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Abstract. In this article we will give a proof that the Kakeya tube conjecture
implies the Kakeya conjecture.

1. Introduction

We de�ne the δ - tubes in standard way: for all δ > 0, ω ∈ Sn−1 and a ∈ Rn, let

T δω(a) = {x ∈ Rn : |(x− a) · ω| ≤ 1

2
, |projω⊥(x− a)| ≤ δ}.

In this paper any constant can depend on dimension n. We de�ne the (spherical)
Hausdor� content Hs(K) of a subset of K ⊂ Rn as follows. Let r > 0 and let
0 < rj < r then

Hs
r (K) = inf{

∞∑
j=i

rsj |K ⊂
∞⋃
j=1

B(xj , rj/2)},

where each B(xj , r/2) is a ball with a diameter strictly less than r. The (spherical)
s− dimensional Hausdor� content of K is de�ned as limr→0H

s
r (K). We de�ne the

Hausdor� dimension as

DimH(K) = inf{s ≥ 0|Hs(K) = 0}.

We will give a proof that the result ⋃
ω∈Ω

Tω ≈ 1

for maximal set of δ - tubes implies the Kakeya conjecture:

Theorem 1. Any Kakeya set has full Hausdorf dimension.

2. The proof

Let K be a Kakeya set, that is, a set that contains an unit line in every direction.
let

⋃∞
j=1Bj(x,

rj
2 ) be a cover of K with balls of diameters less than 1 > r > rj > 0.

Let n > n− α > 0 be such that

(1)

∞∑
j=1

rn−αj < 1.
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If the Hausdor� content is zero that kind of cover exists. By compactness of the
Kakeya set we can take a subcover with diameters such that 1 > r > rj ≥ δ > 0,
where at least one rj ∼ δ. Now, assume

(2)

M∑
j=1

rnj & |
M⋃
j=1

Bj | & |
N⋃
i=1

Ti| ' 1.

The second inequality above follows because the balls cover the middle lines of the
tubes, so there exists a constant such that the second inequality above is valid.
Using inequality (1) and (2) we obtain

(3) Cα/kδ
−α/k

M∑
j=1

rnj >

M∑
j=1

rn−αj .

Thus,

(4)

M∑
j=1

rnj (Cα/kδ
−α/k − r−αj ) > 0.

It follows that for the average value of a power of diameters it holds that

(5) Cα/kδ
−α/k >

1

M

M∑
j=1

r−αj ≥ 1

M−α
(

M∑
j=1

rj)
−α,

where we used Jensen`s inequality. Thus,

(6) cα
1

M

M∑
j=1

rj > δ1/k.

From above it follows that

(cα)
n

M
(

M∑
j=1

rnj ) ≥ (
cα
M

)n(

M∑
j=1

rj)
n > δn/k,

where we used Jensen`s inequality again. Thus, from above and inequality (1)

Cα > Mδn/k.

It follows from above that

(7) δ−n/kCα > M

We can do the steps (3), (4) and (5) again for ε = α/2 and obtain

(8) Cα/2δ
−α/2 >

1

M

M∑
j=1

r−αj .

Let k and a small δ be such that

δ−α/3 > Cαδ
−n/k.

From above and inequalities (7) and (8) we obtain

(9) Cα/2δ
−α/2 > δα/3

M∑
j=1

r−αj > δα/3δ−α = δ−2/3α,

which is a contradiction when δ is small.
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