
Abdelwahab, N.

	

202	

202	

Journal Academica Vol. 6(3), pp. 202-239, September 15 2016 - Theoretical Computer Science - ISSN 2161-3338
online edition www.journalacademica.org - Copyright © 2016 Journal Academica Foundation - All rights reserved

Full Length Research Paper

On the Dual Nature of Logical Variables and Clause-Sets

Elnaserledinellah Mahmood Abdelwahab*
Senior Project Manager, makmad.org e.V., Hanover (Germany)

Received August 4, 2016; Accepted September 12 2016

ABSTRACT
This paper describes the conceptual approach behind the proposed solution of the 3SAT
problem recently published in [Abdelwahab 2016]. It is intended for interested readers
providing a step-by-step, mostly informal explanation of the new paradigm proposed
there completing the picture from an epistemological point of view with the concept of
duality on center-stage. After a brief introduction discussing the importance of duality
in both, physics and mathematics as well as past efforts to solve the P vs. NP problem, a
theorem is proven showing that true randomness of input-variables is a property of
algorithms which has to be given up when discrete, finite domains are considered. This
insight has an already known side effect on computation paradigms, namely: The ability
to de-randomize probabilistic algorithms. The theorem uses a canonical type of de-
randomization which reveals dual properties of logical variables and Clause-Sets. A
distinction is made between what we call the syntactical Container Expression (CE) and
the semantic Pattern Expression (PE). A single sided approach is presumed to be
insufficient to solve anyone of the dual problems of efficiently finding an assignment
validating a 3CNF Clause-Set and finding a 3CNF-representation for a given semantic
pattern. The deeply rooted reason, hereafter referred to as The Inefficiency Principle, is
conjectured to be the inherent difficulty of translating one expression into the other
based on a single-sided perspective. It expresses our inability to perceive and efficiently
calculate complementary properties of a logical formula applying one view only. It is
proposed as an alternative to the commonly accepted P≠NP conjecture. On the other
hand, the idea of algorithmically using information deduced from PE to guide the
instantiation of variables in a resolution procedure applied on a CE is as per
[Abdelwahab 2016] able to provide an efficient solution to the 3SAT-problem. Finally,
linking de-randomization to this positive solution has various well-established and
important consequences for probabilistic complexity classes which are shown to hold.

Keywords: Algorithm, Arabic, Logic, Syntax, Semantics, Complexity, Dualities,
3SAT, Inefficiency Principle, P=NP, P=BPP

INTRODUCTION

Regarding the 3SAT-problem and its solution published in [Abdelwahab 2016] we find
it appropriate to further detail the conceptual approach in a mostly informal way and
follow up with its respective epistemological framework.
This paper is organized as follows: After a brief introduction about duality, its
importance, application, and benefits for both, physics and mathematics, a short survey
based on [Fortnow 2009] discusses different approaches to solve the NP problem, their

*Corresponding author: elnaser@makmad.org

Abdelwahab, N.

	

203	

203	

weaknesses and epistemological grounds (if any). Furthermore, a theorem is proven
showing the necessity to drop the hope for true randomness of input-variables in
discrete, finite domain applications. This theorem shows that such an idealistic notion
can lead to inconsistency in our perception of what a computable function is.
The notion of "true randomness" used here (T-randomness) is related to the fundamental
inability of predicting patterns. This notion is different from the formal one used in
mathematics, probability, and statistics where a random variable is an assignment of a
numerical value to each possible outcome of an event space. The latter defines
randomness to exist wherever probability distributions can be assigned to expected
outcomes. The reason we needed to distinguish between those two notions is that they
express fundamentally different phenomena: When a mathematical probability
distribution exists, there is only uncertainty for a specific measurement, given in terms
of the probability for that outcome, while T-randomness is related to a cognitive
boundary, i.e., the non-existence of an algorithmic procedure for predicting pattern
values. The respective theorem shown here uses canonical de-randomization techniques
which reveal pattern natures of variables. In Section III, properties of those patterns are
explored via concrete, straightforward examples. Section IV reformulates the intuitive
intentions behind the belief that P≠NP in a more profound way. A conjecture, hereafter
referred to as Inefficiency Principle, expresses our inability to efficiently translate
complementary Pattern Expression (PE) and Container Expression (CE) properties of a
logical formula into each other using a single view only. Section V describes the formal
approach of [Abdelwahab 2016] in a more detailed manner. It is shown that pattern-
oriented algorithms which always use relevant information from the PE side, succeed in
forming small resolution-trees for the CE side. This section is intended as a guide for
any reader to facilitate understanding proofs and conclusions of [Abdelwahab 2016]. In
Section VI, known exponential lower bounds are re-interpreted according to the new
paradigm, more specifically: The exponential lower bound obtained for FBDD
construction in the blocking sets problem of finite projective planes case. The intrinsic
duality between lines and points retained in the kCNF representation is shown to
dissolve when the 3CNF-expression is used by the proposed Solver in [Abdelwahab
2016]. Eventually, Theorem 3 shows that all lower bounds obtained for FBDDs (using a
common technique), fail the 3CNF-expression test when pattern oriented algorithms of
[Abdelwahab 2016] are used. Finally, Section VII establishes with Theorem 4 some
already expected consequences of P=NP on probabilistic complexity classes.

I DUALITY IN PHYSICS AND MATHEMATICS
Although the definitions of duality are not agreed upon, two types are usually referred
to in modern scientific literature: Physical and mathematical duality. In the
mathematical context, duality has numerous meanings, but is a very pervasive and
important concept in modern mathematics and a fundamental general theme that has
manifestations in almost every area of mathematics. It is commonly understood as
follows:
"A duality, generally speaking, translates concepts, theorems or mathematical structures
into other concepts, theorems or structures, in a one-to-one fashion, often (but not
always) by means of an involution operation: if the dual of A is B, then the dual of B is
A. {….} Many mathematical dualities between objects of two types correspond to
pairings, bilinear functions from an object of one type and another object of the second
type to some family of scalars. For instance, linear algebra duality corresponds in this

Abdelwahab, N.

	

204	

204	

way to bilinear maps from pairs of vector spaces to scalars, the duality between
distributions and the associated test functions corresponds to the pairing in which one
integrates a distribution against a test function, and Poincaré duality corresponds
similarly to intersection number, viewed as a pairing between submanifolds of a given
manifold. From a category theory viewpoint, duality can also be seen as a functor, at
least in the realm of vector spaces. This functor assigns to each space its dual space, and
the pullback construction assigns to each arrow f: V → W its dual f*: W* → V*."1
In physics, duality describes the concept expressing that every phenomenon (e.g.,
elementary particle) exhibits facets of profoundly different views in the same time. It
addresses the inability of classical concepts like "particle" or "wave" for example to
quantum-mechanically describe the physically perceived world or, as Albert Einstein
wrote with regard to physical light:

"It seems as though we must use sometimes the one theory and sometimes the other,
while at times we may use either. We are faced with a new kind of difficulty. We have
two contradictory pictures of reality; separately neither of them fully explains the
phenomena of light, but together they do".

Its epistemological interpretation seems to be rooted in the reciprocal nature of human
cognition and the nature of the physically perceived world [Daghbouche 2012]. How
important is the interaction between physical and mathematical duality in modern
science? The following citation from [Atiyah 2007] describes that:

"In the plane we have points and lines. Two different points can be joined by a unique
line. Two different lines meet in one point unless they are parallel. People did not like
this exception and so they worked hard and realized that if they added some points at
infinity then they got what is called the projective plane in which the duality is perfect:
the relationship between points and lines is perfectly symmetrical. This led to the
classical principle of projective duality, which says that the "dual statement" of a
theorem is also a theorem, so that we can talk about the dual theorem {….} One of the
most exciting things that physicists have discovered is that in QFT there are many
dualities which are not at all easy to understand geometrically. These theories are non-
linear, and so they are not trivial. An important observation here is that if we have a
given classical geometrical picture, then there is some kind of procedure, called
‘quantization’, by which we replace classical variables by operators to produce, with a
bit of guesswork, a ‘quantization’ of the original theory. In this quantized theory there is
a parameter that plays the role of Planck’s constant and which allows us to recover the
classical theory by letting it go to 0. Given a quantum theory, however, it may turn out
that there are several ways in which it can be realized as the quantization of a classical
geometry picture. For example, for a single classical particle we can use the position
observable or the momentum observable (they are actually symmetrical), and so there
are two ways of reaching the same theory from two geometrical points of view. Then
these two points of view are called a duality. This is, of course, a very simple example,
but it turns out that physicists have found many much deeper dualities which exist in
complicated QFTs which link two very different-looking geometric pictures {…} Using
this fantastic duality the physicists were able to calculate the numbers of rational curves
of any degree on very simple examples of algebraic varieties of dimension 3. The

1 Duality (mathematics). (2016, July 16). In Wikipedia, The Free Encyclopedia. Retrieved 09:52, July 17,
2016, from https://en.wikipedia.org/w/index.php?title=Duality_(mathematics)&oldid=730131312

Abdelwahab, N.

	

205	

205	

formulae they got were so spectacular to algebraic geometers that at first they did not
believe them, but eventually they were converted. Then they began a big industry that
has produced many books on mirror symmetry. It is a whole new area in algebraic
geometry that arises out of this particular simple example, just one example of duality in
quantum theory."
The above insights have the following important relevance in the context of the P vs.
NP problem: While the container nature of logical variables, the building blocks of
Clause-Sets, comes (per definition) from their use as means to represent data not
revealing any generically recognizable value structure of this data, the enumeration of
their possible truth-values in a truth table (de-randomization) lends itself to seeing them
exhibiting patterns2. The interplay between those dual sides of the nature of a variable
(hence a Clause-Set) is the basis for the ideas presented here as well as in [Abdelwahab
2016]. Since it is conjectured below that efficient switching between those two sides is
generally not possible without additional information, we call this conjecture The
Inefficiency Principle.

II EFFORTS TO SOLVE THE P VS. NP PROBLEM
Following [Fortnow 2009], the latest serious trial to settle the P vs. NP question is a
long-term algebraic geometry research plan (called Geometric Complexity Theory,
GCT) which may be implemented targeting the separation of the two classes P and NP.
In brief, this plan consists of the following steps3:

− Define a family of high-dimension polygons Pn based on group-representations of
certain algebraic varieties. Roughly speaking, for each n, if Pn contains an integral
point, then any circuit family for the Hamiltonian path problem must at least have
size nlog n on inputs of size n, which implies P≠NP. Thus, to show that P≠NP it
suffices to show that Pn contains an integral point for all n.

− Although it suffices to show that Pn contains an integral point for all n, it is argued
that this direct approach would be difficult and it is suggested instead to first show
that the integer-programming problem for the family Pn is in fact in P. Under this
approach, there are three significant steps remaining: (1) Prove that the LP-relaxation
solves the integer programming problem for Pn in polynomial time; (2) Find an
efficient, simple combinatorial algorithm for the integer programming problem for
Pn, and; (3) Prove that this simple algorithm always answers "yes."

− Since the polygons Pn are algebro-geometric in nature, solving (1) is thought to
require algebraic geometry, representation theory, and the theory of quantum groups.

− Although step (1) is difficult, definite conjectures based on reasonable mathematical
analogies that would solve (1) are provided. In contrast, the path to completing steps
(2) and (3) is less clear.

− This approach has reduced a question about the nonexistence of polynomial-time
algorithms for all NP-complete problems to a question about the existence of a
polynomial-time algorithm (with certain properties) for a specific problem.

