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1 Introduction

Apery’s proof that

ζ(3) =
∞

∑

k=1

1

k3

is irrational is difficult [1]. It doesn’t generalize to show ζ(2n+1) is irrational
for n > 2. Here we develop a much simpler proof that does so generalize.

The proof uses the fact that if a decimal representation of some real num-
ber requires an infinite number of digits in all basis, then it must be irrational.
Hardy shows that all decimal representations of a rational number a/b in a
given base d are finite, repeating, or mixed depending on the relationship
between b and d [8]. If all the prime factors of b are those of d, then the dec-
imal representation is finite; if b and d are relatively prime, then the decimal
representation is pure repeating; if some prime factors are shared but not all,
then the decimal representation is mixed. We observe these three cases with
the decimal representations of 1/2 = .5, 1/3 = .1, and 1/6 = .16 in base 10.
An irrational number in all bases is an infinite non-repeating decimal. The
idea of our proof is to show

ζ(n) − 1 = zn =
∞

∑

k=2

1

kn
(1)

can’t be represented by a finite decimal in any base.
The current state of affairs with proving zn, n odd, is irrational is quite

limited. It is known that there are infinitely many odd n > 3 that are
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irrational [10] and that at least one of 5, 7, 9, and 11 are irrational [14]. The
proofs of these result uses group theory and complex analysis. Zudilin gives
a literature review and develops both results in [13]. The even case follows
easily from the transcendence of π [4, 9] and Bernoulli’s famous formula:

ζ(2n) = (−1)k+1
(2π)2kB2k

2(2k)!
.

This formula is derived from a trigonometric series expansion [2].
The proof given here uses a simple geometric construction that allows

the terms of (1) to be given as sector areas and to be added. There is then
some connection with circles on the plane, but our plane is not the complex
plane, nor even the Cartesian plane – just concentric circles with sectors
designated by a radius. If the radius goes through a point (we call it a dot)
on a circle the sector area is given by a finite decimal in a base associated with
the circle. The construction allows for a clear visualization of the decimal
representations of all terms and partial sums of (1) in all bases kn, where k
is a natural number greater than 1.1 We develop this visualization device in
Sections 2 and 3. We believe this visualization device makes it plausible that
for all n ≥ 2 values of zn are irrational.

The problem of the limit of the partials is addressed with the geometric
series in Section 4. A geometric series for our purposes is just an infinite
repeating decimal in a base. So .1 base 4 is such a geometric series. Using
our visualization device it is clear that such series can’t converge to the
circle associated with any term of the series: 1/3, the convergence point is
not represented by any finite base 4 decimal or dot on its associated circles.
If this is generally provable, then it follows that the convergence point of zn

must not reside as a dot on any of its term’s circles, but its term’s circles give
all finite decimal representations in bases kn. This is all rational numbers
between 0 and 1, so zn must be irrational. We need to prove the radius for
zn doesn’t go through any such dots.

Finally, Cantor’s diagonal process is modified to prove z2 is irrational. It
is based on Cantor’s classic proof that the real numbers are not countable
[5]. Cantor’s diagonal process consists of modifying a list of decimal numbers,
supposed to be all reals in a fixed base with values between 0 and 1. Each
digit down the diagonal of the list is modified, yielding a number that is
not in the list, contradicting all reals have been enumerated. We first give a

1Henceforth, just bases kn.
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variation of this proof to show how it can be used to construct an irrational
number. We then give a bolder modification of Cantor’s technique, Section
6. In this section we associate (list) all rational numbers between 0 and 1
using all bases k2, referencing the visualization sections’ circles. And then
construct a number not associated with any rational number using partial
sums of z2, one after the other. We show, in a lemma, Section 5, that all
such partials are equal to a reduced fraction that requires more than a single
decimal digit in 22 through k2 bases, k being the upper limit of the partial.
As in Cantor’s original proof, the resultant infinite series, limit of the partials,
is irrational.

2 Term Visualization

The series z2 is referenced in what follows, but any zk, k ≥ 2 can similarly
be referenced.

1/
√

π

Figure 1: A circle with radius 1/
√

π has an area of 1.

