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Abstract

A number system is developed to visualize the terms and partials

of ζ(n > 1). This number system consists of radii through dots on
concentric circles that generate sectors. The sectors have areas cor-

responding to all rational numbers and can be added. Dots on the
circles give an un-ambiguous cross reference to decimal systems in all

bases. We show, in the proof section of this paper and using a modifi-
cation of Cantor’s diagonal method, that all ζ(n > 1) require a infinite
decimal in all bases. This establishes the result.

1 Introduction

Apery’s proof that

ζ(3) =
∞

∑

k=1

1

k3

is irrational is difficult [1]. It doesn’t generalize to show ζ(2n+1) is irrational
for n > 1. Here we develop a much simpler proof that does so generalize.

The current state of affairs with proving zn, n odd, is irrational is quite
limited. It is known that there are infinitely many odd n > 3 that are
irrational [12] and that at least one of 5, 7, 9, and 11 are irrational [17]. The
proofs of these result uses group theory and complex analysis. Zudilin gives
a literature review and develops both results in [16]. The even case follows
easily from the transcendence of π [6, 11] and Bernoulli’s famous formula:

ζ(2n) = (−1)k+1
(2π)2kB2k

2(2k)!
.
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This formula is derived from a trigonometric series expansion [2].
The attempts on the part of Zudilin and others reflect the combinatorial

problem of the general case. One certainly senses that showing ζ(2) is irra-
tional using Apery’s ideas [5] is easier than showing ζ(3) and, closely reading
[16] one sees Apery’s ideas are generating an ever growing combinatorial
puzzle. A way to see the similarities of all cases is our theme.

The visualization part of this article starts by exploring decimal repre-
sentations. If some real number requires an infinite number of unambiguous
digits in all basis, then it must be irrational. Hardy shows that all deci-
mal representations of a rational number a/b in a given base d are finite,
repeating, or mixed depending on the relationship between b and d [10]. The
ambiguous case of say .49 = .5 in base ten is not included as an infinite
representation of the finite decimal .5, base 10. An irrational number in all
bases is an infinite non-repeating decimal. The idea of the first part of the
paper is to suggest that

ζ(n) − 1 = zn =
∞

∑

k=2

1

kn
, (1)

n > 1, can’t be represented by a finite decimal in any base.1

Our visualization involves a simple geometric construction that allows the
terms of (1) to be given as sector areas and to be added. There is then some
connection with circles on the plain, but our plain is not the complex plain,
nor even the Cartesian plain – just concentric circles with sectors designated
by a radius. If the radius goes through a point (we call it a dot) on a
circle the sector area is given by a single decimal in a base associated with
the circle. The construction allows for a clear visualization of the decimal
representations of all terms, Section 2, and partial sums, Section 3, of (1) in
all bases kn, where k is a natural number greater than 1.2

In Section 4 we consider the limit of partials using .1, base 4. The circles
associated with this series generate finite decimals base 4, but no single circle
or finite addition (finite decimal, base 4) can give the convergence value of
1/3. If this is generally true, then the convergence point of zn must not
reside as a dot on any of its term’s circles, but its term’s circles give all finite
decimal representations in bases kn. But this is all rational numbers between

1Henceforth, just zn.
2Henceforth, just bases kn.
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0 and 1, so zn must be irrational. We have some grounds to suspect the
irrationality of zn, all n > 1.

The proof part of the paper consists of two Sections. In Section 5, we
show that partials of all zn can’t be expressed as finite decimals in any base
d where d is the denominator of one of the partial’s terms. The limiting case,
then, is the rub [13]. Section 6 gives a proof that z2 is irrational based on
Cantor’s classic proof that the real numbers are not countable [7]. Cantor’s
diagonal method consists of modifying a list of decimal numbers, supposed
to be all reals in a fixed base with values between 0 and 1. Each digit down
the diagonal of the list is modified, yielding a number that is not in the list,
contradicting all reals have been enumerated. We first give a variation of
this proof to show how it can be used to construct an irrational number. We
then give a bolder modification of Cantor’s technique. We list all rational
numbers between 0 and 1 using sets with all bases k2, single decimals. Using
the partials of z2, and the result of Section 5, we construct a number not
associated with any rational number in any of the sets. The resultant infinite
series, limit of the partials, we claim must be irrational.

