = eφ̄σ̄µφ (5.19)

The products of the null vectors kµL = χ̄σµχ and kµR = φ̄σ̄µφ is

kµLkRµ = (χ̄σµχ)(φ̄σ̄µφ)

= −2(φχ̄)(χφ̄ = 2(χ̄φ)(χ̄φ)+ (5.20)

In addition, two more Dirac spinor vector combinations are available, mµ =
φσµχ and m̄µ = (φσµχ)+ = χ̄σµφ̄. Their scalar product is

mµm̄µ = 2(χ̄φ)(χ̄φ)+ (5.21)

All other products between kL, kR,m and m̄ are null.
The four normalized null vectors

na =
1√

2(χ̄φ)(χ̄φ)+
, a = 1, 2, 3, 4 (5.22)

provide a field of the quasi orthogonal null tetrad determined by the solution
Ψ(x) of the Dirac equation.

The Dirac equations for a plane wave Ψ =

(
φα
χα̇

)
=

(
φ̆α
χ̆α̇

)
is of the form

−Πµσ
µ
αα̇χ

α̇ = mφα (5.23)
−Πµσ̄

µα̇αφα = mχα̇ (5.24)

where Πµ = pµ − eAµ.
The complex vectorsm and m̄ are modulated by the phase factor exp(2ipµxµ)

from Dirac spinors. They also carry oscillations and de Broglie periodicity of a
moving particle. For real null vectors kL and kR the phase factor cancels.
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The vector Πµ is spanned by the real vectors kL and kR

Πµ = − m

2φ̄χ

(
kmL + kmR

)
(5.25)

In the rest frame
k0L = k0R, kiL = −kiR (5.26)

The spatial components of Πi vanish.
The polarization vector of the electron is

Sµ = iΨ̄γµγ5Ψ = kµL − k
µ
R (5.27)

In the rest frame S = (0, Si).
It has been shown that the complex KN geometry is related to two null

vectors kL and kR. They determine the momentum, angular momentum and
spin of the KN particle.

5.4 Dirac Equation and the Kerr-Newman Twistorial
Structure
The Kerr-Schild ansatz for the metric (5.1) determined by the null vector field
lµ(x). The vector field is tangent to the Kerr PNC and is determined by the
complex function Y (x)

kµdx
µ = 1/P (du+ Ȳ dζ + Y dζ̄ − Y Ȳ dv) (5.28)

where P (Y ) is a normalization factor and (u, v, ζ, ζ̄) are the null Cartesian
coordinates (5.12).

The Kerr theorem says that all the geodesic and shear-free congruences are
determined by the function Y (x) which is a solution of F = 0 where F is
holomorphic function of the projective twistor coordinates (5.14).

A twistor is a pair Zα = {ψα, µα̇} where µα̇ = xµσ̄µψα. The projective
twistor is Zα/ψ1 = {1, Y, λ1, λ2}. Therefore the function Y (x) is a projective
spinor coordinate Y = ψ2/ψ1. F may be chosen as homogenous function of Zα.
The following form can be derived for F

F (ψ, xµ) = xµ
[
(φψ)(φ̄ψ) + (χ̄ψ)(χσ̄µψ)

]
/(φ̄χ)− 2ia(φψ)(χ̄ψ) (5.29)

The function (5.29) posesses all the properties of a Kerr generating function.
The Dirac wave function Ψ = (φ, χ) has the role of an order parameter which

controls the dynamics of the Dirac–Kerr-Newman particle, momentum, spin and
deformation of the Kerr congruence caused by the external electromagnetis field
Aµ.

Conclusions of the present section so far include (i) the electron (or a preon)
has an extended space-time structure in accordance with QED, (ii) the Kerr-
Newman metric twistorial structure is controlled by the Dirac equation, not
conflicting QED, (iii) the KN model has a geometric structure indicating close
relationship to quantum theory and (iv) gravity renormalizes and regularizes
the Dirac particle [24].
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5.5 The Gravitating Bag Model
The Dirac equation inside the KN soliton source has been analyzed [26] with
the results that the KN solution shares many features with the hadronic bag
models developed at MIT and SLAC. The gravitating bag has to preserve the
external KN field. The bag models are based on semiclassical theory including
elements of quantum theory based on Minkowski spacetime without gravity. To
resolve the conflict between gravity and quantum theory the following solution
is proposed [27, 28]: inside the bag there is flat spacetime and outside the bag
there is exact KN model solution.

The Kerr-Schild form of metric is (5.7) and (5.9). The variables r and θ are
ellipsoidal coordinates and the null vector field kµ(x) forms a vortex polarization
of Kerr spacetime. Between the negative sheet r < 0 and the positive sheet r > 0
there is the surface r = 0, a bridge connecting the two sheets. The disk r = 0
is spanned by the Kerr singular ring r = 0 and cosθ = 0, see figure 3. The
null vector fields are different on these sheets and are thus denoted as kµ±(x)
making two different congruences K± with metrics gpmµν = ηµν + 2Hk±µ k

±
ν .

A regularization of the two-sheeted Kerr geometry was suggested by Lopez
[29]. The singular region and the negative sheet were excised and replaced by a
regular core having flat metric ηµν . This core forms a vacuum bubble. It must
match the external KN solution at the boundary r = R as follows

Hr=R(r) = 0 (5.30)

which gives

R = re =
e2

2m
(5.31)

The bubble covers the Kerr singular ring and forms a thin rotating disk of radius

rC ∼ a =
~
mc

(5.32)

The oblateness of the disk re/rC ∼ e2 is the fine structure constant α ∼ 1/137.
The bubble model is a soliton structure of a vacuum bubble with domain wall
boundary, see figure 4. Classical gravity controls the external spacetime and
quantum theory makes a supersymmetric pseudo-vacuum state inside the soliton
with the Higgs mechanism breaking the symmetry.