2 Combinations in a combinatory space of discrete variables lose their non-predictive order the moment
they get enumerated in a truth table. This has the effect that involved variables lose their T-randomness
property as well as shall be seen further below.
3 All efforts which are classified today under what is called "Quantum Computing" may be also
understood as serious trials to use known physical processes/tools/intuitions to solve the NP problem.

Abdelwahab, N.

	

206	

206	

This plan is one in a long series of attempts to prove P≠NP of which many failed for the
following reasons (c.f. [Fortnow 2009]):

Diagonalization. Diagonalization requires simulation and we don't know how a fixed
NP machine can simulate an arbitrary P machine. Also, a diagonalization proof would
likely relativize, that is, work, even if all machines involved have access to the same
additional information. It has been shown that no relativizable proof can settle the P vs.
NP problem in either direction: Any diagonalization argument for P≠NP could trivially
be modified to show that P≠NP relative to any oracle. But we already know of specific
oracles for which P=NP and of other specific oracles for which P≠NP. Accordingly, any
diagonalization argument would have to contradict one or the other of these.
Complexity theorists have used diagonalization techniques to show that SAT cannot
have algorithms that use both, a small amount of time and memory, but this is a long
way from P≠NP.

Circuit Complexity. To show P≠NP it is sufficient to show some -complete problem
cannot be solved by relatively small circuits of AND, OR, and NOT gates (the number
of gates bounded by a fixed polynomial in the input size). In 1984, it has been shown
that small circuits cannot solve the parity function if the circuits have a fixed number of
layers of gates. In 1985, it was also shown that the NP-complete problem of finding a
large clique does not have small circuits if one only allows AND and OR gates (no
NOT gates). Later it was shown that those techniques would fail if one allows NOT
gates. A notion of "natural" proofs was developed and gave evidence that our limited
techniques in circuit complexity cannot be pushed much further. This can be shown
assuming a widely believed conjecture on the existence of pseudorandom functions.

Proof Complexity. Resolution is a standard approach to proving tautologies of DNFs by
finding two clauses of the form (ψ1 AND x) and (ψ2 AND NOT x) and adding the clause
(ψ1 AND ψ2). A formula is a tautology exactly when one can produce an empty clause
in this manner. In 1985, it was shown that tautologies that encode the pigeonhole
principle do not have short resolution proofs. Since then complexity theorists have
shown similar weaknesses in a number of other proof systems including cutting planes,
algebraic proof systems based on polynomials, and restricted versions of proofs using
the Frege axioms. But to prove P≠NP it has to be shown that tautologies cannot have
short proofs in an arbitrary proof system. Even a breakthrough result showing
tautologies don't have short general Frege proofs would not suffice in separating NP
from P.

The latest proof making headlines claiming that P≠NP is attributed to [Deolalikar 2010].
One of the objections to the proof is the following:

"I have posted what I think is a definitive objection to any proof separating P from NP
that relies on the structure of the solution spaces of SAT, and tries to argue that no
problem in P has this kind of solution space. The basic idea is that every satisfiable
formula’s solution space can be mapped to the solution space of a formula satisfied by
the all-zeroes assignment, which is always trivially solvable. This map exactly preserves
the number of variables and all distances between satisfying assignments. It is of course
non-uniform, but that doesn’t matter: for every infinite collection of satisfiable formulas
there’s an infinite collection of formulas satisfied by all-zeroes which has exactly the
same solution space structure." [Williams 2010]

Abdelwahab, N.

	

207	

207	

As per [Aaronson 2010], there are eight signs which give the impression that a P≠NP
proof is wrong. Of those eight signs we have selected the following five for citation:

1. The author can’t immediately explain why the proof fails for 2SAT, XOR-SAT, or
other slight variants of NP-complete problems that are known to be in P.
Historically, this has probably been the single most important "sanity check" for
claimed proofs of P≠NP.

2. The proof doesn’t "know about" all known techniques for polynomial-time
algorithms, including dynamic programming, linear and semi definite programming,
and holographic algorithms.

3. The paper doesn’t prove any weaker results along the way: for example,
P≠PSPACE, NEXP⊄P/poly, NP⊄TC0, SAT requires super linear time. P vs. NP is a
staggeringly hard problem, which one should think of as being dozens of steps
beyond anything that we know how to prove today. So then the question arises:
forget steps 30 and 40, what about steps 1, 2, and 3?

4. Related to the previous sign, the proof doesn’t encompass the known lower bound
results as special cases. For example: where inside this proof are the known lower
bounds against constant-depth circuits? Where’s Razborov’s lower bound against
monotone circuits? Where’s Raz’s lower bound against multi-linear formulas? All
these things (at least the uniform versions of them) are implied by P≠NP, so any
proof of P≠NP should imply them as well. Can we see more-or-less explicitly why it
does so?

5. The paper lacks a coherent overview, clearly explaining how and why it overcomes
the barriers that foiled previous attempts.

What about P=NP proof claims? To our knowledge, there are no serious comparative
studies relating them, i.e., linking approaches and listing positive and negative sides of
each one, lessons learned, etc.4 As the consensus stands today: Many researchers refuse
even to read such attempts. Most of those approaches present constructive algorithms5
which have the following flaws6:

1. Focusing on a known NP complete problem: They mistakenly present solutions to
special cases of P vs. NP or algorithms working only under certain assumptions
which cannot be generalized.

2. Assuming some constructions used in their algorithms to be trivially solvable which
doesn’t turn out to be the case after thorough investigation. In fact: Many new
solution approaches tend to be very tricky in "moving" the exponential behavior
from one part of a known algorithm to an unintentionally hidden part of a new one.

3. And most importantly in the context of this paper: Positive solution attempts,
similar to their negative counterparts (c.f. 5. above), don’t give an intuitive
explanation7 for either the generic exponential behavior noticed using "usual"

4 except for mere listings of selected papers and their refutations if existent as presented in the Web-page,
e.g.: https://www.win.tue.nl/~gwoegi/P-versus-NP.htm
5 To our knowledge only few are non-constructive in nature and don’t exceed a couple of pages.
6 We are expressing drawbacks without providing examples to avoid firstly going into unnecessary length
and secondly criticizing the work of specific known or unknown colleagues who surely deserve for their
courage, time, and effort invested in such publications a lot of respect and acknowledgment for integrity
and dedication.
7 By intuitive we mean an explanation which can be rooted epistemologically.

Abdelwahab, N.

	

208	

208	

Figure 1

Universal Algorithm:
- Infinite Structures/Domains
- Independent variables

Mathematics

Universal Algorithm?
- Finite Structures/Domains
- Independent variables?

Physics

1

2

algorithms or the special efficient behavior of the newly proposed algorithm.
Known exponential lower bounds for special cases are not challenged and/or re-
interpreted according to the new approach. A scientific theory should always be able
to answer the question: "Why?" in the most direct and clear terms, especially when
it is confronted by a consensus against its fundamental assertions.

Getting back to the mainstream opinion, we think that it is valid to question the
following assertion:

Conjecture 1: No universal, uniform algorithm8 or non-uniform family of algorithms
can be found which efficiently solves all instances of an NP-complete problem,
therefore: P≠NP.

Independent of any epistemological debate, the here exposed critics concern our
perception of what a Universal, Uniform Algorithm (short: AU) really is9 . Historically,
an algorithm is a construction perceived for mathematics which paved its way into the
physical world in terms of computing machines interacting with- and constituting
algorithmically processed aspects of the physically real world (Fig. 1):

What happened to the concept of an AU during the transition from mathematics to
physics? In our opinion, one aspect deserves attention: Infinite, countable or
uncountable domains over which variables can range became finite, because real
devices needed measurable approximations. In finite model theory finite structures
(rather than finite domains) are the focus of investigation. It has been shown there that
well-known properties of First Order Logic such as compactness for example, are lost
when finite models are drawn [Vaeaenaenen 1993]. We go here a level deeper and show
that even for Propositional Logic (PL) it suffices to use discrete finite domains to lose
T-randomness of involved input-variables and render extreme notions of universality, as
the ones usually used to solve NP-complete problems, inappropriate. The positive side
of this discovery shall be the clue for the solution presented in [Abdelwahab 2016]. First
some important definitions and a principle which shall be used further down:

8 Universal, Uniform Algorithm: A generic, recursive way to solve all instances of a problem which is
independent of the choice of a particular domain and/or its representation (i.e., universality not in the
sense "simulating other arbitrary algorithms"). It is safe to talk about computable functions as well,
because of the Church-Turing thesis (c.f. [Church–Turing thesis. (2016, August 25). In Wikipedia, The
Free Encyclopedia. Retrieved 10:31, August 26, 2016, from
https://en.wikipedia.org/w/index.php?title=Church%E2%80%93Turing_thesis&oldid=736126870]).
9 Non-uniform algorithms are not subject to any investigation of this paper.

Abdelwahab, N.

	

209	

209	

Definition 1: Consider two discrete random variables X and Y defined over a sample
space S. We say that X and Y are stochastically independent if their probabilities fulfill:
P(X∈A,Y∈B)=P(X∈A)P(Y∈B), for all sets A and B.

Definition 2: A discrete variable X is called computationally undetermined by variable
set Y, if there is no algorithm/computable function f such that X=f(Y1,Y2,Y3,..Yn), where
Yi ∈ Y is a discrete input-variable and any Yi<>X10. Otherwise X is called
computationally determined by Y. If there is no variable set Z such that X is
computationally determined by Z, then X is said to be computationally indeterminate.

Turning our attention to what classic11 AUs are in the extremist's point of view
(universal view)12:

1- The unrestricted use of input/output variables in the following ways:
a. We allow input-variables to range over ANY domains including those defined

by the function itself.
b. We allow input-variables to range over ANY values in those domains.
c. Any finite computation using input-variables and yielding output variables is

repeatable13.
d. Input-variables may be computationally dependent, independent or

indeterminate14. We call this condition: Container Property.

10 The condition Yi<>X is necessary to avoid circular definitions.
11 Classical AUs: deterministic or non-deterministic, but always neither randomized nor probabilistic.
Here are informal definitions of the latter two types: "A randomized algorithm is an algorithm that
employs a degree of randomness as part of its logic. The algorithm typically uses uniformly random bits
as an auxiliary input to guide its behavior, in the hope of achieving good performance in the "average
case" over all possible choices of random bits. Formally, the algorithm's performance will be a random
variable determined by the random bits; thus either the running time, or the output (or both) is random
variables. One has to distinguish between algorithms that use the random input to reduce the expected
running time or memory usage, but always terminate with a correct result (Las Vegas algorithms) in a
bounded amount of time, and probabilistic algorithms, which, depending on the random input, have a
chance of producing an incorrect result (Monte Carlo algorithms) or fail to produce a result either by
signaling a failure or failing to terminate. In the second case, random performance and random output, the
term "algorithm" for a procedure is somewhat questionable. In the case of random output, it is no longer
formally effective. However, in some cases, probabilistic algorithms are the only practical means of
solving a problem In common practice, randomized algorithms are approximated using a pseudorandom
number generator in place of a true source of random bits; such an implementation may deviate from the
expected theoretical behavior." [Randomized algorithm. (2016, August 30). In Wikipedia, The Free
Encyclopedia. Retrieved 10:42, September 1, 2016, from
https://en.wikipedia.org/w/index.php?title=Randomized_algorithm&oldid=736945906]
12 Extremist because it can be argued that one or more of the postulated conditions a.-d. may be relaxed
as shall be seen further below.
13 In probabilistic machines for example, it is easy to design algorithms/functions that do not always give
the same output regardless of the random branch of computation that is followed.
14 To explain why this last property is, ideally, allowed for input-variables of a Universal Algorithm, in
the classical sense: Suppose f(X=a,Y=b) calculates the value Z=c in the best possible way. We want to
make sure that this solution is also the most generic, data-independent one so that it can be used for all
other possible combinations of values of X, Y. If a, b are functionally dependent (i.e., we can calculate
them from each other), then f could use this dependency implicitly (as a sub-routine of f for example) to
create an algorithmic "short-cut" to the solution Z=c which might not work for other values of X, Y.
Although this is allowed: We tend to enforce writing f in such a way to discard all solutions using special
properties of values a, b (including any structural information which may be found either in a or in b) or

Abdelwahab, N.