We can visualize the first term, 1/4, of z2 using a circle. In Figure 1 we
have a circle of radius

√

1/π. The area of this circle is

πr2 = π · (
√

1/π)2 = 1.

In Figure 2, four equally spaced dots are placed around the circle, giving four
equal sector areas. Each area must be 1/4 of the area of the circle or 1/4.
Sector areas corresponding to these dots, between 0 and 1, are given by x/4,
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x = 1, 2, 3 or a single, non-zero decimal base 4. If a radius on the circle
doesn’t go through one of the dots, the sector area formed will require more
than a single decimal in base 4: Figure 3. We will designate this circle with
C4.
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√

π
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Figure 2: This circle with area 1 is divided up using 22. The area of the
shaded sector is 1/4.
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Figure 3: A radius that does not go through any dot generates a sector area
that requires more than one decimal, base 4.

The next term is 1/9. The circle in Figure 4 has radius
√

2/π with 9
equally spaced dots around it. Its area is 2:

πr2 = π · (
√

2/π)2 = 2.
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Figure 4: Nine equally spaced dots on a circle of radius
√

2/π: C9.

We will designate this circle with C9.

0/4�

1/4�

2/4�

3/4

�

0/9�

1/9�

2/9�
3/9�

4/9�

5/9
�

6/9
�

7/9

�

8/9
�

Figure 5: C4 and C9 as concentric circles. The area of the blue sector is 1/9.
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By making C4 and C9 concentric circles, Figure 5, the area of the annulus
formed is 1: 2 − 1. If a radius is drawn threw a dot on C9 it will generate
a sector area of x/9 on C4. If a radius misses dots on both circles, then the
sector area formed is not equal to a single decimal in either base 4 or base 9.
It will require more than a single digit in either of these bases.
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Figure 6: The shaded sector area is not a single decimal in base 4, 9, or 16.

Figure 6 shows the first three terms of z2 rendered with C4, C9, and C16.
Clearly, we can continue this process using equally spaced k2 dots on circles
of radius

√

k/π. If a given radius misses all dots on all such circles, the
sector area associated with it must be irrational. The sector areas generated
by radii through a given dot, say x, on the Ck2 circle will be given by .x base
k2, a single decimal digit, and all rational numbers can be so designated;
km/k2 = m/k with m < k.

This is a visualization of the terms of z2. Next we will visualize adding
these terms.

3 Visualization of Partial Sums

Two sector areas can be added.
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0/44

1/45

0/96

1/97

1/4
1/9

Figure 7: The addition of 1/4 + 1/9 using C4 and C9 with C9 offset.

In Figure 7, 1/4 is added to 1/9 by rotating C9 in a counter-clockwise
direction to line up with the 1/4 dot on C4. This addition is somewhat
analogous to the head to toe (here 1 to 0) method of vector addition. In
Figure 8, 1/16 is added to 1/4 + 1/9 using the same 1 (head) to 0 (toe)
method. The resulting radius generates an area on all annuli and C4’s circle
that corresponds to 1/4 + 1/9 + 1/16. Clearly these additions can be used
to form such radii for all partial sums of z2.
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0/9:

1/9;

0/16
<

1/16 =

1/41/91/16

Figure 8: The addition of 1/4 + 1/9 + 1/16 using C4, C9, and C16 with the
offset method. The area of the shaded sector is the sum.
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Figure 9: The radius associated with the sum 1/4 + 1/9 + 1/16 misses all
dots on C4, C9, and C16.
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Figure 7 and Figure 8 show rotations of C9 and C16 to effect fraction
additions. Figure 9 shows the resulting radius with the un-rotated versions
of these circles. Figure 9 accurately shows that the partial

s2

4 =

4
∑

k=2

1

k2

generates a radius that does not go through any of its first few term’s dotted
circles. We can infer that the sum is not expressible as a single decimal digit
in base 4, 9, or 16.

The denominators of z2 are just all decimal bases squared. So if a radius
misses all dots on all Ck2 circles then its associated sector area value must
require more than one decimal in all k2 bases. It must be irrational.