The discrepancy between gravity and quantum theory is avoided by three
principles: (i) spacetime is flat inside the core, (ii) outside the core there is the
Kerr-Newman spacetime and (iii) the boundary between inside and outside of
the core is determined by the Lopez condition (5.30).

The effectiveness of these principles (i)-(iii) define uniquely the form of the
soliton and the following properties [27, 28, 30, 31, 32]: (a) The Higgs field is
an oscillon, oscillating with frequency ω = 2m and (b) angular momentum is
quantized as J = n

2 , n = 1, 2, 3, ...
In fact, the KN bubble forms a Bogomolnyi-Prasad-Somerfield (BPS) satu-

rated soliton [33, 34] and both properties (a) and (b) are uniquely determined
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Figure 4: Axial section of the spheroidal domain wall phase transition (taken from [25]).

by the Bogomolnyi equations. These equations give also the shape of the soliton
and its dynamics and stability.

In [31] it is shown that a quartic potential usually used for the Higgs field

V (|Φ|) = g(σ̄σ − η2)2, σ = 〈|Φ|〉 (5.33)

is not a good source for the Kerr-Newman solution. The external Higgs field
contradicts the electromagnetic field’s long range. Instead the Higgs must be
enclosed inside the bag. Therefore a more complex scheme must be introduced
which includes three chiral fields Φ(i), i = 1, 2, 3. This is a supersymmetric
generalization of the Landau-Ginzburg model [35]. Let the Higgs field be Φ(1)

and define the following notation(
Φ, Z,Σ

)
=
(
Φ1,Φ2,Φ3

)
(5.34)

The bag must be placed in the flat geometry region and the domain wall
phase transition can be considered with this flat background metric. Therefore
the wall boundary and the bag are not dragged by rotation, and the chiral part
of the Hamiltonian takes the simple form

H(ch) = T
0(ch)
0 =

1

2

3∑
i=1

[ 3∑
µ=0

|D(i)
muΦi|2 + |∂iW |2

]
(5.35)

where the derivative is D(i)
µ = ∂µ − ieAiµ. The potential V is

V (r) =
∑
i

|∂iW |2 (5.36)

and the superpotential is

W (Φi, Φ̄i) = Z(ΣΣ̄− η2) + (Z + µ)ΦΦ̄ (5.37)
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where µ and η are real constants. (5.37) gives the necessary concentration of the
Higgs field inside the bag. Using the condition ∂iW = 0 one gets two vacuum
states

internal vacuum: r < R− δ

V (r) 6= 0, |Φ| = η = constant, Z = −µ, Σ = 0, Win = µη2, (5.38)

external vacuum: r > R+ δ

V (r) = 0, Φ = 0, Z = 0, Σ = η, Wext = 0 (5.39)

and transition area R − δ < r < R + δ where internal and external vacua
are separated by a spike of potential V > 0.

It has been shown that the requirements (i)-(iii) above concerning the struc-
ture of the vacua establish the stability of the bag. A supersymmetric ad BPS-
saturated source of the Kerr-Newman solution has been obtained. This is gives
substantial support to the present preon scheme.

6 Conclusions
The spin 1/2 and charge {0, ±1/3} preon model discussed above has a sound
group theoretical basis. It is hoped that the present preon scheme has provided
a way towards better understanding of the roles of all interactions, including
gravity. Gravity and electromagnetism are the ’original’ interactions of early
cosmology in this scenario. The weak and strong interactions are ’emergent’
from the basic fermion structure of the model (2.1).

The SLq(2) group provides a solid basis for the fermion sector of the present
preon model. In [5] it was shown that the SLq(2) preon model agrees with
the Harari-Shupe (H-S) rishon model [36, 37].2 Unlike the said preon/rishon
authors, I do not think that (i) SM gauge bosons should be treated as bound
states of several preons, or (ii) hypercolor is realistic for preon interactions. In
any case, a mechanism for preon binding into quarks and leptons is yet to be
developed.

Torsion in ECKS theory gives interesting results for the non-propagating
case. The fermions are suggested to have geometric structure of finite size,
down to a scale of roughly rC ∼ 10−25 cm. Propagating torsion may bring
attractive interaction for preon bound state formation but this could not be
adequately shown. Details of the torsional theories have to be studied further
[7, 38] e.g. for consequences of zitterbewegung.

The case of the Kerr-Newman metric based bag model of the electron has
the desired properties for the present preon model. The central singularity
is removed by construction and gravitational and electromagnetic interactions

2The basic idea of the present model was originally conceived during the week of the ψ discovery in November
1974 at SLAC. I proposed that the c-quark is a gravitationally excited u-quark, both consisting of three spin 1/2 and
charge {0, 1/3} heavy constituents. This idea met resistance. Therefore the model was not developed further until
years later.
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have long range. The size of the semiclassical KN object is self-consistently of
a typical quantum value like Compton wave length, or α times it, far above the
Cartan radius rC or Planck scale. The Dirac equation is integrated in the core
of the model. This substantiates the matter field unification scheme proposed
above meaning that the preon matter field could be considered as a basis for
unification of (i) quarks and leptons and (ii) these particles with gravitational
physics of section 5. Any ’true’ quantum gravitational phenomena at or near
the Planck scale remain an open question.
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