	

210	

210	

2- Studies in the foundations of mathematics have shown that point 1-a. above is the
cause for intrinsic inconsistency and known anomalies. They lead to Russell’s
theory of types [Whitehead 1963] as well as to the incompleteness results of Goedel.
Therefore, this condition has been relaxed to prohibit the use of domains/types
which are defined by the function in question.

3- In practical terms we call, e.g., the function
Fakt(N): -
 If N=1 return 1
 Else return N*Fakt(N-1)

an universal calculator of factorial numbers, because the input-variable N can
(ideally) span all values of the set N (condition 1-b.), the infinite set of natural
numbers, and any value of N when given to Fakt results always in the same
computed output (condition 1-c.). On the other hand, when we talk about the
Boolean function XOR(X, Y), we mean by its universality something more: X,Y are
preferably computationally independent, i.e., values of X,Y may be undetermined by
other variables (ideally T-random) and this guarantees that our definition of XOR, at
least in the input-part, is computationally the most abstract one possible. The
variable whose values we can (and must) determine, per definition, is the one
holding the value for the XOR function itself.

Let us more formally consider the question of computational independence of input-
variables in an AU. The following principle is trivially valid15:

Principle 1: Discrete T-random variables are computationally indeterminate, but not
necessarily stochastically independent of other variables.

Proof: We show that discrete, computationally determinate variables cannot be
T-random. We also show that the concept of computational independence is different
from that of stochastic independence16. First: Suppose X is a computationally
determinate variable, i.e., there is a function f and a set of discrete variables
Y={Y1,Y2,…Yn} such that X=f(Y1,Y2,Y3,..) and X<>Yi for any i, meaning the variable set
Y determines X. T-randomness is the lack of pattern or predictability. A T-random
sequence of events, symbols or steps has no order and does not follow an intelligible
pattern or combination [Randomness. (2016, August 30)]. Individual, T-random events
represented by T-random variables are therefore by nature unpredictable and thus
contradicting the essential property of outputs of what we classically call AU, namely:
Predict- and/or Repeatability (function f). Moreover, functions assign per definition one
output value with probability 1 to any input value. Accordingly, X cannot be T-random.
Second: Suppose X is not determined through Y by any f. It still can be the case that
there is a relation R such that X=R(Y). Below Fig. 2 shows such a typical case. If two

assumptions about their computational interdependency. This practically means that we are assuming that
no subset Z of input-variables necessarily determines any single input-variable. Even better: In the ideal
case we prefer to consider any input-variable to be computationally undetermined by any possible
variable set (i.e., to be indeterminate), since this would underline the "universal" nature of our code. We
treat X, Y therefore as mere containers of values of the respective domains which is the most abstract
notion of computational independence possible and is sufficiently achieved, for the case of discrete
domains, using the concept of T-randomness as seen in Principle 1.
15 It relates to the intuitive notion of unpredictability.
16 Obviously in classical AUs we are concerned in the first place with computational rather than
stochastic properties of their components.

Abdelwahab, N.

	

211	

211	

Figure 2

b

Y

2
3

1
a

d
c

X

consecutive experiments are conducted with outcomes r∈Y,s∈X, forming a tuple (r,s)
running over the sample space S={{1,a}{1,b}{1,c}{1,d}{2,a}{2,b}{2,c}{2,d}{3,a}
{3,b}{3,c}{3,d}}, where R={{1,a}{1,c}{2,b}{3,d}}, then random variables Y=’r is the
first element of a tuple in R’ and X=’s is the second element of a tuple in R’, are
stochastically dependent. To see this it is sufficient to realize that for 1∈Y P(1)=1/2*1/3
and for a∈X P(a)=1/4*1/3, but P(1,a)=1/12 which is not equal to P(1)P(a) as required
by Definition 1. In fact, one condition which makes X,Y stochastically independent is R
being equivalent to S, i.e., R not expressing any specific relational intention. On the
other hand, if f exists and is bijective, then it is easily seen using a similar argument that
X and Y are stochastically independent. Accordingly, indeterminate, discrete T-random
variables can be stochastically dependent while determinate ones may be stochastically
independent.
(Q.E.D.)

Linking randomness to computation is not new. Since Kolmogorov complexity was
introduced in 1965, the amount of randomness in a value series is attributed to how
small a program generating this series can be written. A series is deemed random
(K-random or computationally random) if the smallest algorithm capable of specifying
it to a computer has about the same number of bits of information as the series itself.
This is an indication of the fact, that no short, algorithmically expressible rule can be
found which facilitates the generation of such a series [Chaitin 1975]. Comparing this
notion to what is presented here we realize that Principle 1 is more idealistic and calls a
value series random (T-random), if its digits cannot be determined by any computable
function whether efficient or not. If f in Definition 2 is required to be also efficient, this
notion is similar to the one defined using Kolmogorov complexity. We will see below
that both notions of randomness can be shown not to hold when finite domain
applications are considered.

Let us formalize the above more precisely with the following definitions:

Definition 3: Let Vars={X0,X1,X2,…} be the set of all discrete variables,
Domains={D1,D2,…} the set of all possible finite or infinite domains of variables,
Elements= {e1,e2,e3,…} the set of all elements of all such domains, function Val:Vars=>
Elements mapping variables to their values in their respective domains, then:

X∈Vars is computationally indeterminate or just indeterminate if there are no
subsets S ⊆ Vars and no classical, i.e., non probabilistic, computable functions
f:Elementsn => Elements such that for any possible values of variables:
Val(X)=f(Val(Y1), Val(Y2), Val(Y3),…,Val(Yi).., Val(Yn)), where Y1,Y2,Y3,..Yi, ..,
Yn∈S and any Yi<>X, otherwise it is said to be computationally determined by S.

Abdelwahab, N.

	

212	

212	

Definition 4: An n-ary classical, computable function f (X0,X1,X2,….Xn-1), Xi ∈Vars, is
called universal if: 1. any Xi maybe K-random, hence not efficiently determined or

 T-random, hence indeterminate (per Principle 1)
2. any Xi may assume any value in its domain
3. its computation is repeatable yielding always the same result

If a classical, computable function doesn’t satisfy Condition 1, i.e., no T- or K-random
variables are admitted as inputs, then it is called Weakly Universal (WU).

Theorem 1 is then straightforward17:

Theorem 1: Any finite set S={X1,X2,X3,…,Xi,…} ⊆ Vars whose members span over
finite domains can contain neither T-random nor K-random variables.

Proof: A canonical, classical, computable function f fulfilling Definition 3 can be
shown to always exist. Let D1×D2×…×Dn be the natural combinatory space S of the set
S. As any Di is a discrete, finite domain, we can always build S in finitely many steps
enumerating in the same time each combination. S ={[e10,e20,…en0][e11,e21,…en1],….
[e1a,e2b,…enz]}, where eij is the j’s element of Di. For example if
D1={A,B},D2={X,Y,Z},D3={I,J,K,L} then S is given in the following Table 1:

X1 X2 X3 Enum1 Enum2
A X I 10 1
A X J 22 2
A X K 5 3
A X L 7 4
A Y I 13 5
A Y J 6 6
A Y K 17 7
A Y L 18 8
A Z I 19 9
A Z J 20 10
A Z K 11 11
A Z L 21 12
B X I 14 13
B X J 1 14
B X K 2 15
B X L 3 16
B Y I 8 17
B Y J 12 18
B Y K 15 19
B Y L 24 20
B Z I 9 21
B Z J 23 22
B Z K 16 23
B Z L 4 24

17 It is straightforward because it uses well-known "de-randomization by enumeration" or "truth table"
techniques [Vadhan 2012] to show validity of the trivial statement: One can only de-randomize objects
which are neither fundamentally- nor computationally random.

Table 1

Abdelwahab, N.

	

213	

213	

The last two columns of this table represent two different ways of enumeration showing
two different bijective functions F1, F2: Enum1=F1(X1,X2,X3), Enum2=F2(X1,X2,X3). Both
of them make all Xis, i<=3, determined by sets {Enum1} and {Enum2} respectively,
since bijections can always be reversed. For example: X1=F1

-1(Enum1)↓1 where (…)↓i
stands for the projection of the resulting row on position i. What is the difference
between F1 and F2? F1 seems not to follow any clear pattern of choice in the selection of
the next row while F2 represents the canonical, linear way of enumeration of
combinations. Note that combinations are already sorted in ascending order according to
the precedence of elements in domains D1, D2 and D3. Different element precedence
choices in the domains may lead to different enumeration possibilities. Fig. 3 shows the
distribution of combination values for both enumerations.

Figure 3

Projecting those two enumerations on variable X2 yields the following Figures 4 and 5
which reveal what we call the Pattern Property of a variable18.

Figure 4

18 Substituting for the values X,Y,Z: 0,1,2 respectively.

Abdelwahab, N.

	

214	

214	

Figure 5

The above figures show a clear pattern for X2 in F2. We could similarly draw patterns
for X1, X3 in F2. On the other hand: F1 doesn’t lend itself to the same perception. We call
enumerations which generate pattern properties for variables Harmonizing
Enumerations (HE). Can this insight have any effect on the way we compute F1 and F2?
The answer is: Yes. While we need to store the whole table to be able to determine the
value of any variable from the row number in the case of F1, we can avoid this by
implementing F2 in the following efficient way: Let EIndex be a variable holding the row
number given by Enum2, VIndex be holding indices of variables, CardDi stands for the
cardinality of the discrete domain Di. The n+2ary function F2: NxNx…xN=>Elements
can be defined as follows:

F2(EIndex, VIndex, CardD1, CardD2,CardD3,…. CardDn) =
if (VIndex==LastVarIndex)19

 {
 If (Mod(EIndex, TotalElements(VIndex))<>0)

F2=ValueInD(VIndex,Mod(EIndex,TotalElements(VIndex))
Else

 F2=LastValueInD(VIndex)
 }
 Else
 {
 Quotient = Div(EIndex, PacketLength(VIndex)/ TotalElements(VIndex))
 Rest = Mod(EIndex, PacketLength(VIndex)/ TotalElements(VIndex))
 If (Quotient== 0)
 F2=FirstValueInD(VIndex)
 Else
 If (Rest == 0)
 F2=ValueInD(VIndex, CountValues(VIndex, Quotient))
 Else

F2=ValueInD(VIndex, CountValues(VIndex, Quotient)+1)
 }

Where LastValueInDi is a function N => Elements which gives back the last discrete
value in a domain Di for a variable Vi. For example LastValueInD2=Z. Similarly for
FirstValueInDi. ValueInDi (<count>) is also an N=> Elements function which gives
back the value number <count> in any Di. ValueInD3(2) = J for example. TotalElements

19 Variables are aligned from left to right in ascending order of the number of discrete values in their
relative domains, the last variable domain to the right being the one with the most values.

Abdelwahab, N.

