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Abstract :   

While the real and imaginary part of the quantum-mechanical wavefunction are, obviously, not to be 

looked as field vectors, the similarity between the geometry of the quantum-mechanical wavefunction 

and that of a linearly polarized electromagnetic wave remains intriguing: from a mathematical point of 

view, only the relative phase differs. Also, if the physical dimension of the electromagnetic field is 

expressed in newton per coulomb (force per unit charge), then one might explore the implications of 

associating the components of the wavefunction with a similar physical dimension: force per unit mass 

(newton per kg). This leads to a remarkably elegant interpretation of the physical significance of the 

wavefunction and the wave equation: 

1. The calculated energy densities are proportional to the square of the absolute value of the 

wavefunction and, hence, to the probabilities. 

2. Schrödinger’s wave equation itself may then, effectively, be interpreted as a diffusion equation 

for energy itself.  
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Introduction 

The similarity between the geometry of the quantum-mechanical wavefunction and that of a linearly 

polarized electromagnetic wave is obvious and intriguing : the components of both waves are 

orthogonal to the direction of propagation and to each other. Only the relative phase differs : the 

electric and magnetic field vectors (E and B) have the same phase. In contrast, the phase of the real and 

imaginary part of the wavefunction (a∙cosθ and −a∙sinθ) differ by 90 degrees (π/2).
1
 Pursuing the 

analogy, this article explores the following question: if the oscillating electric and magnetic field vectors 

of an electromagnetic wave carry the energy that one associates with the wave, can we analyze the real 

and imaginary part of the wavefunction in a similar way?  

This article shows the answer is positive. In fact, the analysis is remarkably straightforward.  If the 

physical dimension of the electromagnetic field is expressed in newton per coulomb (force per unit 

charge), then the physical dimension of the components of the wavefunction may be associated with 

force per unit mass (newton per kg).
2
 Of course, force over some distance is energy. The question then 

becomes: what is the energy concept here? Kinetic? Potential? Both?  

The similarity between the energy of a (one-dimensional) linear oscillator (E = m∙a
2
∙ω0

2
/2) and Einstein’s 

relativistic energy equation E = mc
2
 inspires the author to interpret the energy as a two-dimensional 

oscillation of mass. To assist the reader, the author constructs a two-piston engine metaphor.
3
 The 

formula for the electromagnetic energy density formula can then be used to calculate the energy 

densities for the wave function.  

The result is elegant and intuitive: the energy densities are proportional to the square of the absolute 

value of the wavefunction and, hence, to the probabilities. Schrödinger’s wave equation may then, 

effectively, be interpreted as a diffusion equation for energy itself.  

Of course, such interpretation is also an interpretation of the wavefunction itself, and the immediate 

reaction of the reader is predictable: the electric and magnetic field vectors are real vectors. In contrast, 

the real and imaginary components of the wavefunction are not. However, this objection needs to be 

phrased more carefully. First, it may be noted that, in a classical analysis, the magnetic force is a 

pseudovector itself.
4
 Second, a suitable choice of coordinates may make quantum-mechanical rotation 

matrices irrelevant.
5
  

                                                           
1
 Of course, an actual particle is localized in space and can, therefore, not be represented by the elementary 

wavefunction ψ = a·e
−i∙θ

 = a·e
−i[E∙t − p∙x]/ħ

 = a∙(cosθ − i∙a∙sinθ). −We must build a wave packet for that: a sum of 

wavefunctions, each with its own amplitude ak and its own argument θk = (Ek∙t − pk∙x)/ħ. This is dealt with in this 

paper as part of the discussion on the mathematical and physical interpretation of the normalization condition. 
2
 The N/kg dimension immediately, and naturally, reduces to the dimension of acceleration (m/s

2
), thereby 

facilitating a direct interpretation in terms of Newton’s force law. 
3
 In physics, a two-spring metaphor is more common. Hence, the pistons in the author’s perpetuum mobile may be 

replaced by springs. 
4
 The magnetic force can be analyzed as a relativistic effect (see Feynman II-13-6). The dichotomy between the 

electric force as a polar vector and the magnetic force as an axial vector disappears in the relativistic four-vector 

representation of electromagnetic. 
5
 For example, when using Schrödinger’s equation in a central field (think of the electron around a proton), the use 

of polar coordinates is recommended, as it ensures the symmetry of the Hamiltonian under all rotations (see 

Feynman III-19-3) 
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Therefore, this article may provide some fresh perspective on the question, thereby further exploring 

Einstein’s basic sentiment in regard to quantum mechanics, which may be summarized as follows: there 

must be some physical explanation for the calculated probabilities.
6
  

Let us, therefore, start with Einstein’s relativistic energy equation (E = mc
2
) and wonder what it could 

possibly tell us. 

I. Energy as a two-dimensional oscillation of mass 

The structural similarity between the relativistic energy formula, the formula for the total energy of an 

oscillator, and the kinetic energy of a moving body, is striking: 

1. E = mc
2
 

2. E = mω0
2
/2 

3. E = mv
2
/2  

In these formulas, ω0, v and c all describe some velocity.
7
 Of course, there is the 1/2 factor in the E = 

mω0
2
/2 formula

8
, but that’s exactly the point we are going to explore here: can we think of an oscillation 

in two dimensions, so it stores an amount of energy that is equal to E = 2∙m∙ω0
2
/2 = m∙ω0

2
?  

