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Abstract 

Nanofluids are considered to offer significantly more advantages in heat transfer than 

conventional fluids. Recently theoretical and experimental research papers appeared in the 

literature on thermophysical properties of nanofluids and enhancement of heat transfer using 

suspensions of nanoparticles. The aim of this review summarizes the results of research papers 

about thermophysical properties and forced convection heat transfer with nanofluids.    
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NOMENCLATURE 

𝜌 Density 𝜅𝐵 Boltzmann constant 

𝜙 Volume fraction 𝑇 Temperature 

𝐶𝑝 Heat capacity 𝑁𝑢 Nusselt number 

𝑘 Conductivity ℎ Convection coefficient 

𝜇 Viscosity 𝐿 Large 

Ψ Esfericity Subscripts 

𝑅𝑒 Reynolds number 𝑛𝑝 Nanoparticle 

𝑃𝑟 Prandtl number 𝑏𝑓 Base fluid 

𝑣 Mean velocity 𝑒𝑓𝑓 Effective 

𝐷 Diameter   

 

 

1. Introduction 

Heat exchangers are widely used in many applications, for example, power production, 

refrigeration, chemical and food industry, etc. Actually, high prices of energy motivate industry 

to apply energy saving methods. For years, efforts performed to save energy include passive and 

active methods such as creating turbulence, extending the exchange surface or to use a fluid with 

higher thermophysical properties [1].  



Recent advances in nanotechnology have allowed the development of a new category of liquids 

termed nanofluids, which was first used by Choi [2] to describe liquid suspensions containing 

nanometer-size particles (nanoparticles).  

In recent years, experimental and numerical investigation about nanofluids and associate 

technology has increased, showing the notable concern in relation to save energy. Thus, this 

paper presents a review on convective heat transfer of nanofluids.        

2. Preparation Methods for Nanofluids  

2.1 Two-Step Method. 

Two-step method is the most widely used for preparing nanofluids. Nanoparticles, nanofibers, 

nanotubes and other nanomaterials used in the Two-step method are first produced as dry 

powders by chemical or physical methods. Then, the nanomaterials (nanosized powder), will be 

dispersed into a base fluid with the help of ultrasonic agitation, magnetic force agitation, etc. Due 

to the high surface area and surface activity, nanoparticles have the tendency to aggregate. The 

use of surfactants is an important technique to enhance nanoparticles stability. However, its use 

under high temperature is also a big concern [3].           

2.2 One-Step Method. 

To reduce agglomeration of nanoparticles, has been developed a one-step physical vapor 

condensation method to prepare Cu/ethyleneglycol nanofluids [4]. The one step process consists 

in simultaneously making and dispersing the particles in the fluid.  In this process, stages as 

drying, storage, transportation and dispersion of nanoparticles are avoided. Thus, the stability of 



fluids is increased. The vacuum-SANSS (submerged arc nanoparticle synthesis system) is 

another one-step method to prepare nanofluids using dielectric liquids [5, 6].  

One-step physical method can not synthesize nanofluids in large scale, and the cost is also high, 

so the one-step chemical method is developing rapidly. Zhu, et al. presented a novel one-step 

chemical method for preparing copper nanofluids by reducing CuSO4. 5H2O with NaH2PO2 . 

H2O in ethylene glycol under microwave irradiation. Well-dispersed and stabled suspended 

copper nanofluids were obtained [7].  Silver nanofluids (mineral oil-based) have been prepared 

using Zhu Method. Other important methods for nanofluids preparation were reviewed by Yu 

and Xie [3], as well as Stability Evaluation Methods as Sedimentation and Centrifugation 

Methods, Zeta Potential Analysis and Spectral Absorbency Analysis.   

3. Properties of nanofluids 

The most important properties of nanofluids are the thermophysical properties, in which specific 

heat, density, thermal conductivity and viscosity are very significant.      