In the conclusion, Section 7, we mention other series and argue that the
result developed to show z2 is irrational applies to other zn, mutatis mudantis.

2 Term Visualization

The series z2 is referenced in what follows, but any zn can similarly be refer-
enced.

1/
√

π

Figure 1: A circle with radius 1/
√

π has an area of 1.

We can visualize the first term, 1/4, of z2 using a circle. In Figure 1 we

3



have a circle of radius
√

1/π. The area of this circle is

πr2 = π · (
√

1/π)2 = 1.

In Figure 2, four equally spaced dots are placed around the circle, giving four
equal sector areas. Each area must be 1/4 of the area of the circle or 1/4.
Sector areas corresponding to these dots, between 0 and 1, are given by x/4,
x = 1, 2, 3 or a single, non-zero decimal base 4. If a radius on the circle
doesn’t go through one of the dots, the sector area formed will require more
than a single decimal in base 4: Figure 3. We will designate this circle with
C4.

1/
√

π
0/4�

1/4
�

2/4 �

3/4

�

Figure 2: A circle with area 1 is divided up using 22. The area of the shaded
sector is 1/4.

The next term is 1/9. The circle in Figure 4 has radius
√

2/π with 9
equally spaced dots around it. Its area is 2:

πr2 = π · (
√

2/π)2 = 2.

We will designate this circle with C9.
By making C4 and C9 concentric circles, Figure 5, the area of the annulus

formed is 1: 2 − 1. If a radius is drawn threw a dot on C9, it will generate
a sector area of x/9 on C4. If a radius misses dots on both circles, then the
sector area formed is not equal to a single decimal in either base 4 or base 9.
It will require more than a single digit in either of these bases.

Figure 6 shows the first three terms of z2 rendered with C4, C9, and C16.
Clearly, we can continue this process using equally spaced k2 dots on circles
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1/
√

π
0/4�

1/4
�

2/4 �

3/4

�

Figure 3: A radius that does not go through any dot generates a sector area
that requires more than one decimal, base 4.

√

2/π
0/9�

1/9	

2/9

3/9�

4/9 �

5/9


6/9

�

7/9

�
8/9

�

Figure 4: Nine equally spaced dots on a circle of radius
√

2/π: C9.

of radius
√

(k − 1)/π. If a given radius misses all dots on all such circles, the
sector area associated with it must be irrational. This follows as the sector
areas generated by radii through a given dot, say x, on the Ck2 circle will be
given by .x base k2, a single decimal digit, and all rational numbers can be
so designated; km/k2 = m/k with m < k.

This is a visualization of the terms of z2. Next we will visualize adding
these terms.
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Figure 5: C4 and C9 as concentric circles. The area of the shaded sector is
1/9.
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Figure 6: The shaded sector area is not a single decimal in base 4, 9, or 16.
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3 Visualization of Partial Sums

Two sector areas can be added.

0/44

1/45

0/96
1/97

1/4
1/9

Figure 7: The addition of 1/4 + 1/9 using C4 and C9 with C9 offset.

In Figure 7, 1/4 is added to 1/9 by rotating C9 in a counter-clockwise
direction to line up with the 1/4 dot on C4. This addition is somewhat
analogous to the head to toe (here 1 to 0) method of vector addition. In
Figure 8, 1/16 is added to 1/4 + 1/9 using the same 1 (head) to 0 (toe)
method. The resulting radius generates an area on all annuli and C4’s circle
that corresponds to 1/4 + 1/9 + 1/16. Clearly these additions can be used
to form such radii for all partial sums of z2.