That is easy enough. Think, for example, of a V-2 engine with the pistons at a 90-degree angle, as 

illustrated below. The 90° angle makes it possible to perfectly balance the counterweight and the 

pistons, thereby ensuring smooth travel at all times. With permanently closed valves, the air inside the 

cylinder compresses and decompresses as the pistons move up and down and provides, therefore, a 

restoring force. As such, it will store potential energy, just like a spring, and the motion of the pistons 

will also reflect that of a mass on a spring. Hence, we can describe it by a sinusoidal function, with the 

zero point at the center of each cylinder. We can, therefore, think of the moving pistons as harmonic 

oscillators, just like mechanical springs.  

Figure 1: Oscillations in two dimensions 

 
                                                           

6
 This sentiment is usually summed up in the apocryphal quote: “God does not play dice.”The actual quote comes 

out of one of Einstein’s private letters to Cornelius Lanczos, another scientist who had also emigrated to the US. 

The full quote is as follows: "You are the only person I know who has the same attitude towards physics as I have: 

belief in the comprehension of reality through something basically simple and unified... It seems hard to sneak a 

look at God's cards. But that He plays dice and uses 'telepathic' methods... is something that I cannot believe for a 

single moment." (Helen Dukas and Banesh Hoffman, Albert Einstein, the Human Side: New Glimpses from His 

Archives, 1979) 
7
 Of course, both are different velocities: ω0 is an angular velocity, while v is a linear velocity: ω0 is measured in 

radians per second, while v is measured in meter per second. However, the definition of a radian implies radians 

are measured in distance units. Hence, the physical dimensions are, effectively, the same. As for the formula for 

the total energy of an oscillator, we should actually write: E = m∙a
2
∙ω0

2
/2. The additional factor (a) is the 

(maximum) amplitude of the oscillator. 
8
 We also have a 1/2 factor in the E = mv

2
/2 formula. It may be noted this is non-relativistic. Using the Lorentz 

factor (γ), we can write the relativistically correct formula for the kinetic energy as K.E. = E − E0 = mvc
2
 − 

m0c
2
 = m0γc

2
 − m0c

2
 = m0c

2
(γ − 1). We may also note that the energy concept that is used in the context of the 

Principle of Least Action is equal to E = mv
2
. The appendix provides some notes on that. 



3 

 

If we assume there is no friction, we have a perpetuum mobile here. The compressed air and the 

rotating counterweight (which, combined with the crankshaft, acts as a flywheel
9
) store the potential 

energy. The moving masses of the pistons store the kinetic energy of the system.
10

  

At this point, it is probably good to quickly review the relevant math. If the magnitude of the oscillation 

is equal to a, then the motion of the piston (or the mass on a spring) will be described by x = a∙cos(ω0∙t + 

Δ).
11

 Needless to say, Δ is just a phase factor which defines our t = 0 point, and ω0 is the natural angular 

frequency of our oscillator. Because of the 90° angle between the two cylinders, Δ would be 0 for one 

oscillator, and –π/2 for the other. Hence, the motion of one piston is given by x = a∙cos(ω0∙t), while the 

motion of the other is given by x = a∙cos(ω0∙t–π/2) = a∙sin(ω0∙t).    

The kinetic and potential energy of one oscillator (think of one piston or one spring only) can then be 

calculated as: 

1. K.E. = T = m∙v
2
/2 = (1/2)∙m∙ω0

2
∙a

2
∙sin

2
(ω0∙t + Δ) 

2. P.E. = U = k∙x
2
/2 = (1/2)∙k∙a

2
∙cos

2
(ω0∙t + Δ)   

The coefficient k in the potential energy formula characterizes the restoring force: F = −k∙x. From the 

dynamics involved, it is obvious that k must be equal to m∙ω0
2
. Hence, the total energy is equal to: 

E = T + U = (1/2)∙ m∙ω0
2
∙a

2
∙[sin

2
(ω0∙t + Δ) + cos

2
(ω0∙t + Δ)] = m∙a

2
∙ω0

2
/2 

To facilitate the calculations, we will briefly assume k = m∙ω0
2
 and a are equal to 1. The motion of our 

first oscillator is given by the cos(ω0∙t) = cosθ function (θ = ω0∙t), and its kinetic energy will be equal 

to sin
2
θ. Hence, the (instantaneous) change in kinetic energy at any point in time will be equal to: 

d(sin
2
θ)/dθ = 2∙sinθ∙d(sinθ)/dθ = 2∙sinθ∙cosθ 

Let us look at the second oscillator now. Just think of the second piston going up and down in the V-2 

engine. Its motion is given by the sinθ function, which is equal to cos(θ−π /2). Hence, its kinetic energy is 

equal to sin
2
(θ−π /2), and how it changes – as a function of θ – will be equal to: 

2∙sin(θ−π /2)∙cos(θ−π /2) = = −2∙cosθ∙sinθ = −2∙sinθ∙cosθ 

We have our perpetuum mobile! While transferring kinetic energy from one piston to the other, the 

crankshaft will rotate with a constant angular velocity: linear motion becomes circular motion, and vice 

versa, and the total energy that is stored in the system is T + U = ma
2
ω0

2
.   

We have a great metaphor here. Somehow, in this beautiful interplay between linear and circular 

motion, energy is borrowed from one place and then returns to the other, cycle after cycle. We know 

the wavefunction consist of a sine and a cosine: the cosine is the real component, and the sine is the 

imaginary component. Could they be equally real? Could each represent half of the total energy of our 

particle? Should we think of the c in our E = mc
2
 formula as an angular velocity? 