3.1 Effective density and specific heat. 

Specific heat and effective density of nanofluids can be computed using classical equations 

derived for a two-phase mixture. Thus, the effective density of nanofluids is [8]: 

𝜌𝑛𝑓 = (1 − 𝜙)𝜌𝑏𝑓 +  𝜙𝜌𝑛𝑝          (1) 

Specific heat of nanofluids is calculated using the next equation [9]: 

𝐶𝑝 𝑛𝑓 =  
(1−𝜙)(𝜌𝐶𝑝)𝑏𝑓+𝜙(𝜌𝐶𝑝)𝑛𝑝

(1−𝜙)𝜌𝑏𝑓+ 𝜙𝜌𝑛𝑝
     (2) 



The density and specific heat of the nanofluids are assumed to be a linear function of volume 

fraction due to lack of experimental data on their temperature dependence.  

3.2 Thermal and effective thermal conductivity. 

Keblinski et al. reported their idea on the possible mechanism of enhancing thermal conductivity, 

and suggested that the size effect, the clustering of nanoparticles and the surface adsorption 

could be the major reason of enhancement, while the Brownian motion of nanoparticles 

contributes much less than other factor [10]. Thermal conductivity and dynamic viscosity of the 

nanofluids are dependent not only the volume concentration of nanoparticle, but other 

parameters such as particle shape, size, slip mechanism, etc [1]. 

In the literature, the thermal enhancement ratio has been defined as the ratio of thermal 

conductivity of the nanofluid to the thermal conductivity of the base fluid (𝑘𝑒𝑓𝑓 𝑘𝑏𝑓⁄ ). The 

effective thermal conductivity for a two-phase mixture 𝑘𝑒𝑓𝑓 is given by: 

𝑘𝑒𝑓𝑓 =
2𝑘𝑛𝑝+𝑘𝑏𝑓+𝜙(𝑘𝑛𝑝−𝑘𝑏𝑓)

2𝑘𝑛𝑝+𝑘𝑏𝑓−𝜙(𝑘𝑛𝑝−𝑘𝑏𝑓)
𝑘𝑏𝑓   (3) 

Maxwell derived his model based on the assumption that the discontinuous phase  is spherical in 

shape and the thermal conductivity of nanofluids depend on the thermal conductivity of spherical 

particles, the base fluid and the particle volume fraction [11]. 

Hamilton and Crosser [12] extended Maxwell work to cover none spherical particles and 

introduced the shape factor (n) which can be determined experimentally for different type of 

materials. The Hamilton and Crosser equation is given by: 

𝑘𝑒𝑓𝑓 = 𝑘𝑏𝑓 [ 
𝑘𝑛𝑝+(𝑛−1)𝑘𝑏𝑓− (𝑛−1)𝜙(𝑘𝑏𝑓−𝑘𝑛𝑝)

𝑘𝑛𝑝+(𝑛−1)𝑘𝑏𝑓+ 𝜙(𝑘𝑏𝑓−𝑘𝑛𝑝)
]      (4) 



where the empirical shape factor (n) is defined by 𝑛 = 3/Ψ in which Ψ is sphericity defined as 

the ratio of the surface areas of a sphere with the volume equal to that of the particle. The 

Hamilton-Crosser model reduces to Maxwell model when Ψ = 1.  

Yu and Choi [14] modified Maxwell equation with the assumption that the base fluid molecules 

close to the solid surface of the NP form a solid-like layered structure. Hence the nanolayer 

works as a thermal bridge between the liquid base fluid and the solid nanoparticles, and this will 

enhance the effective thermal conductivity (thermal conductivity of nanolayer (𝑘𝑙𝑎𝑦𝑒𝑟) is higher 

than thermal conductivity of the liquid). The Yu-Choi model (for the case 𝑘𝑙𝑎𝑦𝑒𝑟 = 𝑘𝑛𝑝) is given 

by: 

𝑘𝑒𝑓𝑓 =
𝑘𝑛𝑝+2𝑘𝑏𝑓 + 2𝜙(𝑘𝑛𝑝−𝑘𝑏𝑓)(1+𝛽)3

𝑘𝑛𝑝+2𝑘𝑏𝑓 − 𝜙(𝑘𝑛𝑝−𝑘𝑏𝑓)(1+𝛽)3 𝑘𝑏𝑓    (5) 

where  𝛽 =
ℎ

𝑟
 is the ratio between the nanolayer thickness (ℎ) and the original particle ratio (𝑟). 