We can now visualize the problem of proving z2 is irrational. We need
to show that the limit radius generated by adding the terms of z2 does not
go through any of the dots on any of the circles defined by its terms. The
difficulty is that radii can converge to a dot on a circle without a radius
going through the dot. In fact, this is a requirement for convergence. The
geometric series gives guidance. We will analyze it next.

4 Geometric series

Infinite repeating decimals are really geometric series. For example, in base
4,

.1 =
∞

∑

k=1

1

4k
.

This geometric series has a convergence point of 1/3. All its terms occur in
z2, so we can use our dotted concentric circles to understand the relationship
between the rotated C4k circles used to construct this sum and C3, the un-
rotated circle having a dot the sum converges to: that is, the unique radius
for this convergence point.

Here are some observations. Given any radius, representing a sector area’s
value, we can read from a system of dotted circles the decimal expansion
in a given base, like base 4; conversions via the modulus operator may be
necessary to adjust the digits of the expansion. Also all convergent infinite
series with terms of the form 1/ak with ak strictly increasing natural numbers
have partial radii that rotate counter-clockwise around the circle and go
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through points farther and farther from the center. This forces series that
converge to a rational number to have their convergence radius given by a
radius going through an un-rotated ”earlier“ dot. We can see these patterns
in Figure 10. As z2 and generally zk require rotations of all circles giving all
rational numbers, there is no such earlier un-rotated circle having a rational
point for these series to converge to. The additions of the terms perpetually
offsets the radius formed from all rational numbers. This suggests that all
zk are irrational.

Another observation: there is only one radius for every area, rational
and irrational. Unlike decimal representations where .49 = .5, there is no
ambiguity with reduced fractions and areas. For an irrational number, we
can read the decimals from our figure and as the, note the, radius never
goes through a point in all bases, that it never terminates in all bases. If
the number were rational this would imply that its denominator has prime
factors that are not shared by any natural number, it has some prime factors
that are relatively prime to all natural numbers: a contradiction.

Also note that we observe trajectories, the radii of Figure 10, and how
additions build new trajectories. It seems plausible that adjusting a trajec-
tory with additions could cause new trajectories to miss all previous dots as
well as the last term added’s dots. That is we can perpetually adjust a tra-
jectory to have it miss all dots, think of a spaceship avoiding equally spaced
meteorites arranged in concentric rings as the dots of Ck2 in front of us. We
can avoid them all and we know, per convergence of zn, that a single radius
will emerge and be an irrational number.
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Figure 10: Circles C4, C16 and C64 are rotated (indicated with overline)
to generate the radius associated with .111 base 4. C3, unrotated, has the
convergence point for .1: 1/3.

Showing the radius for zk never goes through a dot on the nk system of
concentric circles, shows that it must be irrational. In the next two sections
we prove that the limit radius for z2 does not go through any Ck2 dot.

5 Lemma

Our aim in this section is to show that the reduced fractions that give the
partial sums of zn require a denominator greater than that of the last term
defining the partial sum. Restated this says that partial sums can’t be ex-
pressed as a finite decimal using for a base the denominators of any of the
partial sum’s terms.

The first lemma is a little more difficult than an exercise in Apostol’s
Introduction to Analytic Number Theory [2, p. 23, problem 30], its inspira-
tion.

Lemma 1. The reduced fraction, r/s giving

sm
k =

k
∑

j=2

1

jm
=

r

s
(2)
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is such that 2m divides s.

Proof. The set {2, 3, . . . , k} will have a greatest power of 2 in it, a; the set
{2m, 3m, . . . , km} will have a greatest power of 2, ma. Also k! will have a
powers of 2 divisor with exponent b; and (k!)m will have a greatest power of
2 exponent of mb. Consider

(k!)m

(k!)m

k
∑

j=2

1

jm
=

(k!)m/2m + (k!)m/3m + · · · + (k!)m/km

(k!)m
. (3)

The term (k!)m/2ma will pull out the most 2 powers of any term, leaving a
term with an exponent of mb − ma for 2. As all other terms but this term
will have more than an exponent of 2mb−ma in their prime factorization, we
have the numerator of (3) has the form

2mb−ma(2A + B),

where 2 - B and A is some positive integer. This follows as all the terms in
the factored numerator have powers of 2 in them except the factored term
(k!)m/2ma. The denominator, meanwhile, has the factored form

2mbC,

where 2 - C . This leaves 2ma as a factor in the denominator with no powers
of 2 in the numerator, as needed.