These are sensible questions. Let us explore them. 

                                                           
9
 Instead of two cylinders with pistons, one may also think of connecting two springs with a crankshaft. 

10
 It is interesting to note that we may look at the energy in the rotating flywheel as potential energy because it is 

energy that is associated with motion, albeit circular motion. In physics, one may associate a rotating object with 

kinetic energy using the rotational equivalent of mass and linear velocity, i.e. rotational inertia (I) and angular 

velocity ω. The kinetic energy of a rotating object is then given by K.E. = (1/2)∙I∙ω
2
.  

11
 Because of the sideways motion of the connecting rods, the sinusoidal function will describe the linear motion 

only approximately, but you can easily imagine the idealized limit situation. 



 

II. The wavefunction as a two

The elementary wavefunction is written as

ψ = a·e
−i[E∙t − p∙x]/ħ

 = a·e

When considering what happens at 

ψ = a·e
−i∙E∙t/ħ

 = a∙cos(

Let us remind ourselves of the geometry involved, which is illustrated below.

the wavefunction rotates clockwise

phase angle (ϕ) is counter-clockwise.

If we assume the momentum p is all in the 

direction, and p∙x/ħ reduces to p∙x/ħ.

else, t. Alternatively, one can google

dimensional oscillation here. These two dimensions are perpendicular to the direction of propagation of 

the wavefunction. For example, if the wavefunction propagates in the 

are along the y- and z-axis, which we may refer to as the real and imaginary axis.

difference between the cosine and the sine  

to give some spin to the whole. I will come back to this.  

Figure 3: 

Hence, if we would say these oscillations carry half of the total energy of the particle, then we may refer 

to the real and imaginary energy of the particle respectively, and the interplay between the real and the 

imaginary part of the wavefunction

Let us consider, once again, a particle

to ψ = a·e
−i∙E∙t/ħ

. Hence, the angular 

Now, the energy of our particle includes all of the energy 

therefore, equal to E = mc
2
.  

The wavefunction as a two-dimensional oscillation 

The elementary wavefunction is written as: 

a·e
−i[E∙t − p∙x]/ħ

 = a∙cos(p∙x/ħ − E∙t/ħ) + i∙a∙sin(p∙x/ħ − E∙t

considering what happens at x = 0, or considering a particle at rest (p = 0) this reduces to:

∙cos(−E∙t/ħ) + i∙a∙sin(−E∙t/ħ) = a∙cos(E∙t/ħ) − i∙a∙sin(E∙t/ħ)

remind ourselves of the geometry involved, which is illustrated below. Note that the argument of 

clockwise with time, while the mathematical convention for measuring the 

clockwise. 

Figure 2: Euler’s formula  

 

is all in the x-direction, then the p and x vectors will have the same 

∙x/ħ. Most illustrations – such as the one below – will 

google web animations varying both. The point is: we do have a two

dimensional oscillation here. These two dimensions are perpendicular to the direction of propagation of 

the wavefunction. For example, if the wavefunction propagates in the x-direction, then the oscillations 

axis, which we may refer to as the real and imaginary axis. Note how the phase 

difference between the cosine and the sine  – the real and imaginary part of our wavefunction 

to give some spin to the whole. I will come back to this.   

: Geometric representation of the wavefunction 

 

we would say these oscillations carry half of the total energy of the particle, then we may refer 

to the real and imaginary energy of the particle respectively, and the interplay between the real and the 

wavefunction may then describe how energy propagates over time

particle at rest. Hence, p = 0 and the (elementary) wavefunction

 velocity of both oscillations, at some point x, is given

Now, the energy of our particle includes all of the energy – kinetic, potential and rest energy 

4 

t/ħ) 

this reduces to: 

∙t/ħ)   

Note that the argument of 

with time, while the mathematical convention for measuring the 

vectors will have the same 

 either freeze x or, 

The point is: we do have a two-

dimensional oscillation here. These two dimensions are perpendicular to the direction of propagation of 

direction, then the oscillations 

Note how the phase 

the real and imaginary part of our wavefunction – appear 

we would say these oscillations carry half of the total energy of the particle, then we may refer 

to the real and imaginary energy of the particle respectively, and the interplay between the real and the 

time through space.  

wavefunction reduces 

given by ω = −E/ħ. 

kinetic, potential and rest energy – and is, 
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Can we, somehow, relate this to the m∙a
2
∙ω0

2
 energy formula for V-2 perpetuum mobile? Our 

wavefunction has an amplitude too. Now, if the oscillations of the real and imaginary wavefunction 

store the energy of our particle, then their amplitude will surely matter. In fact, the energy of an 

oscillation is, in general, proportional to the square of the amplitude: E ∝ a
2
. We may, therefore, think 

that the a
2
 factor in the E = m∙a

2
∙ω0

2
 energy will surely be relevant as well. 

However, here is a complication: an actual particle is localized in space and can, therefore, not be 

represented by the elementary wavefunction. We must build a wave packet for that: a sum of 

wavefunctions, each with their own amplitude ak, and their own ωk = −Ek/ħ. Each of these 

wavefunctions will contribute some energy to the total energy of the wave packet. To calculate the 

contribution of each wave to the total, both ak as well as Ek will matter.  