7



0/48

1/49

0/9:
1/9;

0/16
<

1/16 =

1/41/91/16

Figure 8: The addition of 1/4 + 1/9 + 1/16 using C4, C9, and C16 with the
offset method. The area of the shaded sector is the sum.
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0/16
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5/16J

6/16K

7/16L

1/41/91/16

Figure 9: The radius associated with the sum 1/4 + 1/9 + 1/16 misses all
dots on C4, C9, and C16.
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Figure 7 and Figure 8 show rotations of C9 and C16 to effect fraction
additions. Figure 9 shows the resulting radius with the un-rotated versions
of these circles. Designating partial sums,

sm
k =

1

2m
+

1

3m
+ · · · + 1

km
,

Figure 9 accurately shows that the partial

s2

4 =

4
∑

k=2

1

k2

generates a radius that does not go through any of its first few term’s dotted
circles. We can infer that the sum is not expressible as a single decimal digit
in base 4, 9, or 16.

The denominators of z2 are just all decimal bases squared. So, if a radius
misses all dots on all Ck2 circles, then its associated sector area value must
require more than one decimal in all k2 bases. It must be irrational.

We can now visualize the problem of proving z2 is irrational. We need
to show that the limit radius generated by adding the terms of z2 does not
go through any of the dots on any of the circles defined by its terms. The
difficulty is that radii can converge to a dot on a circle without a radius
going through the dot. The geometric series gives guidance. We will analyze
it next.

4 Geometric series

Infinite repeating decimals are really geometric series. For example, in base
4,

.1 =
∞

∑

k=1

1

4k
.

This geometric series has a convergence point of 1/3. All its terms occur in
z2, so we can use our dotted concentric circles to understand the relationship
between the rotated C4k , k > 1, circles used to construct this sum and C3,
the un-rotated circle having a dot the sum converges to: that is, the unique
radius for this convergence point. See Figure 10.

Here are some observations. Given any radius, representing a sector area’s
value, we can read from a system of dotted circles the decimal expansion
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Q
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2T

0U
1V

2W

C4

C3

C16

C64

Figure 10: Circles C4 with C16 and C64 rotated (indicated with overline)
to generate the radius associated with .111 base 4. C3, unrotated, has the
convergence point for .1: 1/3.

in a given base, like base 4; conversions via the modulus operator may be
necessary to adjust the digits of the expansion. Also all convergent infinite
series with terms of the form 1/ak with ak strictly increasing natural numbers
have partial radii that rotate counter-clockwise around the circle and go
through points on concentric circles farther and farther from the center. This
forces series that converge to a rational number to have their convergence
radius given by a radius going through an un-rotated earlier dot. We can see
these patterns in Figure 10. As z2 and generally zk require rotations of all
circles giving all rational numbers, there is no such earlier un-rotated circle
having a rational point for these series to converge to. The additions of the
terms perpetually offsets the radius formed from all rational numbers. This
suggests that all zk are irrational.

Another observation: there is only one radius for every area, rational
and irrational. Unlike decimal representations where .49 = .5, there is no
ambiguity with reduced fractions and areas. For an irrational number, we
can read the decimals from our figure and as the, note the, radius never goes
through a point in all bases, it never terminates in all bases.
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Also note that we observe trajectories, the radii of Figure 10, and how
additions build new trajectories. It seems plausible that adjusting a trajec-
tory with additions could cause new trajectories to miss all previous dots
as well as the last term added’s dots. That is we can perpetually adjust a
trajectory to have it miss all dots. Think of a spaceship avoiding equally
spaced meteorites arranged in concentric rings as the dots of Ck2 in front of
us. We can avoid them all and we know, per convergence of zn, that a single
radius will emerge and be an irrational number.

Showing the radius for zk never goes through a dot on the nk system of
concentric circles, shows that it must be irrational. In the next two sections
we prove that the limit radius for z2 does not go through any Ck2 dot.