Lemma 2. If p is a prime such that k > p > k/2, then pm divides s in (2).

Proof. First note that (k, p) = 1. If p|k then there would have to exist r such
that rp = k, but by k > p > k/2, 2p > k making the existence of a natural
number r > 1 impossible.

The reasoning is much the same as in Lemma 1. Consider

(k!)m

(k!)m

k
∑

j=2

1

jm
=

(k!)m/2m + · · · + (k!)m/pm + · · · + (k!)m/km

(k!)m
. (4)

As (k, p) = 1, only the term (k!)m/pm will not have p in it. The sum of all
such terms will not be divisible by p, otherwise p would divide (k!)m/pm. As
p < k, pm divides (k!)m, the denominator of r/s, as needed.
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Theorem 1. If

sm
k =

1

2m
+

1

3m
+ · · · + 1

km
=

r

s
, (5)

with r/s reduced, then s > km.

Proof. Bertrand’s postulate states that for any k ≥ 2, there exists a prime p
such that k < p < 2k [8]. If k of (5) is even we are assured that there exists
a prime p such that k > p > k/2. If k is odd k−1 is even and we are assured
of the existence of prime p such that k− 1 > p > (k− 1)/2. As k− 1 is even,
p 6= k − 1 and p > (k − 1)/2 assures us that 2p > k, as 2p = k implies k is
even, a contradiction.

For both odd and even k, using Bertrand’s postulate, we have assurance
of the existence of a p that satisfies Lemma 2. Using Lemmas 1 and 2, we
have 2mpm divides the denominator of (5) and as 2mpm > km, the proof is
completed.

So, for z2, we have the following.

Definition 1.

Dk2 = {0, 1/k2, . . . , (k2 − 1)/k2} = {0, .1, . . . , .(k2 − 1)} base k2

Corollary 1.

s2

n /∈
n

⋃

k=2

Dk2

Proof. Immediate.

6 Cantor

Cantor’s diagonal method is a rear view mirror technique that reduces the
question of convergence to finite cases that are systematically eliminated as
they build a convergence point – involving an infinite procedure. Here’s an
example of its use to show the existence of an irrational number. List all
rational numbers between 0 and 1. They are countable, so this can be done.
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Use base 10.

.d11d12d13 . . . (6)

.d21d22d23 . . . (7)

.d31d32d33 . . . (8)

.d41d42d43 . . . (9)

.d51d52d53 . . . (10)

... (11)

Go down the diagonal and change the value of the decimal to 3, if it is not
3 and 7, if it is: Table 1. Record the changes following a decimal point.

row new original
1 .c1d12d13 . . . .d11d12 . . .
2 .d21c2d23 . . . .d21d22 . . .
3 .d31d32c3 . . . .d31d32 . . .
4 .d41d42d43c4 . . . .d41d42 . . .

Table 1: Cantor’s diagonal method building an irrational number: .c1c2 . . . .

We notice that .c1 of row 1 is different .d11d12 . . . and .c1c2 is different
than .d21d22 . . . of row 2, as well as .d11d12 . . . of row 1. We can actually get
a bound for the difference with these numbers.

We have reduced the infinite construction of .c1c2 . . . to finite considera-
tions and we can conclude that the infinite decimal .c1c2c3 . . . is not in the
list. As it is also between 0 and 1, it must be irrational. We are looking in
the rear view mirror as we go down the diagonal, forward. As we see a new
number ahead of us, we will change it. Think of a space ship trajectory given
by the radius of earlier sections. We our building our trajectory by small in-
crements and decrements avoiding the dots ahead. The result .c1c2 . . . is a
sum of discrete steering wheel corrections. It avoids the limit radius of all
rational trajectories – some of which are infinite sums.

We have constructed an irrational number. This is different than proof
by contradiction or induction.