 3.2.1 Theoretical models. 

A summary of selective theoretical models on thermal conductivity of nanofluids are reported in 

Table 1. The dimensionless numbers for these models can be computed using the next equations: 

Reynolds number: 

𝑅𝑒 =
𝜌𝑣𝐷

𝜇
    (6) 

Prandtl number: 

Pr = 
𝐶𝑝𝜇

𝑘
    (7) 



Table 1. Theoretical models for effective thermal conductivity of nanofluids. 

Reference Year Correlation Details 

Maxwell [11] 1881 𝑘𝑒𝑓𝑓

𝑘𝑏𝑓
=

𝑘𝑛𝑝+ 2𝑘𝑏𝑓+ 2𝜙(𝑘𝑛𝑝−𝑘𝑏𝑓)

𝑘𝑛𝑝+2 𝑘𝑏𝑓 − 𝜙(𝑘𝑛𝑝−𝑘𝑏𝑓)
  Liquid and solid suspensions. 

Spherical particles. 

Bruggemann 

[14] 

1935 𝑘𝑒𝑓𝑓

𝑘𝑏𝑓
=

1

4
[(3𝜙 − 1)

𝑘𝑛𝑝

𝑘𝑏𝑓
+ (2 −

3𝜙)] +  
𝑘𝑏𝑓

4
√∆  

∆= [(3𝜙 − 1)2(
𝑘𝑛𝑝

𝑘𝑏𝑓
)2 +

(2 − 3𝜙)2 +  2(2 + 9𝜙 − 9𝜙2)
𝑘𝑛𝑝

𝑘𝑏𝑓
]  

Spherical particles. 

Applicable to high 

concentration. 

Hamilton and 

Crosser [12] 

1962 𝑘𝑒𝑓𝑓

𝑘𝑏𝑓
=

𝑘𝑛𝑝+(𝑛−1)𝑘𝑏𝑓− (𝑛−1)𝜙(𝑘𝑏𝑓−𝑘𝑛𝑝)

𝑘𝑛𝑝+(𝑛−1)𝑘𝑏𝑓+ 𝜙(𝑘𝑏𝑓−𝑘𝑛𝑝)
  𝑛 = 3/Ψ 

𝑘𝑛𝑝

𝑘𝑏𝑓
> 100  

Yu and Choi 

[13] 

2003 𝑘𝑒𝑓𝑓

𝑘𝑏𝑓
=

𝑘𝑛𝑝+2𝑘𝑏𝑓 + 2𝜙(𝑘𝑛𝑝−𝑘𝑏𝑓)(1+𝛽)3

𝑘𝑛𝑝+2𝑘𝑏𝑓 − 𝜙(𝑘𝑛𝑝−𝑘𝑏𝑓)(1+𝛽)3   
𝑘𝑙𝑎𝑦𝑒𝑟 = 𝑘𝑛𝑝 

𝛽 =
ℎ

𝑟
 

Bhattacharya 

[15] 

2004 𝑘𝑒𝑓𝑓

𝑘𝑏𝑓
=

𝑘𝑛𝑝

𝑘𝑏𝑓
𝜙 + (1 − 𝜙) 

𝑘𝑛𝑝 =
1

𝜅𝐵𝑇2𝑉
∑(𝑄(0)𝑄(𝑗Δ𝑇))Δ𝑇

𝑛

𝑗=0

 

 

Brownian dynamic 

Prasher et. al 

[16] 

2005 𝑘𝑒𝑓𝑓

𝑘𝑏𝑓
= (1 + 𝐴𝑅𝑒𝑚𝑃𝑟0.333𝜙)𝑍 

𝑍 =
𝑘𝑛𝑝 +  2𝑘𝑏𝑓 +  2𝜙(𝑘𝑛𝑝 − 𝑘𝑏𝑓)

𝑘𝑛𝑝 +  2𝑘𝑏𝑓  −  𝜙(𝑘𝑛𝑝 − 𝑘𝑏𝑓)
 