5 Bertrand

Our aim in this section is to show that the reduced fractions that give the
partial sums of zn require a denominator greater than that of the last term
defining the partial sum. Restated this says that partial sums can’t be ex-
pressed as a finite decimal using for a base the denominators of any of the
partial sum’s terms.

The first lemma is a little more difficult than an exercise in Apostol’s
Introduction to Analytic Number Theory [2, p. 23, problem 30], its inspira-
tion.

Lemma 1. The reduced fraction, r/s giving

sm
k =

k
∑

j=2

1

jm
=

r

s
(2)

is such that 2m divides s.

Proof. The set {2, 3, . . . , k} will have a greatest power of 2 in it, a; the set
{2m, 3m, . . . , km} will have a greatest power of 2, ma. Also k! will have a
powers of 2 divisor with exponent b; and (k!)m will have a greatest power of
2 exponent of mb. Consider

(k!)m

(k!)m

k
∑

j=2

1

jm
=

(k!)m/2m + (k!)m/3m + · · · + (k!)m/km

(k!)m
. (3)
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The term (k!)m/2ma will pull out the most 2 powers of any term, leaving a
term with an exponent of mb − ma for 2. As all other terms but this term
will have more than an exponent of 2mb−ma in their prime factorization, we
have the numerator of (3) has the form

2mb−ma(2A + B),

where 2 - B and A is some positive integer. This follows as all the terms in
the factored numerator have powers of 2 in them except the factored term
(k!)m/2ma. The denominator, meanwhile, has the factored form

2mbC,

where 2 - C . This leaves 2ma as a factor in the denominator with no powers
of 2 in the numerator, as needed.

Lemma 2. If p is a prime such that k > p > k/2, then pm divides s in (2).

Proof. First note that (k, p) = 1. If p|k then there would have to exist r such
that rp = k, but by k > p > k/2, 2p > k making the existence of a natural
number r > 1 impossible.

The reasoning is much the same as in Lemma 1. Consider

(k!)m

(k!)m

k
∑

j=2

1

jm
=

(k!)m/2m + · · · + (k!)m/pm + · · · + (k!)m/km

(k!)m
. (4)

As (k, p) = 1, only the term (k!)m/pm will not have p in it. The sum of all
such terms will not be divisible by p, otherwise p would divide (k!)m/pm. As
p < k, pm divides (k!)m, the denominator of r/s, as needed.

Theorem 1. If

sm
k =

1

2m
+

1

3m
+ · · · + 1

km
=

r

s
, (5)

with r/s reduced, then s > km.

Proof. Bertrand’s postulate states that for any k ≥ 2, there exists a prime p
such that k < p < 2k [10]. If k of (5) is even we are assured that there exists
a prime p such that k > p > k/2. If k is odd k−1 is even and we are assured
of the existence of prime p such that k− 1 > p > (k− 1)/2. As k− 1 is even,
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p 6= k − 1 and p > (k − 1)/2 assures us that 2p > k, as 2p = k implies k is
even, a contradiction.

For both odd and even k, using Bertrand’s postulate, we have assurance
of the existence of a p that satisfies Lemma 2. Using Lemmas 1 and 2, we
have 2mpm divides the denominator of (5) and as 2mpm > km, the proof is
completed.

So, for z2, we have the following.

Definition 1.

Dk2 = {0, 1/k2, . . . , (k2 − 1)/k2} = {0, .1, . . . , .(k2 − 1)} base k2

Corollary 1.

s2

n /∈
n

⋃

k=2

Dk2

Proof. Immediate.

+1/4
+1/9 +1/4 +1/4 +1/4 +1/4 . . . +1/4
/∈ D4 +1/9 +1/9 +1/9 +1/9 . . . +1/9

/∈ D9 +1/16 +1/16 +1/16
...

/∈ D16 +1/25 +1/25
...

/∈ D25 +1/36
...

/∈ D36

+1/(k − 1)2

+1/k2

/∈ Dk2

. . .