What is Ek? Ek varies around some average E: the Uncertainty Principle kicks in here. The analysis 

becomes more complicated, but a formula such as the one below might make sense:  

E =  � m ∙ ��	 · ω�	 = m ∙ � ��	 · ω�	  

Now, because E = mc
2
, this implies the following:  

�	 = � ��	 · ω�	  

What is the meaning of this equation? We may look at it as a physical normalization condition. It says all 

of the m∙ak
2
∙ωk

2
 contributions have to add up to the total energy, as evidenced by the following 

alternative formulation of the identity: 

1 = m ∙ ∑ ��	 · ω�	
E = m�	

E = 1 

Of course, we should relate this to the mathematical normalization condition: the probabilities must be 

related to the energy densities.  

III. What is mass? 

We now have a meaningful interpretation for energy: it is a two-dimensional oscillation of mass. But 

what is mass? A new aether theory is, of course, not an option, but then what is it that is oscillating? 

To understand the physics behind equations, it is always good to do an analysis of the physical 

dimensions in the equation. Let us start with Einstein’s energy equation once again. If we want to look at 

mass, we should re-write it as m = E/c
2
: 

[m] = [E/c
2
] = J/(m/s)

2
 = N∙m∙s

2
/m

2
 = N∙s

2
/m = kg 

This is not very helpful. It only reminds us of Newton’s definition of a mass: mass is that what gets 

accelerated by a force. At this point, we may want to think of the physical significance of the absolute 

nature of the speed of light. Einstein’s E = mc
2
 equation implies we can write the ratio between the 

energy and the mass of any particle is always the same, so we can write, for example: 

���������
���������

= �������
�������

= �������
�������

= ���� ��������
���� ��������

= �	 

This reminds us of the ω0
2
= C

−1
/L or ω0

2
 = k/m of harmonic oscillators once again.

12
 The key difference is 

that the ω0
2
= C

−1
/L and ω0

2
 = k/m formulas introduce two or more degrees of freedom.

13
 In contrast, c

2
= 

                                                           
12

 The ω0
2
= 1/LC formula gives us the natural or resonant frequency for a electric circuit consisting of a resistor (R), 
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E/m for any particle, always. However, that is exactly the point: we can modulate the resistance, 

inductance and capacitance of electric circuits, and the stiffness of springs and the masses we put on 

them, but we live in one physical space only: our spacetime. Hence, the speed of light c emerges here as 

the defining property of spacetime – the resonant frequency, so to speak. We have no further degrees 

of freedom here. 

In this regard, we should highlight another interesting implication of de Broglie’s E = h∙f = ω∙ħ equation 

for the matter wave, which boldly generalizes the Planck-Einstein relation for a photon E = h∙ν = ω∙ħ to 

encompass matter waves too: it gives us the frequency of the matter wave. Now, f is the number of 

oscillations per second, which we may write as f = n/s. Hence, we can write: 

E/n = (E/f)∙(1 s) = h∙(1 s) = (6.626070040(81)×10
−34

 J∙s)∙(1 s) = 6.626070040(81)×10
−34

 J 

This is an amazing result: our particle – be it a photon or a matter-particle – will 

always pack 6.626070040(81)×10
−34

 joule in one oscillation. Of course, the obvious question is: what 

is one oscillation? The matter wave comes as a wave packet and, therefore, the oscillations will not have 

the same amplitude. In fact, the Uncertainty Principle tells us we will not be able to define an exact 

period. Nevertheless, the result stands.
14

 

The Planck-Einstein relation (for photons) and the de Broglie equation (for matter-particles) have 

another interesting feature: both imply that the energy of the oscillation is proportional to the 

frequency, with Planck’s constant as the constant of proportionality. Now, for one-dimensional 

oscillations – think of a guitar string, for example – we know the energy will be proportional to the 

square of the frequency.
15

 It is a remarkable observation: the two-dimensional matter-wave, or the 

electromagnetic wave, gives us two waves for the price of one, so to speak, each carrying half of 

the total energy of the oscillation but, as a result, we get an E ∝ f instead of an E ∝ f
2
 proportionality.  

However, such reflections do not answer the fundamental question we started out with: what is mass? 

At this point, it is hard to go beyond the circular definition that is implied by Einstein’s formula: energy is 

a two-dimensional oscillation of mass, and mass packs energy, and c emerges us as the property of 

spacetime that defines how exactly. When everything is said and done, this does not go beyond stating 

that mass is some scalar field. Now, a scalar field is, quite simply, some real number that we associate 

with a position in spacetime. The Higgs field is a scalar field but, of course, the theory behind it goes 

                                                                                                                                                                                    

an inductor (L), and a capacitor (C). Writing the formula as ω0
2
= C

−1
/L introduces the concept of elastance, which is 

the equivalent of the mechanical stiffness (k) of a spring. 
13

 The resistance in an electric circuit introduces a damping factor. When analyzing a mechanical spring, one may 

also want to introduce a drag coefficient. Both are usually defined as a fraction of the inertia, which is the mass for 

a spring and the inductance for an electric circuit. Hence, we would write the resistance for a spring as γm and as R 

= γL respectively.  
14

 Photons are emitted by atomic oscillators: atoms going from one state (energy level) to another. Feynman 