Effect of convection of the 

liquid near the particle 

included. A and m are 

constants.  Nanospheres 



Xue [17] 2005 

𝑘𝑒𝑓𝑓

𝑘𝑏𝑓
=

1 − 𝜙 + 2𝜙
𝑘𝑛𝑝

𝑘𝑛𝑝 − 𝑘𝑏𝑓
𝑋

1 − 𝜙 + 2𝜙
𝑘𝑏𝑓

𝑘𝑛𝑝 − 𝑘𝑏𝑓
𝑋

 

𝑋 = ln
𝑘𝑛𝑝 + 𝑘𝑏𝑓

2𝑘𝑏𝑓
 

Nanospheres with interfacial 

shell. 

 

Published reports of thermal conductivity enhancement as a function of nanoparticle loading are 

sumarizad in Fig. 1 [18-27] and compared with theoretical models (Maxwell and Bruggemann). 

The most important results were obtained by Chon et al. and Wang et al. in which thermal 

conductivity enhancement is greater than 40 %.  

 

Figure 1. Thermal conductivity enhancement (%) as a function of the volume fraction of Al2O3 

nanoparticles [18-27].     



In the Fig. 1 we represented Li and Peterson model [16] which is an experimental correlation for 

Al2O3/water nanofluids. The Li and Peterson equation is given by: 

𝑘𝑒𝑓𝑓−𝑘𝑏𝑓

𝑘𝑏𝑓
= 0.764𝜙 + 0.0187(𝑇 − 273.15) − 0.462  (8) 

3.3 Viscosity and effective viscosity 

Hypothetical analyses of the possible phenomena affecting the viscosity of nanofluids can be 

found in the literature, though they are very limited when compared with the depth of the 

theoretical models that can be found on thermal conductivity of nanofluids.  

The Einstein’s work [28] on infinitely diluted suspensions of uncharged hard spheres based on 

the vorticity of the particle shear field was the first theoretical work on viscosity of suspension. 

The Einstein equation is given by: 

𝜇𝑒𝑓𝑓

𝜇𝑏𝑓
= (1 + [𝜂]𝜙)  (8) 

where [𝜂]  is the intrinsic viscosity of the suspension. This lineal equation is based on the 

assumed absence of interaction between the particles, and the coefficient [𝜂] is a function of 

shape of the particle, which for hard spheres was given as 2.5. The Einstein model is valid for 

solid volume concentration 𝜙 < 2.5%. 

Contrary to the uncharged particle Einstein model, Smoluchowski [29] presented an effective 

viscosity model for charged particles in electrolyte suspension given by: 

𝜇𝑒𝑓𝑓

𝜇𝑏𝑓
= [1 + 2.5𝜙 {1 +

1

𝐾𝜇𝑏𝑓𝑎2
(

𝜁𝐷𝐸

2𝜋
)

2

}]    (9) 



where 𝐾 is the specific conductivity of the electrolyte, 𝑎 the radius of the solid particles,  𝐷𝐸  the 

dielectric constant of the water and  𝜁  the zeta potential of the particle with respect to the 

electrolytic medium. 

Booth [30] in 1950 studied the overprediction made by Smoluchowski’s model obtaining the 

next equation: 

 
𝜇𝑒𝑓𝑓

𝜇𝑏𝑓
= [1 + 2.5𝜙 {1 + ∑ 𝑏𝐼

∞
1 (

𝑒𝜁

𝜅𝐵𝑇
)

𝐼

}]    (10) 

in which  𝑏𝐼 is the characteristic of electrolyte and 𝑒 is the electronic charge on particles.  

A summary of selective theoretical models on effective viscosity of nanofluids are reported in 

Table 2. 

Table 2. Theoretical models on effective viscosity of nanofluids. 

Reference Year Correlation Details 

Einstein [28] 1906 𝜇𝑒𝑓𝑓

𝜇𝑏𝑓
= 1 + 2.5𝜙 

Infinitely diluted suspensions 

of spheres. 

Hatchek [31] 1913 𝜇𝑒𝑓𝑓

𝜇𝑏𝑓
= 1 + 4.5𝜙 

Applicable for up to 40% 

solid concentration. 