	

215	

215	

for VIndex has the obvious meaning. PacketLength returns an integer indicating the
number of rows which need to be filled with all values of a given variable according to
its position. Here a recursive definition of PacketLength

PacketLength(VIndex):-
if (Index = LastVarIndex)
 PacketLength= TotalElements(VIndex)
Else
 PacketLength= TotalElements(VIndex) * PacketLength(VIndex+1)

E.g.: PacketLength(X3)=4 while PacketLength(X1) = 2*PacketLength(X2) =
2*3*PacketLength(X3)=2*3*4=24. Let us see if we can indeed calculate the value for
any Variable Vi just from its index i and the EIndex: F2(13,2)=ValueInD2(1)=X which is
right (compare with table above). F2(10,2) will yield Z, the last value of D2 which is
also correct. F2(1,3)=I, the first value of D320. It is easily seen, that F2

-1 can be
efficiently calculated as well. Note that while F1 is sufficient to show contradiction with
T-randomness of Principle 1, F2 and/or its components can be used to show the same for
K-randomness based on Kolmogorov complexity, since any value series of a discrete
variable Xi may be generated (after application of HE) using, for example, the following
algorithm whose size is much smaller than any solution requiring storing the whole
truth table:

Generate(VIndex, CardD1, CardD2,CardD3,…. CardDn):-
 TotalNumberOfCombinations= CardD1 x CardD2 x CardD3,…. CardDn

 i= 1, j=1
 CurrentValue= FirstValueInDomain(DIndex)
 RepetitionCount= PacketLength(VIndex)/CardDIndex
 While i<= TotalNumberOfCombinations
 If j<=RepetitionCount
 Result=Result+Curren-tValue
 Else

CurrentValue= NextValueInDomain(DIndex)
j=1
Result=Result+CurrentValue

 j=j+1, i=i+1
 Return Result

(Q.E.D.)

The main assertion of Theorem 1 is therefore: Discrete variables in finite domains can
neither be truly, non-predictively nor computationally random because their natural
combinatory space can always be enumerated using an HE defining an order between
possible combination values. This order, when known, efficiently generates a value
pattern for each variable which becomes then a characteristic second nature.

The following story is used as an intuitive, informal illustration:

"Leila and Qu’ais were lovers whose fate was sealed when Qu’ais had to travel
to a far place, away from his beloved princess. In this far place time didn’t play
any role. They agreed before he left to send each other encrypted poetry
expressing their feelings. Leila was not free to send her beloved one ordinary
messages which might be intercepted by her family. So they had to think of
something else. As poetic words of love are finite in number, they ordered them

20 The reader is encouraged to go through all combinations in the table to verify that F2 is indeed
calculating the indicated values of the variables Vi.

Abdelwahab, N.

	

216	

216	

in categories, then made a long list of phrases and enumerated those phrases.
Leila was always under observation by her family, so they needed to agree also
on an adequate way to express them. They chose flowers whose colors could
easily be interpreted as words. Leila started to acquire all and every type of
flowers she could get and place them every day in a specific place in front of her
window. Each flower representing a poetic word of one category, the whole
bouquet would then form a phrase. She would choose flowers having harmonic
sizes with pure, explicit colors as if she herself was making rhymes. For an
external observer she was placing colored flowers conveying random feelings.
For her and her beloved Qu’ais it was much more!"

Take now the position of M, a smart observer and member of her family, who was
suspecting that his/her relative didn’t get over her love story. When could he/she discard
the hypothesis that Leila was only sending random messages? If he/she could prove that
whatever Leila was sending was from an enumerated list of combinations, i.e., single
flower colors in specific positions were repeated in the same order after a certain cycle
length for example, then he/she would know that it probably reveals some sort of
encoding. Of course this would only work if Leila and Qu’ais kept sending messages in
the enumeration order. On the other hand: What if Leila and Qu’ais wanted to avoid
sending phrases revealing content and agreed to communicate only row numbers of
desired phrases, which function would they have preferred: F1 or F2? As Qu’ais didn’t
care in his world about time, any choice would have been valid for him. This couldn’t
have been appropriate for Leila, because of the needed combinatory space in case of F1.
They probably would have used F2, the one exploiting pattern properties of variables.

As anticipated it follows from Theorem 1:

Corollary 1: Algorithms whose input-variables span over discrete, finite domains are
only weakly universal (WUA).

Proof: Follows immediately from Theorem 1 and Definition 4.
(Q.E.D.)

Abdelwahab, N.

	

217	

217	

Although conceived for classical algorithms, Theorem 1 and Corollary 1 reproduce
questions and facts related to probabilistic computation:

1. If we know that we can always de-randomize, i.e., predict and determine
mathematically input-variables of probabilistic algorithms (c.f. fn. 11 for their
informal definitions) when they are used in finite domains, what exactly do we
mean by their randomness? The commonly accepted answer to this question is: We
mean what is called pseudo-randomness, i.e., processes which only appear to an
observer to be random, but which are not21. Theorem 1 shows that we can mean
neither T- nor K-randomness. Recall that what is shown here is not related to the
controversy about whether T-randomness exists or not22, but to the fact, that
if/when it exists and is allowed to be included in our definition of algorithms in
finite domain applications, it leads to an inappropriate notion of computability
allowing us to calculate/predict/determine an indeterminate quantity.

2. In the same line: Theorem 1 suggests that probabilistic definitions of BPP and
related complexity classes only reflect statistical randomness, i.e., neither T- nor K-
randomness. In that case, what shall be the added value of this randomness over
non-determinism or determinism? An intuitive answer to this question is: Maybe
none. In fact, as shall be seen again below, one known way to prove that P=BPP is
by de-randomizing and showing that the number of random bits n used by any BPP
algorithm can be reduced to become O(log (n)) [c.f. Vadhan 2012]23.

3. Randomness vs. Hardness efforts use the presumable intractability of some
functions to generate good pseudo random bits. The idea is that any one-way
permutation24 can be used to construct pseudo random bit generators producing
strings which can fool every polynomial time computation. This assumes that those
functions are (for small circuits) not only intractable, but also not approximately
attainable. Given such a "hard" function it is easy to generate bits which look like
random from the perspective of any small circuit [Nisan 1994]. Those bits are then
neither T- nor K-random.

21 c.f. Pseudorandomness. (2015, December 20). In Wikipedia, The Free Encyclopedia. Retrieved 11:08,
July 4, 2016, from https://en.wikipedia.org/w/index.php?title=Pseudorandomness&oldid=696096676]
22 In physics: If outcomes can be determined (by hidden variables or whatever), then any experiment will
have a result. More importantly, any experiment will have a result whether or not you choose to do that
experiment, because the result is written into the hidden variables before the experiment is even done.
Like the dice, if you know all the variables in advance, then you don’t need to do the experiment (roll the
dice, turn on the accelerator, etc.). The idea that every experiment has an outcome, regardless of whether
or not you choose to do that experiment is called "the reality assumption", and it should make a lot of
sense. If you flip a coin, but don’t look at it, then it’ll land either heads or tails (this is an unobserved
result) and it doesn’t make any difference if you look at it or not. In this case the hidden variable is
"heads" or "tails", and it’s only hidden because you haven’t looked at it. It took a while, but hidden
variable theory was eventually disproved by John Bell, who showed that there are lots of experiments that
cannot have unmeasured results. Thus the results cannot be determined ahead of time, so there are no
hidden variables, and the results are truly random. That is, if it is physically and mathematically
impossible to predict the results, then the results are truly, fundamentally random. [Physicist 2009]
23 This hasn’t been successfully done until this day although it is widely believed that P=BPP. The
technique of reducing random seed bits seems to only work for some problems (like the MAX-CUT),
where pair wise independence of variables is sufficient to produce fast approximation algorithms
[Rubinfeld 2012].
24 i.e., permutations which are presumed to be calculated much easier than their inverse

Abdelwahab, N.

	

218	

218	

4. Although it is known that if P=NP then P=BPP [Goldreich 2011], little effort seems
to have been spent in understanding the effect of intelligent enumerations/de-
randomizations (such as HE) on the P vs. NP question itself. More specifically the
following may be asked: Can an intelligent, canonical enumeration (such as HE)
help solve the P vs. NP question by revealing generic structure in an NP complete
problem showing indirectly that P=BPP?

In the following, we will answer this question informally while a formal implementation
of our answer can be found in [Abdelwahab 2016]. Noting that Theorem 1 as well as
Corollary 1 have validity for all attempted solutions of NP-complete problems, we find
that:

1. An HE's side effect is the creation of patterns for all input-variables of any NP
complete problem. Thus in any such problem we can safely assume that
variables represent truth patterns like the ones depicted in Fig. 4.

2. Assuming truth patterns in input-variables of NP complete problems has the
following important consequence: It defines a canonical order between
variables (as shall be seen in the examples below). This order is determined by
what [Abdelwahab 2016] calls Pattern Length. Furthermore: The order enables
sorting conditions on Clause-Sets, the most relevant one being the linear order
(l.o.) condition.

3. On the other hand: Finding an optimal order between variables facilitating the
construction of minimal BDDs is (in itself) a known NP complete problem
[Tani 1993].

4. It is then sufficient to show that any optimal order of variables sought for the
construction of minimal BDDs necessitates l.o. conditions on all Clause-Sets of
a resolution tree (Lemma 9 in [Abdelwahab 2016]) and that such resolution trees
have a polynomial number of unique nodes in the worst case (Lemma 13). This
is the core of proofs and theorems which use w.l.o.g. FBDDs25.

25 More precisely, it is shown that FGSPRA+, the pattern oriented 3SAT core-Solver-algorithm
constructing FBDDs: 1- always generates a polynomial number of nodes in a polynomial amount of steps
(in M, the number of clauses). All of them possessing linearly ordered Clause-Sets 2- always
approximates MinFBDD, the problem of constructing the minimal FBDD for a Boolean function, to a
constant factor of 2.

Abdelwahab, N.

	

219	

219	

III EXPLORING PATTERN PROPERTIES
The majority of algorithmic attempts to solve NP complete problems were actually, as
per Corollary 1, weakly universal. Moreover: Although only weakly universal, they
were viewing variables as mere containers. In this section, an attempt to solve 3SAT
using pattern properties of variables only is shown to fail. Its failure shall be the basis
for insights leading to the inefficiency principle formulated as a conjecture in the next
section. But first, Fig. 6 shows a complete, simple example of a 3CNF Clause-Set26 and
its dual nature. The function depicted shows XOR(X0,X1,X2) enumerated using Truth
Table 2. The reader may verify the correctness of the patterns for all clauses given
below27:

X0 X1 X2 X1 OR X2 X1! OR X2 X1! OR X2!
0 0 0 0 1 1
0 0 1 1 1 1
0 1 0 1 0 1
0 1 1 1 1 0
1 0 0 0 1 1
1 0 1 1 1 1
1 1 0 1 0 1
1 1 1 1 1 0

	

26 Xi! stands for not(xi)
27 Clause Patterns are simply bit-or results of single variable patterns. Note that not all patterns depicted
in Fig. 6 are shown in the table.

Table 2

Abdelwahab, N.

	

220	

220	

Figure 6: dual natures of 3CNF Clause-Sets	

Abdelwahab, N.

	

221	

221	

Important remarks related to Fig. 6:

1. Variables Xi differ in their pattern lengths by power-of-two factors. They can be
thought to represent different harmonic occurrences of one base pattern (e.g.,
PatternLength(X1)=2*PatternLength(X2) etc.).

2. One Clause-Set can be assigned only one exact pattern. One pattern may be
shared by many Clause-Sets which are logically equivalent.

3. Clause-Sets/Patterns may be organized in trees whose nodes are countable when
resolution procedures are used to gradually instantiate literals.

4. All variables in all nodes are ordered as per Table 2, i.e., from left to right in
decreasing pattern length. This is an important premise of the l.o. condition.
General 3CNF-formulas are usually not l.o.. Such property can always be
attributed to n-ary parity functions as shall be discussed in below explanations of
Section VI.