(Lectures, I-33-3) shows us how to calculate the Q of these atomic oscillators: it’s of the order of 10
8
, which means 

the wave train will last about 10
–8 

seconds (to be precise, that is the time it takes for the radiation to die out by a 

factor 1/e). For example, for sodium light, the radiation will last about 3.2×10
–8 

seconds (this is the so-called decay 

time τ). Now, because the frequency of sodium light is some 500 THz (500×10
12 

oscillations per second), this makes 

for some 16 million oscillations. There is an interesting paradox here: the speed of light tells us that such wave 

train will have a length of about 9.6 m! How is that to be reconciled with the pointlike nature of a photon? The 

paradox can only be explained by relativistic length contraction: in an analysis like this, one need to distinguish the 

reference frame of the photon – riding along the wave as it is being emitted, so to speak – and our stationary 

reference frame, which is that of the emitting atom.  
15

 This is a general result and is reflected in the K.E. = T = (1/2)∙m∙ω0
2
∙a

2
∙sin

2
(ω0∙t + Δ) and the P.E. = U = k∙x

2
/2 = 

(1/2)∙ m∙ω0
2
∙a

2
∙cos

2
(ω0∙t + Δ) formulas for the linear oscillator.    
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much beyond stating that we should think of mass as some scalar field. The fundamental question is: 

why and how does energy, or matter, condense into elementary particles? That is what the Higgs 

mechanism is about but, as this paper is exploratory only, we cannot even start explaining the basics of 

it. 

What we can do, however, is look at the wave equation again (Schrödinger’s equation), as we can now 

analyze it as an energy diffusion equation. 

IV. Schrödinger’s equation as an energy diffusion equation 

The interpretation of Schrödinger’s equation as a diffusion equation is straightforward. Feynman 

(Lectures, III-16-1) briefly summarizes it as follows:  

“We can think of Schrödinger’s equation as describing the diffusion of the probability amplitude 

from one point to the next. […] But the imaginary coefficient in front of the derivative makes the 

behavior completely different from the ordinary diffusion such as you would have for a gas 

spreading out along a thin tube. Ordinary diffusion gives rise to real exponential solutions, 

whereas the solutions of Schrödinger’s equation are complex waves.”
16

   

Let us review the basic math. For a particle moving in free space – with no external force fields acting on 

it – there is no potential (U = 0) and, therefore, the Uψ term disappears. Therefore, Schrödinger’s 

equation reduces to: 

∂ψ(x, t)/∂t = i∙(1/2)∙(ħ/meff)∙∇2
ψ(x, t) 

The ubiquitous diffusion equation in physics is: 

∂φ(x, t)/∂t = D·∇2
φ(x, t) 

The structural similarity is obvious. The key difference between both equations is that the wave 

equation gives us two equations for the price of one. Indeed, because ψ is a complex-valued function, 

with a real and an imaginary part, we get the following equations
17

:  

1. Re(∂ψ/∂t) = −(1/2)∙(ħ/meff)∙Im(∇2
ψ) 

2. Im(∂ψ/∂t) = (1/2)∙(ħ/meff)∙Re(∇2
ψ) 

These equations make us think of the equations for an electromagnetic wave in free space (no 

stationary charges or currents): 

1. ∂B/∂t = –∇×E 

2. ∂E/∂t = c
2∇×B 

The above equations describe a propagation mechanism in spacetime, as illustrated below.  

                                                           
16

 Feynman further formalizes this in his Lecture on Superconductivity (Feynman, III-21-2), in which he refers to 

Schrödinger’s equation as the “equation for continuity of probabilities”. The analysis is centered around the local 

conservation of energy, which confirms the interpretation of Schrödinger’s equation as an energy diffusion 

equation. 
17

 The meff is the effective mass of the particle. It depends on the medium. For example, an electron traveling in a 

solid (a transistor, for example) will have a different effective mass than in an atom. In free space, we can drop the 

subscript. 
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Figure 4: Propagation mechanism 

 

The Laplacian operator (∇2
), when operating on a scalar quantity, gives us a flux density, i.e. something 

expressed per square meter (1/m
2
). In this case, it’s operating on ψ(x, t), so what is the dimension of our 

wavefunction ψ(x, t)? To answer that question, we should analyze the diffusion constant in 

Schrödinger’s equation, i.e. the (1/2)∙(ħ/meff) factor: 

1. As a mathematical constant of proportionality, it will quantify the relationship between both 

derivatives (i.e. the time derivative and the Laplacian); 

2. As a physical constant, it will ensure the physical dimensions on both sides of the equation are 

compatible. 

Now, the ħ/meff factor is expressed in (N∙m∙s)/(N∙ s
2
/m) = m

2
/s. Hence, it does ensure the dimensions on 

both sides of the equation are, effectively, the same: ∂ψ/∂t is a time derivative and, therefore, its 

dimension is s
−1

 while, as mentioned above, the dimension of ∇2
ψ is m

−2
. However, this does not solve 

our basic question: what is the dimension of the real and imaginary part of our wavefunction? 

At this point, mainstream physicists will say: it doesn’t have a physical dimension, and there is no 

geometric interpretation of Schrödinger’s equation. One may argue, effectively, that its argument, (p∙x − 

E∙t)/ħ, is just a number and, therefore, that the real and imaginary part of ψ is also just some number. 

To this, we may object that ħ may be looked as a mathematical scaling constant only. If we do that, the 

argument of ψ will, effectively, be expressed in action units, i.e. in N∙m∙s. It then does make sense to 

also associate a physical dimension with the real and imaginary part of ψ. What could it be?  