Saito [32] 1950 𝜇𝑒𝑓𝑓

𝜇𝑏𝑓
= 1 +

2.5

(1 − 𝜙)
𝜙 

Spherical rigid particles. 

Brownian motion. 

Very small and spherical 

particles. 

    



Brinkman 

[33] 

1952 𝜇𝑒𝑓𝑓

𝜇𝑏𝑓
=

1

(1 − 𝜙)2.5
 

Spherical particles. 

Valid for highly moderated 

particle concentrations.  

Lundgren 

[34] 

1972 𝜇𝑒𝑓𝑓

𝜇𝑏𝑓
=

1

1 − 2.5𝜙
 

Diluted concentration of 

spheres. 

Batchelor 

[35] 

1977 𝜇𝑒𝑓𝑓

𝜇𝑏𝑓
= 1 + 2.5𝜙 + 6.2𝜙2 

Spherical rigid particles. 

Brownian motion. 

Isotropic structure. 

Thomas and 

Muthukmar 

[36] 

1991 𝜇𝑒𝑓𝑓

𝜇𝑏𝑓
= 1 + 2.5𝜙 + 4.83𝜙2 + 6.4𝜙3 

Applicable for up to 40% 

solid concentration. 

 

For Al2O3/water (Eq. 11) and Al2O3/ethylene glycol (Eq. 12) nanofluids Maiga et al. determined 

the effective viscosity as a function of nanoparticle volume fraction [37]: 

𝜇𝑒𝑓𝑓

𝜇𝑏𝑓
= 1 + 7.3𝜙 + 123𝜙2  (11) 

𝜇𝑒𝑓𝑓

𝜇𝑏𝑓
= 1 − 0.19𝜙 + 306𝜙2 (12) 

Gabiela and Angel Huminic reviewed important models for effective viscosity determination as 

Wang, Tseng and Lin, Song, Buongiorno and other models [1]. 

3.4 Convective heat transfer 

The enhancement of the heat transfer coefficient is a better signal than the thermal conductivity 

enhancement for nanofluids used in the design of heat exchange equipment.  



Pak and Cho performed experiments on turbulent heat transfer using Al2O3 and TiO2/water 

nanofluids. The following model was obtained [9]: 

𝑁𝑢 = 0.021𝑅𝑒0.8𝑃𝑟0.5 (13) 

In which 104 < 𝑅𝑒 < 105,  6.5 < 𝑃𝑟 < 12.3 and 0 < 𝜙 < 0.03 (3 %vol). 

The dimensionless 𝑁𝑢 number is given by:  

𝑁𝑢 =
ℎ𝐷

𝑘
 

Vajjha et al. [25] founded the next correlation (Eq. 14) for Al2O3, CuO and SiO2/water 

nanofluids. 

𝑁𝑢 = 0.065(𝑅𝑒0.65 − 60.22)(1 + 0.0169𝜙0.15)𝑃𝑟0.542  (12) 

In which 3000 < 𝑅𝑒 < 1.6. 104 and 0 < 𝜙 < 0.1 (10 %vol). 



For Al2O3/water nanofluids Maiga obtained an important correlation [38, 39]. In Fig. 2 we 

represented Maiga [39] and Pak and Cho [9] models as a function of Pr and Re dimensionless 

number. The Maiga correlation results very important because the domain in which was obtained 

(Re and Pr) is applicable in the design of heat exchange equipment. 

 

Figure 2. Maiga and Pak and Cho models. Maiga correlation [39] is valid for 0 < 𝜙 < 0.1 (10 

%vol). 

Al2O3/water nanofluid convention coefficient is greater than water fluid. This fact allows 

designing heat exchanger equipment of less heat exchange area. Recent technological 



developments, such as a microelectronic device are increasing thermal loads, requiring advances 

in cooling [40]. Other Nusselt correlations are listed in the next table (Table 3): 

Table 3. Nusselt correlations for Al2O3/water, TiO2/wate, graphite-synyhetic/oil,  CuO/water and 

SiO2/water nanofluids. 

Reference Year Correlation Details 

 

 

 

Pak and Cho 

[9] 

 

 

 

1998 

 

 

 

𝑁𝑢 = 0.021𝑅𝑒0.8𝑃𝑟0.5 

Experimental study; 

turbulent flow. 