Now suppose S={{x0,x1!,x3}{x0!,x2}{x0}{x2!,x3!}{x3}}. We will attempt to solve S using
continuous functions only. If Xi is assumed to possess a truth pattern, then it can be
modeled by a square-wave28. Fig. 7 shows patterns reflecting all variables and clauses.
S is unsatisfiable.

x0	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
x1	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
x2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
x3	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
value	=3	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
value	=2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
C1=x0	OR	x1!	OR	x3	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
value	=3	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
value	=2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
C2=x0!	OR	x2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
value	=3	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
value	=2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
C3=x2!	OR	x3!	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
value	=3	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
value	=2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
C1	&	C2	&	C3	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

28 Using Fourier expansion with cycle frequency f over time t, we can represent an ideal square-wave
with an amplitude of 1 as an infinite series of the form:

c.f. Square wave. (2016, July 31). In Wikipedia, The Free Encyclopedia. Retrieved 09:29, August 1,
2016, from https://en.wikipedia.org/w/index.php?title=Square_wave&oldid=732329468

Figure 7

Abdelwahab, N.

	

222	

222	

There may be many ways to express the pattern nature of variables and try using this
nature alone to solve the satisfiability problem. One could for example use simple
trigonometric functions. Here, we have chosen w.l.o.g. to express any variable Xi using
the formula: SquareWave[c*x]*0.5+0.5 and Xi! using: SquareWave[c*x]*-0.5+0.5,
where factors 0.5 are necessary to keep the square-wave positive, c is the frequency of
the wave. Then, solving the above S is equivalent to solving the inequality:

((SquareWave[x]*0.5+0.5)+(SquareWave[2*x]*-0.5+0.5)+(SquareWave[8*x]*0.5+0.5))
* ((SquareWave[x]*-0.5+0.5) + (SquareWave[4*x]*0.5+0.5))
* (SquareWave[x]*0.5+0.5)
* ((SquareWave[4x]*-0.5+0.5) + (SquareWave[8*x]*-0.5+0.5))
* (SquareWave[8x]*0.5+0.5) > 0

In [Ahmadi 2012] it is shown that the related problem of deciding local asymptotic
stability of trigonometric vector fields is strongly NP hard. This result means that even
in the continuous spectrum we seem not to be able to efficiently recognize positive
values of a truth pattern without checking exponentially many points. In reality, there
might be much less to check if sub-patterns are always repeated like in the case of:
C3={x2! OR x3!} in Fig. 7 for example, where sub-pattern: "0112" is constantly
repeating. How do we count unique sub-patterns in a pattern? This doesn’t seem to
work as well, using the pattern view only, without recurring through the whole pattern
length.

IV THE INEFFICIENCY PRINCIPLE
Definition 5: Let S be a Clause-Set. Its 3CNF form is called: Container Expression of S
(CES), while its pattern form is called Pattern Expression of S (PES). PES is a string
representing all possible assignments which satisfy S and may be formed using the
following canonical brute force WUA (cWUA):

 Inputs: CES
Outputs: PES
1- Create the truth table for all variables in CES,
2- Form PES from left to right

a. For all combinations c in the truth table:
i. Substitute values of c for literals in S

ii. If S is satisfied write "1" in the PES string else write "0"
3- Return PES

For any S: PES exists iff CES exists (per definition). They are called Dual Images of S29.
∀Ci∈S: The Pattern Expression of Ci shall be called PECi and may be obtained using the
above algorithm putting S=Ci.30 A sub-pattern sp⊆PES is said to satisfy a sub-formula sf
⊆CES (written: sp├ sf) if sp contains at least one assignment represented by a "1" which
satisfies sf.

29 Classically, duality of logical formulas is based upon duality of logical operators used to construct
those formulas. In such dualities the dual of an object is of the same kind as the object itself. Another
example of this type is the dual of a vector space, which is again a vector space. Some duality statements,
like the one presented here, are not of this kind. Instead, they reveal a close relation between objects of a
priori fundamentally different nature (i.e., here the dual of a logical formula (CES) is a semantic pattern
(PES)).
30 Note that any PECi is not a sub-pattern of PES

Abdelwahab, N.

	

223	

223	

Definition 6: A Weakly Universal Algorithm (WUA) processing S by using only one of
the dual expressions CES or PES or any information deduced from it in its inputs or
definition is called a Single Viewed Weakly Universal Algorithm (WUASV). A WUA
processing S by using both expressions or any information deduced from them in its
inputs or definition is called a Pattern Oriented Algorithm (POA)31. The cWUA of
Definition 5 is therefore a WUASV.

Definition 7: Let CES and PES be dual images of Clause-Set S, then: 3SATS is any of the
following problems expressed using different viewpoints:

1- Deciding whether consequent instantiations of literals in clauses Ci∈S
forming a resolution tree for CES result in TRUE. (Container View)

2- Deciding whether the sub-pattern representing the intersection of all PECis
where Ci∈S contains "1". (Pattern View)

3- Deciding whether there is any sub-pattern sp⊆PES: sp├⋀Ci∈S (≡CES).
(Combined View)

Using the Combined View we can define Dual-3SATS to be the problem of: Deciding
whether there is any sub-formula sf⊆CES: ∀PECi where Ci∈S: ∩PECi (≡PES)├ sf 32.
ConvS is the problem of converting CES to PES and vice versa.

We are ready now to propose (without proof) the following conjecture:

Conjecture 2 (Inefficiency Principle)33: For any 3CNF Clause-Set S: Efficient WUASVs
solving 3SATS and Dual-3SATS34 exist iff efficient WUASVs solving Convs exist35.
Moreover: No efficient WUASVs solving Conv can exist, therefore no efficient WUASVs
solving 3SATS and Dual-3SATS can exist as well.

In this paper, we are suggesting the inefficiency principle to replace the commonly
accepted Conjecture 1 for the following reasons:

31 Formal definitions and properties of POAs are thoroughly presented in [Abdelwahab 2016].
32 In other words, Dual-3SATS is the question: Are there any sub-formulas in CES satisfied by common
sub patterns of clauses of S? This is not to be confused with MAX-SAT which is the problem of
determining the maximum number of clauses which can be satisfied (nor with MIN-SAT having a similar
definition).
33 We are borrowing this nomenclature from physics to express the fact that: Both expressions of a
Clause-Set cannot be efficiently measured/constructed/observed/attained using one perspective only.
Analogous to the Wave-Particle duality case: The uncertainty principle states that specific pairs of
quantities cannot be simultaneously measured to arbitrary accuracy.
34 Because of the duality it is clear that a solution for 3SATS exists iff a solution for Dual-3SATS exists.
To see this suppose that 3SATS is solved. This means that there is a sub-pattern sp⊆PES: sp├ CES. In that
case both sp and CES help satisfying PES├ sf where sf=CES and thus solving Dual-3SATS as well.
Suppose now that there is sf ⊆CES, PES├ sf. This means that there is a sub-pattern sp⊆PES: sp├ sf.
Therefore, there is an assignment represented by a "1" in sp which satisfies sf. This assignment must also
satisfy CES, because sp⊆PES Therefore it must be the case that sp├ CES which means that 3SATS is
solved.
35 Notions used here could have been expressed in terms of Turing-reductions. This is omitted, to avoid
complication and because proving the inefficiency principle is not attempted.

Abdelwahab, N.

	

224	

224	

1. Linking the existence/non-existence of a positive, single perspective solution of
3SATS and Dual-3SATS to the existence/non-existence of a positive, single
perspective solution of the seemingly deeper ConvS may be thought of as an
intrinsic "natural reason" for inefficiency of single views as opposed to the "no
apparent reason" understood from Conjecture 1.

2. ConvS seems to be "deeper", but as hard (for WUASVs) as both 3SATS and Dual-
3SATS. It is a problem whose solution seems to entail the solution of those latter
two and vice versa. Note that if we started only with CES and got PES somehow
efficiently formed using a WUASV for ConvS, then 3SATS (in form 3- of
Definition 7) is solved because we can easily identify peaks in PES during the
process of its formation. On the other hand, if we started only with PEs and
managed to create CES efficiently using such a WUASV, then sub-formulas of
CES can be checked for satisfiability via PEs during this process as well. The
other way round is less obvious, but seems nevertheless possible, i.e., an answer
to the question: If we had efficient WUASVs for both 3SATS and Dual-3SATS,
how can we create (using one perspective only) PES or CES?36

3. Conjecture 1 generalizes its assumption to AUs along with non uniform
algorithms while the inefficiency principle generalizes only to WUASVs. As per
Corollary 1, this is more reasonable since known algorithms failing to solve NP-
complete problems were/are actually WUASVs37. Therefore, the inefficiency
principle is detached from the more general P vs. NP question and is thus not
contradicting the P=NP result of [Abdelwahab 2016] which only shows that
there are POAs efficiently solving 3SATS.

4. And most important in the epistemological context: As HE producing pattern
properties of logical variables represent side effects of realizations in the finite,
physical world of concepts developed for mathematics, it seems only plausible
that dualities inherent in nature are reflected back causing problems. While
Conjecture 1 just states the fact that no efficient algorithms can be found for
3SATS, Conjecture 2 attributes the phenomenon to the inherent difficulty of
switching (without additional information) between dual pattern and container
views, a familiar inability which is known to exist in some form in other contexts
as well.

36 One possible answer to this question might be: If 3SATS and Dual-3SATS could be efficiently solved
using WUASVs, it probably would be the case that the number of small sub-formulas/sub-patterns in
CEs/PES, which are relevant for deciding the question in either perspective, is always polynomial for a
given "magic" transformation of S. We could then efficiently transform each such small sub-formula to
the corresponding sub-pattern or vice versa, if this transformation could be shown to be better than brute
force.
37 Dual views of a logical variable/formula were first introduced in [Abdelwahab 2016]. Current state-of-
the-art research related to the P vs. NP problem still assumes the single container view.

Abdelwahab, N.

	

225	

225	

V THOUSAND AND ONE NIGHT
And the love story continues this way:

"Leila’s family decided to lock her up in a palace behind one of thousand doors as a
measure to prevent her from communicating with her beloved one. She could only send
Qu’ais one single message, before she was taken away, telling him that the door behind
which she was imprisoned shall be marked with her special sign. When Qu’ais arrived
he realized that all the doors were exactly similar in color and size. No special marks
could be found on any of them. However, on each doorstep there was a different flower-
bouquet. All bouquets contained flowers of all colors and sizes. Obviously, trying all
doors one by one was not a practical solution, since this would definitely draw the
guard’s attention to him. What could Qu’ais do to recognize the correct bouquet and
thus the right door? While searching for a clue, he thought for a while of all love
conversations he had with his princess who always used rhymed poetry to convey her
feelings. It suddenly occurred to him that this must be her sign: One of the bouquets
must be containing harmonically organized flowers. Indeed there it was: A neatly
organized one with flowers whose sizes and colors were so beautifully synchronized
that it definitely couldn’t have been created by accident or mistake."

If a bouquet was a Clause-Set and individual flowers were literals, then the harmonic
order of flowers solving the problem of Qu’ais would be the l.o. condition. This
condition is enabled by the HE materialized in the truth table as mentioned in previous
sections. The problem of Qu’ais was solved by recognizing signs on similarly looking
doors, then differentiating between harmonic and non-harmonic order conditions of
those signs. This is very similar to what is done in the I‘rāb procedure38 used to clarify
the meaning of a sentence in the classical Arabic language. Inspired by that39 both, a
conjecture and an objective were formulated and proven in [Abdelwahab 2016]. Fig. 8
shows an overview of all core ideas including those presented in the current paper. The
remarks below are intended to clarify and help critical readers find flaws in
[Abdelwahab 2016]. Arrows point at necessary conditions shown to exist through
definitions/theorems/lemmas whose numbers are noted in smaller fonts on top of each
arrow:

38 c.f. Introduction of [Abdelwahab 2016]
39 Ancient linguistic theories concerned with the relation between syntax and semantics of classical
Arabic inspired other modern, seemingly not related disciplines as well. In [Al-Harithy 1987] an
application of Al-Jurjanis theory of meaning on ancient and modern architectural artifacts is used to
reveal a new understanding of architecture as a mode of communication.