The application of Cantor’s diagonal method just given changes the nu-
merators of sums of fractions. We will change the numerators and denomi-
nators. List all the rational numbers between 0 and 1 using Dk2 . These are
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arranged down a diagonal in Table 2. Our mission is to create a number that
isn’t in the first row, then isn’t the first or second row, and then repeat this
process infinitely many times.

D4

D9

D16

D25

D49

D64

D81

. . .

Table 2: A list of all rational numbers between 0 and 1.

Notice this is something like a hydra list. If you cut out a row all the
numbers will continue to exist (grow back) later. For example, removing D25

doesn’t change the list of numbers because any number that is a multiple
of 25 will have fractions that when reduced give the same values, D100 for
example (4/100 = 1/25). Also notice, unlike Cantor’s one value at a time
changes, we are going to give a value not in a set with several values. We
need to construct a value not in D4, then not in D4 and D9, then not in D4,
D9, and D16. If this process never ends, the number constructed will not be
in any Dk2 and so it must be irrational.

The diagonal arrangement of Table 2 is just a contrivance to make the
program visually more comprehensible. One could write all the numbers in
each set one after the other and then do the procedure with the same effect.
Let’s get to the procedure.

The modification of Cantor is really simple; we add to make the change
to rational numbers we encounter. Recall Cantor executes a swap based on
a criterion. There is no real difference; Cantor could say if the decimal digit
encountered is a 3 add .000004 to it where the zeros give the right position to
yield the swap of 7 for 3. The important net is that the number is changed
and the way it is changed can be recorded and builds a number not in the
list. We add partials of z2 to cause the number changes in our list. We
are using fractions instead of decimals, but these are just representations of
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the same thing. We change the number using the same fraction repeatedly
four times say for D4; we need a radius not going through any dots of C4 to
achieve this: the radius for 1/4+1/9 works. Table 2 gives the program.

1/4
1/9 1/4 1/4 1/4 1/4
D4 1/9 1/9 1/9 1/9

D9 1/16 1/16 1/16
D16 1/25 1/25

D25 1/36
D36

D49

D64

. . .

Table 3: A list of all rational numbers between 0 and 1 modified to exclude
them all via partial sums of z2.

The procedure is to add the numbers above each Dk2 . The result is not
in Dk2 . This is Corollary 1. So, for example, 1/4+1/9 is not in D4, 1/4+1/9
is not in D4 or D9, 1/4 + 1/9 + 1/16 is not in D4, D9, or D16, etc.. Just like
Cantor allows us to conclude a number we construct is not in a list, we can
conclude the number we construct, z2 is not in the list. As our list consists of
all rational numbers between 0 and 1, z2 must be irrational. Note: because
of repetition of numbers in Dk2 , one could chop off the first columns, but the
tail would still be proven to be irrational. The slight asymmetry in the first
1/4 + 1/9 is placed for aesthetic reasons in the table. A missing partial will
be rational. The tail only will make the number irrational.

It is worth noting that Cantor needs to be careful with his if 3, 7 else

3 program. If he replaced everything with 9’s or 0’s then an ambiguity of
.19 = .2 might arise; he might not have assurance that a number is excluded
from the list. Working with fractions (or all bases or radii), as we are, and
not a single number base, this problem does not arise. Also, worth noting
is the absence of a notational verification that the convergence point z2,
for example, is not equal to some decimal expansion version of a rational
number. Using Cantor to construct a rational using a single base, this is
obtained. You might call our use of Cantor as strong Cantor: it is strictly
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eliminative; all rational possibilities are eliminated. It’s reasoning is like the
following strong Cantor proof that the sum of all natural numbers is not a
natural number. Using the sum of natural number from 1 to n is n(n+1)/2,
we can construct Table 4 and conclude that the infinite sum is not a natural
number. We don’t know what it is, only what it’s not. There being only two
possibilities for real numbers, for the zk case, having eliminated all rational
numbers, only an irrational number is left.

1 1 1 · · · 1
+2 +2 2 · · · 2

/∈ {1} /∈ {2} +3 · · · ...