We may have a closer look at Maxwell’s equations for inspiration here. The electric field vector is 

expressed in newton (the unit of force) per unit of charge (coulomb). Now, there is something 

interesting here. The physical dimension of the magnetic field is N/C divided by m/s.
18

 We may write B 

as the following vector cross-product: B = (1/c)∙ex×E, with ex the unit vector pointing in the x-direction 

(i.e. the direction of propagation of the wave). Hence, we may associate the (1/c)∙ex× operator, which 

amounts to a rotation by 90 degrees, with the s/m dimension. Now, multiplication by i also amounts to a 

rotation by 90° degrees. Hence, we may boldly write: B = (1/c)∙ex×E = (1/c)∙i∙E. This allows us to also 

geometrically interpret Schrödinger’s equation in the way we interpreted it above (see Figure 3).
19

 

                                                           
18

 The dimension of B is usually written as N/(m∙A), using the SI unit for current, i.e. the ampere (A). However, 1 C = 

1 A∙s and, hence, 1 N/(m∙A) = 1 (N/C)/(m/s).      
19

 Of course, multiplication with i amounts to a counterclockwise rotation. Hence, multiplication by −i also amounts 

to a rotation by 90 degrees, but clockwise. Now, to uniquely identify the clockwise and counterclockwise 

directions, we need to establish the equivalent of the right-hand rule for a proper geometric interpretation of 

Schrödinger’s equation in three-dimensional space: if we look at a clock from the back, then its hand will be 
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Still, we have not answered the question as to what the physical dimension of the real and imaginary 

part of our wavefunction should be. At this point, we may be inspired by the structural similarity 

between Newton’s and Coulomb’s force laws: 

� = ��
 ! ∙  	

"	  

� = # �! ∙ �	
"	  

Hence, if the electric field vector E is expressed in force per unit charge (N/C), then we may want to 

think of associating the real part of our wavefunction with a force per unit mass (N/kg). We can, of 

course, do a substitution here, because the mass unit (1 kg) is equivalent to 1 N∙s
2
/m. Hence, our N/kg 

dimension becomes: 

N/kg = N/(N∙s
2
/m)= m/s

2
 

What is this: m/s
2
? Is that the dimension of the a∙cosθ term in the a∙e

−iθ 
= a∙cosθ − i∙a∙sinθ 

wavefunction? My answer is: why not? Think of it: m/s
2
 is the physical dimension of acceleration: the 

increase or decrease in velocity (m/s) per second. It ensures the wavefunction for any particle – matter-

particles or particles with zero rest mass (photons) – and the associated wave equation (which has to be 

the same for all, as the spacetime we live in is one) are mutually consistent. 

V. Energy densities and flows 

Pursuing the geometric equivalence between the equations for an electromagnetic wave and 

Schrödinger’s equation, we can now, perhaps, see if there is an equivalent for the energy density. For an 

electromagnetic wave, we know that the energy density is given by the following formula: 

$ = %&
2 ( ∙ ( + %& ∙ �	

2 * ∙ * 

E and B are the electric and magnetic field vector respectively. The Poynting vector will give us the 

directional energy flux, i.e. the energy flow per unit area per unit time. We write: 

+$
+, = −∇ ∙ . 

Needless to say, the ∇∇∇∇∙ operator is the divergence and, therefore, gives us the magnitude of a (vector) 

field’s source or sink at a given point. To be precise, the divergence gives us the volume density of the 

outward flux of a vector field from an infinitesimal volume around a given point. In this case, it gives us 

the volume density of the flux of S.  

We can analyze the dimensions of the equation for the energy density as follows: 

1. E is measured in newton per coulomb, so [E∙E] = [E
2
] = N

2
/C

2
. 

2. B is measured in (N/C)/(m/s), so we get [B∙B] = [B
2
] = (N

2
/C

2
)∙(s

2
/m

2
). However, the dimension of 

our c
2
 factor is (m

2
/s

2
) and so we’re also left with N

2
/C

2
. 

                                                                                                                                                                                    

moving counterclockwise. When writing B = (1/c)∙i∙E, we assume we are looking in the negative x-direction. If we 

are looking in the positive x-direction, we should write: B = −(1/c)∙i∙E. Of course, Nature does not care about our 

conventions. Hence, both should give the same results in calculations. We will show in a moment they do. 



 

3. The ϵ0 is the electric constant, aka as the vacuum permittivity. As a 

ensure the dimensions on both sides of the equation work out, and they do: [ε

and, therefore, if we multiply that with N

Replacing the newton per coulomb 

should give us the equivalent of the energy density for the wavefunction. We just need to substitute 

for an equivalent constant. We will leave it to the reader to work that out.

If the energy densities can be calculated

probabilities should be proportional to them.

photon, assuming the electromagnetic wave represents its wavefunction. S

for −(1/c)∙i∙E gives us the following result:

$ = %&
2
( ∙ ( )

%& ∙ �
	

2
*

Zero! An unexpected result! Or not? We have not stationary charges or

electromagnetic wave in free space.

respected at all points in space and in time.

electromagnetic wave, the magnitudes of 

simultaneously, as shown below.
21

 This is because their 

Figure 

Should we expect a similar result for the energy densities that we would associate with the real and 

imaginary part of the matter-wave? 

and a∙sinθ, which gives a different picture of the 

geometry of the suggestion suggests some inherent spin, which is interesting.

scaling constants, we can write: 

$ � �	�/0

We get what we hoped to get: the absolute square of our amplitude is, effectively, an energy density !