Figure 8

MSRTs.o.

Canonic
Transformation

Procedures
producing no

Big Splits

All Clause Sets
are l.o.

HE Domain
Finiteness

Only polynomial
number of nodes

Minimal
compared to

trees for a.a. &
l.o.u

GSPRA+ is a 2-
Approx. Alg. for

MinFBDD

Only trivial size
1 CN-splits occur

- No rank 3 CNs can split
- If CNs are augmented by rank

3 clauses they cannot split
- Supported and direct parents

cannot split
- Inside a block only trivial splits

can occur

9-c

13

14 & 15 17,
Theorem 2

Theorem 1 Def .13

2 & 3 & 9-a,b

Abdelwahab, N.

	

226	

226	

The above figure shows the following:

1) Special FBDDs (called also MSRTs.o.s) generated by GSPRA+ and FGPRA+ (the
POAs presented in [Abdelwahab 2016]) are the center of all investigations which go
into two directions:
a) To show that MSRTs.o.s possess always a polynomial number of unique nodes

(in the length of the 3CNF formula, more particularly: in M, the number of
clauses). This is the formulated objective.

b) To show that they are near to optimal. More precisely: GSPRA+ and FGPRA+
are 2-Approximation algorithms for the MinFBDD NP complete problem. This
is the formulated conjecture. Arrows and comments related to it are marked blue
(grey) in the above figure.

c) While a) solves the P vs. NP problem, b) is a practical result leading to Theorem
4 which states that all Boolean functions expressed in a compact form, i.e., M is
a polynomial function of N, the number of variables, can have small FBDDs.

d) For both directions: Points of reference and tools, making comparisons between
resolution procedures possible, are:

i) The idea of splits of resolution trees which are copies of sub-trees performed
during sequential resolution steps causing a blow up of the number of newly
created nodes. (Section I and II-C).

ii) The concept of linking 3CNF resolution procedures to FBDD construction
while using always the least literal as the current choice of instantiation in
any step (least literal rule), i.e., not "trying" different choices of literals
(Section II-A Definition 2). This rule goes hand-in-hand with the concept of
a canonical ordering of variables shown to be the most generic notion
possible (Property 9).

iii) 10 properties which are shown to be valid for POAs independent of their
different flavors (Section II-B).

iv) The idea of renaming Clause-Sets to re-align literals in case the l.o.
condition is not met in any sub-tree. Consequence of this idea is the
possibility to use one single canonical form for all Clause-Sets and make
therefore procedures comparing them (using the concept of syntactical
equivalence of nodes instead of the more elaborate algorithmic equivalence
(Section II-D)) sufficiently efficient.

2) To show that objective is attained, [Abdelwahab 2016] needed to show that:
a) L.o. conditions imposed on Clause-Sets, which are the marking property of

MSRTs.o.s, don’t permit any non-trivial splits of Common Nodes (CNs), a trivial
split being a copy of a size 1 CN. This required Lemma 2 and 3 for the GSPRA
version (the one without renaming) and then Lemma 940 for GSPRA+. The basic
ideas behind those proofs can be summarized in the following points:

i) If a CN of rank 3 (i.e., having clauses containing three literals) is formed in
step k, it cannot be spilt in steps >k. Same for CNs augmented to sizes >1 by
a clause of rank 3.

ii) Supporting and direct parents of CNs cannot be used for splitting (see
Definition 5, Section II).

40 Lemma 9 is essentially showing that properties of s.o. Sets/SRTs proven in Lemma 3 remain
untouched by renaming operations.

Abdelwahab, N.

	

227	

227	

iii) Splits can only occur within blocks. While all trials to augment sizes of CNs
to become >1 before splitting fail in ordinary cases, Symmetric Blocks (SBs)
allow for so called tCNs (trivial CNs) to have sizes >1 before they are even
formed. Fortunately splitting such tCNs is not harmful since they can either
be avoided altogether using additional sorting conditions (called: l.o.s.) or
ignored altogether, because l.o.s. and l.o. conditions are equivalent with
respect to the total number of generated nodes (Lemma 2-f).

b) Using the fact that there are no big splits in MSRTs.o.s, GSPRA+ is shown in
Lemma 13 to produce a worst case of O(M4) unique nodes

c) The practical, parallel algorithm FGPRA+ is then shown to be:

i) Equivalent to GSPRA+ (Lemma 18)
ii) Possessing a worst case complexity of O(M9) (Lemma 19)
iii) Efficiently solving the 3SAT problem (Theorem 1)

3) To show that conjecture is valid:
a) Procedures producing only trivial splits are shown to be actually producing

MSRTs.o.s (Lemma 9-c).
b) Procedures using a.a. or l.o.u. 3CNF Clause-Sets and producing big splits are

shown to generate resolution trees whose number of nodes is larger than or equal
to MSRTs.o.s produced by GSPRA+ (Lemma 14 and 15)

c) GSPRA+ is near to optimal, FGPRA+ is a 2-Approximation algorithm for
MinFBDD (Lemma 17, Theorem 2 respectively)

4) All this is possible because of HE and the underlying finite domains assumption
(Theorem 1 in this paper).

A critical reader who is tempted to find flaws in [Abdelwahab 2016] may therefore try
the following ways41:

1) Without investing time reading the lengthy proofs of the paper:
Show the existence of an exponential lower bound on the construction of FBDDs for
compactly expressed 3CNF Boolean formulas. This lower bound should be able to
survive the 3SAT Solver test as per [Abdelwahab 2016], i.e., in case it is proven for
kSAT, it should stand even after the conversion from kSAT to 3SAT and passing it
to FGPRA+42.

2) After going through the proofs, show for GSPRA+, the main SPR-like algorithm
described there one of the following:
a) A technical mistake in one or more proofs of lemmas and theorems describing

behavior or properties.
b) Splits are not the only cause of exponential behavior, i.e., number of nodes can

experience a blow-up between sequential resolution steps even without N- or
CN-splits.

41 Such a reader is not only encouraged, but also helped clarify arguments against what is proposed here
or in [Abdelwahab 2016] if required.
42 This is not the case for example with the "blocking-sets-in-finite-projective-planes" problem which is
discussed in Theorem 2 in [Abdelwahab 2016] and which shall be dealt with explicitly in the next section
in the context of this paper as well.

Abdelwahab, N.

	

228	

228	

c) Big Splits may occur even when l.o. conditions are enforced on all Clause-Sets.
This would defeat Theorem 1 and the objective. It is sufficient to show that a
non-trivial CN augmented in step k to a size >1 can be split in any step>k. For
trivial CNs: Show that they cannot be avoided and/or that l.o. and l.o.s.
conditions are not equivalent in terms of the final number of nodes they generate
(defeating Lemma 2-f).

d) Show that renaming algorithms are either incorrect or not terminating for any
given special case of 3CNF formulas.

e) Show that using a.a. or l.o.u. Clause-Sets can, for any given SPR-like or unlike
procedure generating Big Splits, produce less nodes (defeating Lemma 14, 15,
and 17). For the case of procedures not producing Big Splits: Show that they
don’t produce MSRTs.o.s (defeating Lemma 9-c and underlying 3-d). This
amounts to showing that GSPRA+ and FGPRA+ are not generating near to
optimal FBDDs (defeating Theorem 2 and the conjecture)

VI EXPONENTIAL LOWER BOUNDS AND OTHER PHENOMENA
In this section known exponential lower bounds are shown not to contradict the main
results of [Abdelwahab 2016], which can be summarized in the following points:

1. POAs using information from both sides of the dual nature(s) of logical variables
and Clause-Sets (especially information related to pattern lengths of variables
and/or their alignments) can always enforce safety conditions and construct FBDDs
which are small with respect to the input size. In technical terms: POAs produce
FBDDs which always possess (in the worst case) a polynomial number of nodes
with respect to M, the number of clauses in a 3CNF representation of a Boolean
function.

2. This doesn’t contradict the fact that for some Boolean functions, there are no
known ways to reach a compact 3CNF representation. For such cases FBDDs
produced by POAs may43 be large with respect to N (but not to M).

3. Hence, there are no compactly described Boolean functions which fail to produce
small FBDDs when resolved using POAs.

Known lower bounds mentioned in Section II:

- Diagonalization: SAT cannot have algorithms that use both, a small amount of time
and memory. This is not contradicted by [Abdelwahab 2016] since both, time and
space used by POAs are in O(M9) and O(M4) respectively.
- Proof Complexity: POAs don’t use resolution-based or -like procedures to solve 3CNF

formulas in the first place.
- Circuit Complexity and natural proofs: It has been shown that small circuits cannot

solve the parity function if the circuits have a fixed number of layers of gates. It was
also shown that the NP-complete problem of finding a large clique does not have
small circuits if one only allows AND and OR gates (no NOT gates). Firstly, BDDs in
general and FBDDs in particular are not built using logical AND, OR or NOT gates.
Accordingly, there is no contradiction to the here-discussed results. Secondly, circuit
lower bounds, especially related to the parity function, seem to underline the case
described in 2. above of a Boolean function which cannot be expressed in a compact

43 Example of such FBDDs are those constructed for Integer Multiplication.

Abdelwahab, N.

	

229	

229	

x1

{{x0!,x1!}{x0,x1}}

{x1!} {x1}

False

True

x0

x1!

way. In fact, using those lower bounds as well as the results here, we can explain the
following behavior of parity functions: They cannot be expressed in a compact form,
but always possess small FBDDs. We do this because of known lower bounds:

kCNF representations of a parity function of arity k have:

• always: M=f(N=k), where f is exponential and
• each clause in the kCNF-form containing a literal for each variable
• because of l.o. conditions: If in a kCNF representation of a parity function the

least literal is chosen for instantiation by a resolution procedure, then FBDDs
constructed always have (without the need for renaming) nodes with l.o. Sets
and are thus free of big splits even if the kCNF is not converted to 3CNF.

This result can be formally expressed through the following theorem:

Theorem 2: Any parity function f(x1, x2, x3, … xN) of arity N and a kCNF
representation (k=N) with N variables has an FBDD with a number of nodes linear in N.

Proof (using induction on N):
Base Cases N=2: C.f. Fig. 9 below. Number of unique nodes=3 (not counting
TRUE and FALSE leafs), N=3: See Fig. 6 above. Number of unique nodes = 5.

Induction Hypothesis: Suppose parity f(x1, x2, x3, … xN) has an FBDD for the
Clause-Set S which is a kCNF form of f (k=N) and this FBDD has a linear number
of nodes in N.

Induction Step: For f(x1, x2, x3, … xN, xN+1) it suffices to do the following to
construct the corresponding FBDD:

a) Extend all Clauses in S with a positive literal representing the new variable
and build for the obtained S1 an FBDD1 using exactly the same procedure
you used for S before, i.e., instantiating the same least literals as for f(x0, x1,
x2, … xN). This creates a linear number of nodes per induction hypothesis.
Then create for the unitarian clauses {XN+1} or {XN+1!} new sub-trees and
connect them if you can. In the example of the base cases of Figures 9, 6: For
N=2, S={{x0!,x1!}{x0,x1}} shall become S1={{x0!,x1!,x2}{x0,x1,x2}} for which
FBDD1 looks like:

Figure 9

S1={{x0!,x1!,x2}{x0,x1,x2}}

{x1!,x2} {x1,x2}

False

True

x0

x1!