Al2O3/water nanofluids 

TiO2/water nanofluids 

0 < 𝜙 < 0.03 

104 < 𝑅𝑒 < 105 

6.5 < 𝑃𝑟 < 12.3 

 

 

Yang et al. 

[42] 

 

 

2005 

 

 

𝑁𝑢 = 𝑎𝑅𝑒𝑏𝑃𝑟
1
3 (

𝐷

𝐿
)

1
3

(
𝜇𝑤

𝜇𝑏
)

−0.14

 

Experimental study; laminar 

flow; graphite-synthetic/oil 

nanofluid.   

0 < 𝜙 < 0.02 

5 < 𝑅𝑒 < 110 

 

 

Maiga [38] 

 

 

2005 

𝑁𝑢 = 0.28𝑅𝑒0.35𝑃𝑟0.35  

For constant temperature 

𝑁𝑢 = 0.086𝑅𝑒0.55𝑃𝑟0.5 

For constant wall heat flux 

Numerical study; laminar 

flow; Al2O3/water nanofluids 

0 < 𝜙 < 0.1 

𝑅𝑒 ≤ 1000 

6.0 < 𝑃𝑟 < 753 



 

 

Maiga [39] 

 

 

2006 

 

 

𝑁𝑢 = 0.085𝑅𝑒0.71𝑃𝑟0.35 

 

Numerical study; turbulent 

flow; Al2O3/water nanofluids 

0 < 𝜙 < 0.1 

104 < 𝑅𝑒 < 5 × 105 

6.6 < 𝑃𝑟 < 13.9 

 

 

 

Vijjha et al. 

[25] 

 

 

 

 

2010 

 

 

 

 

𝑁𝑢 = 0.065(𝑅𝑒0.65 − 60.22)(1 +

0.0169𝜙0.15)𝑃𝑟0.542  

Experimental study; 

turbulent flow.  

Al2O3/water nanofluids 

CuO/water nanofluids 

SiO2/water nanofluids 

0 < 𝜙 < 0.06  

For CuO and SiO2 

0 < 𝜙 < 0.1 for Al2O3 

3000 < 𝑅𝑒 < 1.6 × 104 

 

 

 

3.5 Specific heat capacity of nanofluids 

Specific heat of material is an important property to define thermal performance of any material. 

Generally, specific heat remains constant for liquid and solid materials at constant pressure and 

wide range of temperatures. In the nanofluid case may vary depending upon type of material, 

base fluids and volume fraction of nanoparticles. In the Pak and Cho [9] investigation with 



Al2O3/water nanofluids, they determined that 1.10-2.27% decrease in specific heat occurred for 

1.34-2.78% volume fraction for nanoparticles size 13 nm. Zhou and Ni [42] determined that 47% 

maximum decrease in specific heat occurred for 21.7% volume fraction (Al2O3/water nanofluids 

and nanoparticles size 45 nm). Shahrul et al. [43] concluded that for most of nanomaterials in 

base fluids, specific heat decreases with increase in volume fraction. However, in Sonawane et 

al. investigation [44], specific heat of Al2O3/ATF nanofluids showed anomalous behavior of 

specific heat with volume fraction of nanoparticles. Experimental observations on various 

nanofluids showed increase in specific heat capacity [44-51]. Other investigations showed 

decrease in specific heat capacity of nanofluids [44,52,53]. 

 4. Conclusions 

The literature survey shows that nanofluids improve the heat transfer capability of conventional 

heat transfer fluids such as water by suspending nanoparticles in these base fluids. Important 

theoretical and experimental research on convective heat transfer show the significance of 

nanofluids to develop new technologies. Thus, this paper presents an overview of the recent 

investigation in the study of the thermophysical properties of nanofluids and their role in heat 

transfer enhancement. Theoretical and experimental correlation for the effective thermal 

conductivity, viscosity and Nusselt number of nanofluids are presented.  Further studies are 

necessary to determine Nusselt number of nanofluids in more practical condition as jacked tanks, 

coils, etc.  
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