                                                          
20

 In fact, when multiplying C
2
/(N∙m

2
) with N

desired result. It is significant that an energy density (

per unit area.  
21

 The illustration shows a linearly polarized wave, but the obtained result is general.
22

 The sine and cosine are essentially the same functions, except for the difference in the phase: 

is the electric constant, aka as the vacuum permittivity. As a physical constant, it should 

ensure the dimensions on both sides of the equation work out, and they do: [ε

if we multiply that with N
2
/C

2
, we find that u is expressed in J/m

 unit (N/C) by the newton per kg unit (N/kg) in the formulas above 

us the equivalent of the energy density for the wavefunction. We just need to substitute 

We will leave it to the reader to work that out.  

If the energy densities can be calculated – which are also mass densities, obviously – then the 

should be proportional to them. We may to give it a try. Let us first see what we get for a 

ton, assuming the electromagnetic wave represents its wavefunction. Substituting 

gives us the following result: 

* ∙ * �
%&

2
( ∙ ( )

%& ∙ �
	

2

1 ∙ (

�

1 ∙ (

�
�
%&

2
( ∙ ( -

%&

2
( ∙

Or not? We have not stationary charges or no currents: only an 

lectromagnetic wave in free space. Hence, the local energy conservation principle needs to be 

respected at all points in space and in time. The geometry makes sense of the result: for an 

the magnitudes of E and B reach their maximum, minimum and zero point 

This is because their phase is the same. 

Figure 5: Electromagnetic wave: E and B 

 

Should we expect a similar result for the energy densities that we would associate with the real and 

wave? For the matter-wave, we have a phase difference between 

θ, which gives a different picture of the propagation of the wave (see Figure 3

geometry of the suggestion suggests some inherent spin, which is interesting. Making abstraction of any 

�/0	θ ) �	013	θ � �	 4�/0	θ ) 013	θ5 � �	 

the absolute square of our amplitude is, effectively, an energy density !

|ψ|
2 

 = |a·e
−i∙E∙t/ħ

|
2 

= a
2 

= u 

                   

) with N
2
/C

2
, we get N/m

2
, but we can multiply this with 1 = m

desired result. It is significant that an energy density (joule per unit volume) can also be measured in 

The illustration shows a linearly polarized wave, but the obtained result is general. 

The sine and cosine are essentially the same functions, except for the difference in the phase: 

10 

constant, it should 

ensure the dimensions on both sides of the equation work out, and they do: [ε0] = C
2
/(N∙m

2
) 

expressed in J/m
3
.
20

 

it (N/kg) in the formulas above 

us the equivalent of the energy density for the wavefunction. We just need to substitute ϵ0 

then the 

We may to give it a try. Let us first see what we get for a 

ubstituting B for (1/c)∙i∙E or 

( � 0 

: only an 

energy conservation principle needs to be 

or an 

maximum, minimum and zero point 

Should we expect a similar result for the energy densities that we would associate with the real and 

wave, we have a phase difference between a∙cosθ 

3).
22

 In fact, the 

Making abstraction of any 

the absolute square of our amplitude is, effectively, an energy density !  

, but we can multiply this with 1 = m/m to get the 

) can also be measured in newton (force 

The sine and cosine are essentially the same functions, except for the difference in the phase: sinθ = cos(θ−π /2). 



 

This is very deep. A photon has no rest mass, so it borrows and returns energy from empty space as

travels through it. In contrast, a matter

therefore associated with an energy density, and this energy density gives us the probabilities. Of 

course, we need to fine-tune the analysis to a

a single wave, but that can easily be done.

As mentioned, the phase difference between the real and imaginary part of our wavefunction (a cosine 

and a sine function) appear to give some spin to our

photon. Of course, photons are bosons, i.e. spin

fermions with spin-1/2. Hence, our geometric interpretation of the wavefunction suggests that, after a

there may be some more intuitive explanation of the fundamental dichotomy between bosons and 

fermions, which puzzled even Feynman found baffling:  famously commented on: 

“Why is it that particles with half

integral spin are Bose particles? We apologize for the fact that we cannot give you an 

elementary explanation. An explanation has been worked out by Pauli from complicated 

arguments of quantum field theory and relativity. He has sh

go together, but we have not been able to find a way of reproducing his arguments on an 

elementary level. It appears to be one of the few places in physics where there is a rule which 

can be stated very simply, but for whi

explanation is deep down in relativistic quantum mechanics. This probably means that we do 

not have a complete understanding of the fundamental principle involved.” (Feynman, 

III-4-1) 

A geometric interpretation of the wavefunction may, perhaps, provide some better understanding of 

‘the fundamental principle involved.’

V. Concluding remarks 

There are, of course, other ways to look at the matter. For example, we can imagine two

oscillations as circular rather than linear oscillations. Think of a tiny ball, whose center of mass stays 

where it is, as depicted below. Any rotation 

around the two other axes. Hence, we may want to think of a two

oscillation of a polar and azimuthal angle. 

Figure 

The point of this paper is not to make any definite statements. That would be foolish. Its objective is just 

to challenge the simplistic mainstream viewpoint on the 

mathematical construct only without 

That is, clearly, a non-sustainable proposition.

deep. A photon has no rest mass, so it borrows and returns energy from empty space as

travels through it. In contrast, a matter-wave carries energy and, therefore, has some (

therefore associated with an energy density, and this energy density gives us the probabilities. Of 

tune the analysis to account for the fact that we have a wave packet rather than 

a single wave, but that can easily be done. 