{x2} {x2!}

True

x1

Figure 10: Note that node {x2!} is not
connected to the main tree, because no
instantiation of S1 can reach it yet. The number
of newly added nodes is only 2.

Abdelwahab, N.

	

230	

230	

b) New clauses completing the kCNF form of f(x1, x2, x3, … xN, xN+1), must have
literals for all variables per definition of the parity function. This implies that
they cannot breach the l.o. condition and shall form an s.o. SRT as defined in
[Abdelwahab 2016, Section II]. It means also that any new clause C resolved
in a sequential resolution step with FBDD1 cannot add any new node,
because all its variables will be instantiated using nodes and edges already in
FBDD1. Therefore: The total number of added nodes in any step remains
only 2. In the example above the following clauses are added to S1 in Fig. 10:
{{x0!,x1,x2!}{x0,x1!,x2!}}. Both of them don’t add any new sub-trees and
produce the final s.o. SRT shown in Fig. 6.

(Q.E.D.)

On the other hand: Exponential lower bounds for BDDs are mainly known for Ordered
Binary Decision Diagrams (OBDDs), which are the best studied forms of BDDs and
which only need one variable order to govern instantiations of Clause-Sets.
Alternatively: An FBDD allows the flexibility to choose a different order for each
branch. There are many BDD variable ordering heuristics in literature, but the most
common way to deal with ordering is to start with something "reasonable" and then
swap variables around to improve BDD size. This dynamic variable reordering is
usually called sifting [Rudell 1993]. The overall idea is: Based on a primitive "swap"
operation that interchanges xi and xi+1, pick a variable xi and move it up and down the
order using swaps until the process no longer improves the size. [Abdelwahab 2016]
shows a generic way of finding a near-to-optimal variable order without the need for
sifting. It uses, guided by information related to literal alignments and pattern lengths of
variables, renaming procedures which enable efficient l.o. transformations of Clause-
Sets achieving near-to-optimal node counts.
The first exponential lower bounds on the size of FBDDs have been proven in 1984 by
[Zak 1984] and [Wegener 1988]. In his seminal paper Bryant also showed [Bryant
1986] that integer multiplication is a function which cannot have a small OBDD
irrespective of the variable ordering used. Later, this result was also extended for the
FBDD case. A long list of papers followed or were published in the same period which
reported similar results for Boolean functions such as: Hamiltonian-Circuit, Perfect
Matching, Clique-Only, Triangle-Parity, Blocking Sets in finite projective planes etc.
[Gal 1997]. Those results, except the last one, relate to Boolean functions which cannot
be expressed in a compact way and pose thus no challenge to the ideas presented in
[Abdelwahab 2016]. In [Wegener 2000] a lower bound technique which is influenced
by the algorithmic point of view due to [Sieling 1995] is used to explain the
methodology behind the majority of results. It turns out that variants of the following
observation were constantly used:

"Lemma: Let f be a Boolean function of n variables. Assume that m is an integer,
1<m<n, if for m any m-element subset Y of the variables N(f, Y) = 2m holds44, then the
size of any read-once branching program computing f is at least 2m-1."

In [Gal 1997] this Lemma is proven and utilized to exhibit a compactly expressed
Boolean function which has an exponential lower bound on the number of nodes in its
FBDD. In Section III of [Abdelwahab 2016] this result is taken up as a challenge and
the following observations were made:

44 N(f,Y) denoting the number of different sub-functions obtained under all possible assignments to Y.

Abdelwahab, N.

	

231	

231	

1. The proof of the above Lemma (given in [Gal 1997]) includes showing that the first
m-1 levels of any FBDD implementing f must form a complete binary tree. This
means, intuitively, that for any n there can be no way to find the overall truth value
of such an f(n), when expressed in FBDD form, except after trying first all
assignment possibilities of m variables for a given m<n.

2. Lemma could only be applied to the blocking Sets problem, because of the
following combinatory property shown to hold for projective planes [Gal 1997]:

"Fact: Let J={p1,…,pt} be a set of t<=m distinct points of the projective plane
P, then there exist distinct lines {l1,…lt} such that for i>=1, j <=t we have pi ∈
lj iff i=j."

3. This property is used in the lower bound proof as follows:

"Proof of the theorem. We show that for every q-element subset A of the
variables, N(f∏, A) = 2q holds, i.e., each truth assignment to the variables in A
yields a different sub-function on the remaining variables. Since each line
defines a clause of the function f∏45, it follows from the Fact that for
an arbitrary q-element subset A of the variables there exist q clauses such that
each variable from A appears in exactly one of them, and each variable
appears in a different clause."46

4. The proof assumes that each line defines a clause, i.e., the projective planes function
f∏ is expressed in kCNF form where k=m=n, m number of lines and n number of
points per line. This representation preserves the duality between lines and points
which is the characteristic property of projective planes (as seen in Section I)
making Fact possible in the first place47. By successfully expressing in the kCNF
description a line by a clause and a point by a literal/variable, duality between
clauses and literals/variables is created as well. We call this type of CNF
description preserving all properties of decision structures of a problem as well as
interrelationships between those structures, a reserved description.

5. When this kCNF representation is converted into a 3CNF one using an
equisatisfiable translation, as needed for algorithms GSPRA+ and/or FGPRA+
described in [Abdelwahab 2016], this reserved description is broken and each line
is scattered between many clauses. Property 8 of SPR-like algorithms guarantees
then that the first m-1 levels of any constructed FBDD, where m>3, never form a
complete binary tree, since one clause is always picked up for full instantiation.

6. The effect of translating reserved kCNF descriptions to unreserved ones, like
equisatisfiable 3CNF representations, seems to be overseen in lower bound results
published in literature (obtained using variations of this Lemma) including those
not related to compactly expressed Boolean functions. This is a reason to formulate
the following theorem.

45 The projective plane function.
46 (c.f. [Gal 1997] p.15)
47 Proof of Fact is given in the same above reference as follows: "Recall that there are exactly m lines
that contain any given point. Let us consider any arbitrary point pi∈J, and the m �lines that contain it.
Since any two lines intersect in at most one point, each of the other t-1<=m-1 points of the set J belong to
at most one of these lines. Thus at least one of the m lines containing pi will contain no other point from
the set J."

Abdelwahab, N.

	

232	

232	

Theorem 3: Lower bounds related to the construction of FBDDs obtained using the
above Lemma are overthrown by SPR-like algorithms using 3CNF representations.

Proof: As seen above: Proof of Lemma includes requiring that the first m-1 levels of
any FBDD constructed for such a function to constitute a complete binary tree. On the
other hand and whether such a function is compactly expressed or not: SPR-like
algorithms using 3CNF representations form always trees in which one single clause is
chosen for full instantiation (Property 8 in [Abdelwahab 2016, Section II). Therefore, no
such tree can have its first m-1 level complete if m>3. (Q.E.D.)

As many of the lower bound results are obtained using a reserved description as well,
Theorem 3 encourages us to go a step further and conjecture here without proof:
All such lower bound results fail also what we call "the unreserved-description-test",
i.e., converting a reserved CNF representation to an unreserved one, not necessarily the
equisatisfiable 3CNF representation, and passing the resulting CNF to an SPR-like
procedure.

VII REVISITING RANDOMNESS
An attentive reader would have realized by now that we didn’t discuss all possible
consequences of our work on probabilistic computation. Although Theorem 1 basically
states that probabilistic or randomized algorithms (using T- or K-random input bits)
cannot exist in finite domain applications, this is still not sufficient to collapse BPP into
P or NP. On the other hand: Theorem 1 links de-randomization techniques (like HE)
with the P vs. NP question as mentioned in Section II. In literature, P=NP is not a de-
randomization hypothesis, although many believe that P=BPP [Fortnow 2001]48. Before
we state the main consequences of [Abdelwahab 2016] related to randomized
algorithms, it is important to review the current consensus of the scientific community
regarding the relation between the P vs. NP question and randomized or probabilistic
computation.

1) It is known that P=NP => P=BPP, i.e., if non-determinism is not more powerful than
determinism then neither is randomness [Goldreich 2011]

2) Many also believe that P=PBB⊆NP, i.e., determinism is as powerful as randomness
and they are both less powerful than non-determinism

3) It is also known that if for any A ∈ BPP it can be shown that:
a) The number of random bits n can be reduced to become O(log(n)) (cf. fn. 23 in

Section II) and
b) A can be de-randomized
Then P=BPP. In other words: If for every A ∈ BPP there exists a Pseudo Random
Generator (PRG) reducing the amount of n random bits needed to O(log (n)), then
P=BPP.49

48 This belief has hardened since the discovery that primality testing is in P using a de-randomization
argument [Agrawal 2004]
49 The existence of PRGs can be non-uniformly proven. This is not sufficient to prove P=BPP, though,
because to do that one needs to show also that such PRGs succeed against all small circuits.

Abdelwahab, N.

	

233	

233	

4) So-called Cryptographic PRGs (CPRG) are PRGs where security is required even
against distinguishers with greater running time than the generator. The most
common condition in this respect is that the generator should run in a fixed
polynomial time, but the adversary can run in an arbitrary polynomial time. CPRGs
are built upon the assumption of the existence of one-way functions50. One-way
functions themselves can only exist if P≠NP [Selman 1992].

5) In [Fortnow 2001], a very useful summary of all known de-randomization
hypothesis (as well as P=NP) are drawn as in Fig. 11 and their interdependence
discussed in short proofs referring to seminal papers establishing the corresponding
results and their interrelations.

While de-randomization techniques are known and exhaustively studied with respect to
the big picture of complexity classes and their relationships as well as properties of
algorithms belonging to them, no effort until [Abdelwhab 2016] has been done to
understand and explore the effect of de-randomizations (especially HE) on the nature of
logical variables. This paper (as well as [Abdelwahab 2016]) shows that dual natures of
logical variables are side effects of HE and can be used to uniformly define efficient
POAs solving 3SAT and thus the P vs. NP question.

50 One-way function. (2016, August 1). In Wikipedia, The Free Encyclopedia. Retrieved 10:42, August
1, 2016, from https://en.wikipedia.org/w/index.php?title=One-way_function&oldid=732477569

Hypothesis I
P=NP

Hypothesis II
Efficient Pseudorandom Generators exist

Efficient Hitting Set Generators exist
E contains exponentially hard sets

Hypothesis III
Circuit Approximation is easy

Promise BPP is easy
Promise RP is easy

Efficiently find accepting inputs of circuits
that accept many inputs

AP=APP

Hypothesis IV
P=BPP

Hypothesis V
P=RP

Hypothesis VI
P=ZPP

Figure 11
Taken from [Fortnow 2001]
(Figure 1)

Abdelwahab, N.

	

234	

234	

Fig. 12 relates our findings to P=BPP. From the figure it is clear that HE and Theorem 1
of this paper can be thought of as anchor insights in two equally important directions
revealing that:

a. Variables possess pattern natures which can be used in constructing efficient POAs
leading to a positive solution of the NP question and thus to P=BPP.

b. Current theoretical definitions of AUs (Corollary 1) as well as probabilistic and/or
randomized algorithms have to take into account that there can be neither T- nor K-
random variables in finite applications. The only randomness notion admissible is
a statistical one.