/∈ {3} · · · ...
...

n − 1
n

/∈ {n}
. . .

Table 4: Strong Cantor example showing the sum of all natural numbers is
not a natural number.

7 Other series

The telescoping series

∞
∑

k=2

(

1

n
− 1

n + 1

)

= 1/2 − 1/3 + 1/3 − 1/4 + · · · = 1/2

or
∞

∑

k=2

1

n(n + 1)
=

1

6
+

1

12
+

1

20
+ · · · = 1/2

shows the necessity of partials escaping terms. For example, the sum of the
first three terms is 3/10 which can be expressed with 6/20 in D20. Partial
sums backtrack to earlier denominators thus preventing Cantor’s diagonal
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process from being valid. The geometric series has partials that sum to
fractions with denominators from the last term of the partial, but the term’s
denominators don’t cover all pertinent rational numbers.

For both examples, placing them in Cantor’s diagonal of Table 3 shows
the necessity of partials escaping their terms and the terms covering the
rationals.

The method given here will show an infinite series convergence point is
irrational if a single number based is used. Consider a decimal representation
in a single number base of an irrational number (say base 10). Its partials
don’t escape the denominators of its terms, but, are expressed with the upper
bound of the partial: .123 is 123/1000, for example and 1/10 and 1/100 can’t
express this number: precision is lacking. Using the concentric-circle with
radii base idea, the early circles will have dots that are being approached until
the non-repeating part comes in; the radii will then start to veer away from
the candidate rational and heading, so to speak, for another dot on a circle
further out. In this way the convergence radius misses all dots. Although
the radius for every irrational number will have a decimal representation in
every base, that does not mean that it’s radius goes through a dot on any
circle – it can’t. Somewhat like a sort filter in a computer age text box, the
entered digits filter in and out possible convergence points. Eventually any
rational will be eliminated: its repeating decimal digits will be impossible.
This is the same action of the evolving radii in our construction.

8 Conclusion

Do the ideas given here give a proof that ζ(n ≥ 2) is irrational, all natural
number n? As all bases kn have the same prime factors as k, the answer is
yes: Table 3, in conjunction with Section 5, works when these other series
are used.

With the assumption of Theorem 1 of Section 5 does the proof distill
to a geometric proof? Note that the denominator of the partial sums of a
zk series with upper bound n will be much larger than nk, more like (n!)k,
so this theorem is highly plausible. Also simple number theory proofs show
that (n − 1, n) = (n, n + 1) = 1, that the natural numbers are consecutively
relatively prime. So one suspects such partial sums will have denominators
that have increasing prime factors. This points to the central intuition about
this series; the fractions added have denominators growing by one (with a
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power) and this marks how the series differs from the “spaciness” of the
geometric and telescoping series. If one grants Theorem 1 as intuitively
plausible is Figure 9 of Section 3 enough: the nudging of a trajectory by
the terms (the addition of terms) of any ζ(k) builds a trajectory that never
“hits” a rational dot; all rational sector areas are perpetually offset yielding
a sector area that must be irrational – is that enough? I think it is enough
for a good conjecture: they are all irrational. For more on geometric proofs
see Sondow’s proof of the irrationality of e [11]. His proof can be translated
into a concentric circle version.

Speculation: the harmonic series (minus 1), z1 is such that its partials
never go through circles giving its terms. As this infinite series does not
converge, the radii for its partials rotate completely around the Ck circles
infinitely many times. As Theorem 1 applies to this series as well, we know if
r/s is the reduced fraction for a partial sum of the harmonic series, it never
goes through a dot on any Ck circle. The fractions go to infinity without
a repeating pattern: it is not like n/123456, as n → ∞, for example. This
being the case and z2 radii being formed from z1 by dividing arcs by 2, by
3, etc. and then adding the first sectors formed, we have a repetition of
z1’s pattern. One can go the other way as well and infer z1’s through no

dot property from z2, a known irrational number. Once the z1 property is
established, this fractal-like, self-similarity pattern is established for all zn;
that is, if one zn is irrational, they all are. Hence, if this were true, via Apery
or Bernoulli all odd zn are irrational by self-similarity.
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