As mentioned, the phase difference between the real and imaginary part of our wavefunction (a cosine 

and a sine function) appear to give some spin to our particle. We do not have this particularity for a 

photon. Of course, photons are bosons, i.e. spin-zero particles, while elementary matter

1/2. Hence, our geometric interpretation of the wavefunction suggests that, after a

there may be some more intuitive explanation of the fundamental dichotomy between bosons and 

fermions, which puzzled even Feynman found baffling:  famously commented on:  

“Why is it that particles with half-integral spin are Fermi particles, whereas particles with 

integral spin are Bose particles? We apologize for the fact that we cannot give you an 

elementary explanation. An explanation has been worked out by Pauli from complicated 

arguments of quantum field theory and relativity. He has shown that the two must necessarily 

go together, but we have not been able to find a way of reproducing his arguments on an 

elementary level. It appears to be one of the few places in physics where there is a rule which 

can be stated very simply, but for which no one has found a simple and easy explanation. The 

explanation is deep down in relativistic quantum mechanics. This probably means that we do 

not have a complete understanding of the fundamental principle involved.” (Feynman, 

tric interpretation of the wavefunction may, perhaps, provide some better understanding of 

‘the fundamental principle involved.’ 

There are, of course, other ways to look at the matter. For example, we can imagine two

rather than linear oscillations. Think of a tiny ball, whose center of mass stays 

where it is, as depicted below. Any rotation – around any axis – will be some combination of a rotation 

around the two other axes. Hence, we may want to think of a two-dimensional oscillation as an 

oscillation of a polar and azimuthal angle.  

Figure 6: Two-dimensional circular movement 

 

The point of this paper is not to make any definite statements. That would be foolish. Its objective is just 

lenge the simplistic mainstream viewpoint on the reality of the wavefunction. Stating that it is a 

mathematical construct only without physical significance amounts to saying it has no meaning at all. 

sustainable proposition. 
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deep. A photon has no rest mass, so it borrows and returns energy from empty space as it 

(rest) mass. It is 

therefore associated with an energy density, and this energy density gives us the probabilities. Of 

ccount for the fact that we have a wave packet rather than 

As mentioned, the phase difference between the real and imaginary part of our wavefunction (a cosine 

particle. We do not have this particularity for a 

matter-particles are 

1/2. Hence, our geometric interpretation of the wavefunction suggests that, after all, 

there may be some more intuitive explanation of the fundamental dichotomy between bosons and 

, whereas particles with 

integral spin are Bose particles? We apologize for the fact that we cannot give you an 

elementary explanation. An explanation has been worked out by Pauli from complicated 

own that the two must necessarily 

go together, but we have not been able to find a way of reproducing his arguments on an 

elementary level. It appears to be one of the few places in physics where there is a rule which 

ch no one has found a simple and easy explanation. The 

explanation is deep down in relativistic quantum mechanics. This probably means that we do 

not have a complete understanding of the fundamental principle involved.” (Feynman, Lectures, 

tric interpretation of the wavefunction may, perhaps, provide some better understanding of 

There are, of course, other ways to look at the matter. For example, we can imagine two-dimensional 

rather than linear oscillations. Think of a tiny ball, whose center of mass stays 

will be some combination of a rotation 

oscillation as an 

The point of this paper is not to make any definite statements. That would be foolish. Its objective is just 

of the wavefunction. Stating that it is a 

amounts to saying it has no meaning at all. 
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The interpretation that is offered here looks at amplitude waves as traveling fields. Their physical 

dimension may be expressed in force per mass unit, as opposed to electromagnetic waves, whose 

amplitudes are expressed in force per (electric) charge unit. Also, the amplitudes of matter-waves 

incorporate a phase factor, but this may actually explain the rather enigmatic dichotomy between 

fermions and bosons and is, therefore, an added bonus. 
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Appendix: The de Broglie relations and energy 

The 1/2 factor in Schrödinger’s equation is related to the concept of the effective mass (meff). It is easy to 

make the wrong calculations. For example, when playing with the famous de Broglie relations – aka as 

the matter-wave equations – one may be tempted to derive the following energy concept: 

1. E = h∙f and p = h/λ. Therefore, f = E/h and λ = p/h. 

2. v = f·λ = (E/h)∙(p/h) = E/p 

3. p = m∙v. Therefore, E = v∙p = m∙v
2
 

E = m∙v
2
? This resembles the E = mc

2
 equation and, therefore, one may be enthused by the discovery, 

especially because the m∙v
2
 also pops up when working with the Least Action Principle in classical 

mechanics, which states that the path that is followed by a particle will minimize the following integral: 

7 �  8 4KE − PE5;,
�<

�=
 

Now, we can choose any reference point for the potential energy but, to reflect the energy conservation 

law, we can select a reference point that ensures the sum of the kinetic and the potential energy is zero 

throughout the time interval. If the force field is uniform, then the integrand will, effectively, be equal to 

KE − PE = m·v
2
.
23

 

However, that is classical mechanics and, therefore, not so relevant in the context of the de Broglie 

equations. The apparent paradox is solved by distinguishing between the group and the phase velocity 

of the matter wave. 
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