Table 1: A list of all rational numbers between 0 and 1 modified to exclude
them all via partial sums of z2.
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Cantor

The result of applying Corollary 1 to all partial sums of z2 is given in Table 1.
The table shows that adding the numbers above each Dk2 , for all k ≥ 2 gives
results not in Dk2 or any previous rows such sets. So, for example, 1/4+1/9
is not in D4, 1/4+1/9 is not in D4 or D9, 1/4+1/9+1/16 is not in D4, D9,
or D16, etc.. Can we conclude that z2 is irrational? The table should remind
readers of Cantor’s diagonal method. The catch with this conclusion is that
we are not working with a single decimal system and verification via decimal
notation is wanting. We can, however, build a proof using the property that
this table indicates. The proof is a more complicated version of Sondow’s
geometric proof of the irrationality of e [14].

Theorem 2. z2 is irrational.

Proof. We construct a sequence of lower and upper bounds using Dk2 . We
will refer to the Ck2 circles, used in the visualization section, that represent
Dk2 values as sector areas given by radii. Suppose the sector between 2/4 and
3/4 has infinitely many radii corresponding to partial sums going through it.
Designate the lower bound L22 as the radius going through 2/4. Suppose the
sector between 5/9 and 6/9 has infinitely many such radii going through it.
Designate the upper bound U32 as the radius going through 6/9. Form the
interval I1 = [2/4, 6/9]. We know that each partial radii will either never
reach a rational radius or cross a last radius when the upper limit of the
partial is a unique n value. We can continue this nested interval building
process with I2 using C42 and C52 for the lower and upper bounds of the
I2 interval. Using Cantor’s Intersection Theorem [3], there is a convergence
point for the intersection of these intervals. It is z2 and it can’t equal any
endpoint of the In intervals. Because all possible rationals are thus excluded,
z2 must be irrational.

6 Conclusion

6.1 Other series

The telescoping series

∞
∑

k=2

(

1

n
− 1

n + 1

)

= 1/2 − 1/3 + 1/3 − 1/4 + · · · = 1/2
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or
∞

∑

k=2

1

n(n + 1)
=

1

6
+

1

12
+

1

20
+ · · · = 1/2

shows the necessity of partials escaping terms. For example, the sum of the
first three terms is 3/10 which can be expressed with 6/20 in D20. Partial
sums backtrack to earlier denominators thus preventing Cantor’s diagonal
process from being valid. The geometric series has partials that sum to
fractions with denominators from the last term of the partial, but the term’s
denominators don’t cover all pertinent rational numbers.

For both examples, placing them in a Cantor table, that is a table like
Table 1, shows the necessity of partials escaping their terms and the terms
covering the rationals.

6.2 General zn

Do the ideas given here give a proof that ζ(n ≥ 2)? As all bases kn have
the same prime factors as k, the answer is yes: Table 1, in conjunction with
Section 5, works when these other series are used.

If one assumes Corollary 1, does the proof distill to a geometric proof?
Note that the denominator of the partial sums of a zk series with upper
bound n will be much larger than nk, more like (n!)k, so this theorem is
highly plausible. Also simple number theory proofs show that (n − 1, n) =
(n, n+1) = 1, that the natural numbers are consecutively relatively prime. So
one suspects such partial sums will have denominators that have chaotically
occuring prime factors. This points to the central intuition about this series;
the fractions added have denominators growing by one (to a power) and
this marks how the series differs from the “spaciness” of the geometric and
telescoping series. If one grants Theorem 1 as intuitively plausible is Figure
9 of Section 3 enough: the nudging of a trajectory by the terms (the addition
of terms) of any ζ(n) builds a trajectory that never “hits” a rational dot; all
rational sector areas are perpetually offset yielding a sector area that must
be irrational – is that enough?

Finally, this paper suggests that one suspects a geometric self-similarity
argument could be made: if one zn is irrational, they all are. Hence, if this
were true, via Apery or Bernoulli, all odd zn are irrational by similarity with
these known cases.
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