The last theorem of this paper presents then known consequences of P=NP in this
context:

Theorem 4: The following is true for probabilistic and/or randomized algorithms as
well as related complexity classes:

1. Efficient Pseudorandom Generators exist51
2. Efficient Hitting Set Generators exist
3. E contains exponentially hard sets
4. Circuit Approximation is easy
5. Promise BPP is easy
6. Promise RP is easy
7. There exists a polynomial time computable function f such that for all circuits C

that accept at least half of their inputs, C accepts f(C) as well.
8. AP=APP
9. P=BPP
10. P=RP
11. P=ZPP
12. One-way functions do not exist

51 Not to be confused with crypto logical (secure) PRGs.

[Fortnow 2001]

Dual Natures of
Variables and
Clause Sets

Uniform POAs

P=NP

P=BPP &
P≠NP

P=NP=BPP

Efficient Hitting Set Generators exist

Circuit
Approximation is

easy
Figure 12

[Fortnow 2001]

[Fortnow 2001]

Theorem 1, this paper

Theorem 1,
[Abdelwahab 2016]

GSPRA+ Defintion 2,
[Abdelwahab 2016]

In finite apps: No T-
or K-random

variable exists

HE
(enumerations) Theorem 1,

this paper

belief

belief belief

NP=BPP &
P≠NP

Abdelwahab, N.

	

235	

235	

Proof: Results hold as per Theorem 1 of [Abdelwahab 2016] and from 1-11, because of
[Fortnow 2001] (in particular Definitions 2.1, 2.2. and Theorems 2.3, 2.7). The 12th
result holds, in particular because of Proposition 1 in [Selman 1992].
(Q.E.D.)

VIII DISCUSSION OF RESULTS
Are logical variables physical objects existing in reality or merely tools constructed by
our imagination to facilitate description and solution of logical and mathematical
problems? As it turned out: This is not only a philosophical or epistemological question.
The present paper as well as [Abdelwahab 2016] show that logical variables possess
dual natures when they are used in finite applications. On one side, they are mere
containers of information and on the other side, they are exhibiting truth patterns giving
them concrete positions and roles in any perceivable interpretation of their world. The
fact that variables reveal truth patterns in finite applications contradicts the idealistic
assumption that they can be either truly- or computationally random (Theorem 1). This
insight has many effects on our ideas about algorithms. Firstly, it renders the extreme
notion of "universality", aiming at true computational independence of input-variables,
unrealistic. Secondly, it poses serious questions related to what we want to call
probabilistic computations restricting their notion of randomness to a notion related
only to uncertainty but not fundamental inability as it might be thought. As the pattern
view of a logical variable was only recently introduced in [Abdelwahab 2016], it was
important to try using it (exclusively) to solve 3SAT efficiently. It turns out that this
task is as difficult as attempting to solve 3SAT using the container view only. This is
not a surprise in the context of this paper, because we conjecture that this inability is as
deep as other similar inabilities encountered in physics and related to the dual nature of
certain pairs of object properties. The proposed inefficiency principle states that any
single sided algorithm using either pattern- or container-views only cannot efficiently
solve 3SAT or Dual-3SAT unless there is an efficient, single sided algorithm converting
the pattern expression of a logical formula to the container expression and vice versa.
This latter condition is deemed impossible and represents therefore a principal
cognition boundary. The inefficiency principle, whose formulation is detached from the
P vs. NP questions, is thought to be a replacement for the famous, commonly accepted
conjecture that P≠NP. It doesn’t contradict the main P=NP result of [Abdelwahab 2016]
in that it concerns only single-sided algorithms while [Abdelwahab 2016] is mainly
focused on POAs, which are algorithms using information from both sides of the dual
nature. Of course: The P=NP result must stand against all critical attempts as well as
known lower bounds. In this paper, Sections V and VI respectively are dedicated to
clarify core technical concepts and proofs leading to the P=NP conclusion (facilitating
for critical readers the task of finding flaws) and to explain known lower bound results
using the new theory. Side effects of the second task are Theorems 2 and 3. Theorem 2
shows that any parity function of arity k, although only expressed in an exponential
number of clauses (as per known lower bounds) has an FBDD with a linear amount of
nodes in k, because all nodes in a resolution tree of a kCNF parity expression possess
automatically l.o. Clause-Sets. Theorem 3 shows that lower bound results obtained
using a commonly used technique fail when CNF-representations are converted to
3CNF ones and fed to SPR-like algorithms of [Abdelwahab 2016]. It is also conjectured
that results obtained using what we call reserved CNF expressions will fail any
unreserved-description-test using SPR-like algorithms. A reader who didn’t find any

Abdelwahab, N.

	

236	

236	

flaws in our arguments until Section VI must accept known consequences of P=NP on
probabilistic algorithms, beautifully worked out in literature and exposed very shortly in
Section VII.
This paper is the last one in a series of three papers completing an endeavor which
started by examining the feasibility of the one single application still missing from our
world (although desperately needed) namely: The Fiqh-Application52. Ironically, it is
this missing application which gave the whole algorithmic computer science its modern
name in the first place. In anticipation, the author as well as some of his interested
colleagues who were mainly concerned with Islamic sciences and epistemology,
proceeded in the following way:

1) In [Abdelwahab et al. 2014] formal Fiqh-systems, described in ancient Muslim
scholar texts, were studied and a decision problem for Fiqh was formulated linking
the answer of queries to a Fiqh-machine with the concept of consistent and complete
Fiqh-legalizations. Those are mostly deductive, logically expressible sets of rules
which have to be found in the respective chapters of Fiqh, according to established
Islamic schools of thought, before mechanical theorem proving is attempted.

2) This study revealed, among other findings, that ancient Muslim scholars
successfully used Aristotelian syllogistic proof systems adopting them for
expressing and validating their logical Fiqh-theories. While doing so they were:

a) Mostly concerned with logical form or syntax and how it relates to the intended
meaning or semantics.

b) Inspired by the almost mathematical structure of classical Arabic Grammar, they
were keen to find similar structures in almost all disciplines studied or created
for Fiqh:

i) Syllogisms were classified according to pure syntactical modifications made
to suit an intended purpose

ii) Linear Algebra was invented taking into account forms in which equations
had to appear to fulfill criteria of efficiency and correctness of computation

iii) Arabic language recognition rules were extensively formulated to facilitate
disambiguating source texts

c) Following a more deeper characteristic methodology guided by the perception
that the world is full of signs revealing otherwise ambiguous directions and
meanings: "And He has set up on the earth mountains standing firm, lest it
should shake with you; and rivers and roads; that ye may guide yourselves; (15)
And marks and sign-posts; and by the stars (men) guide themselves. (16)"
[Quran, Nahl].

3) In [Abdelwahab 2016], the decisive step of adopting the same methodology of
searching for residual signs of meanings in the syntax of a CNF formula was made.
The result is the discovery that variables are not only names of data containers, but
if seen in the appropriate light, also possessing pattern lengths bridging the gap
between the syntactic and the semantic expression of a formula materialized in its
truth table. All other algorithmic consequences of this step were elaborated in
[Abdelwahab 2016] which reached in the most direct way the conclusion that P=NP.

52 Fiqh = Islamic Jurisprudence.

Abdelwahab, N.

	

237	

237	

4) In this paper, the discovered dual nature of variables is traced back to its creation
moment, when a combinatory space of discrete variables is enumerated (de-
randomized) and thus given its intended meaning and order. It is in this moment
when variables lose their randomness and render otherwise established views of
what algorithms really are inconsistent. Dual natures of logical variables and
Clause-Sets give us yet another important advantage: We can explain the
fundamental inability to efficiently solve the P vs. NP problem using single viewed
algorithms in a new, but familiar way. We conjecture that the deep source of
inability is the fact that no single sided algorithms exist which can efficiently switch
between pattern and container views. This claim is very similar to inability claims
encountered in physics and is therefore called: The Inefficiency Principle. Our
methodology is epistemologically well founded realizing that we not only can
explain our own positive result, but also why negative results have always been
reported until this day.

On a final note the reader is reminded that the most important discoveries of modern
ages were those related to cognitive boundaries. All facts and realities of modern
science and technology are consequences of understanding cognitive limits and coping
with them [Daghbouche 2012]. Most relevant here is the beautifully expressed
epistemological statement: "of knowledge it is only a little that is communicated to you"
53. Amazingly enough, this famous inability condition is linked to the mysterious
relation between body and soul (form and meaning) as everything else in this paper.

ACKNOWLEDGEMENT

This work is dedicated to all those who respect and admire the humanitarian values and
scientific achievements of the great Islamic civilization which made our modern world
possible in the first place. Also to those who still cherish hopes for a better future for
humanity in spite of all the atrocities committed recently in her name.

REFERENCES
[Aaronson 2010] Scott Aaronson, Eight signs a claimed P≠NP proof is wrong, Shtetl-
Optimized the Blog of Scott Aaronson, Link:
http://www.scottaaronson.com/blog/?p=458

[Abdelwahab 2016] Elnaserledinellah Mahmood Abdelwahab, Constructive Patterns Of
Logical Truth, J.Acad.(N.Y.)6,1:3-96 2016 and [v2] J.Acad.(N.Y.)6,2:99-199 2016

[Abdelwahab et al. 2014] Elnaserledinellah Mahmood Abdelwahab, Karim
Daghbouche, Nadra Ahmad Shannan, The Algorithm of Islamic Jurisprudence (Fiqh)
with Validation of an Entscheidungsproblem, J.Acad.(N.Y.)4,2:52-87 2014

[Agrawal 2004] Agrawal, Manindra; Kayal, Neeraj; Saxena, Nitin (2004), PRIMES is in
P, Annals of Mathematics. 160 (2): 781–793
doi:10.4007/annals.2004.160.781.JSTOR 3597229

53 Quran: Al-Israa, 85

Abdelwahab, N.

	

238	

238	

[Ahmadi 2012] Amir Ali Ahmadi, Anirudha Majumdar, and Russ Tedrake, Complexity
of Ten Decision Problems in Continuous Time Dynamical Systems, Proceedings of the
American Control Conference October 2012 DOI: 10.1109/ACC.2013.6580838

[Al-Harithy 1987] Howayda Al-Harithy, Architectural Form and Meaning in Light of
AlJurjani’s Literary Theories, MIT Master of Science Thesis, 1987

[Atiyah 2007] Sir Michael Atiyah, Duality in Mathematics and Physics, Lecture
delivered at the Institut de Matematica de la Universitat de Barcelona (IMUB), Link:
https://www.fme.upc.edu/ca/arxius/butlleti-digital/riemann/071218_conferencia_atiyah-
d_article.pdf/@@download/file/071218_conferencia_atiyah-d_article.pdf

[Bryant 1986] Randal Bryant, Graph-Based Algorithms for Boolean Function
Manipulation, IEEE Transactions on Computers, C-35-8, pp. 677-691, August, 1986

[Chaitin 1975] Gregory J. Chaitin, Randomness and Mathematical proof, Scientific
American 232, No. 5 (May 1975), pp. 47-52

[Daghbouche 2012] Karim Daghbouche, The Ontological Principle, J.Acad.(N.Y.)2,4:
160-163 2012

[Deolalikar 2010] Vinay Deolalikar, P≠NP, unpublished paper, HP research labs, Palo
Alto, Link: https://www.win.tue.nl/~gwoegi/P-versus-NP/Deolalikar.pdf

[Fortnow 2001] Lance Fortnow, Comparing Notions of Full Derandomization,
Proceedings of Computaional Complexity, Sixteenth Annual IEEE conference,
DOIBookmark: http://doi.ieeecomputersociety.org/10.1109/CCC.2001.933869

[Fortnow 2009] Lance Fortnow, The Status of the P Versus NP Problem,
Communications of the ACM, Vol. 52 No. 9, Pages 78-86,
10.1145/1562164.1562186

[Gal 1996]: Anna Gal, A simple function that requires exponential size read-once
branching programs, Information Processing Letters 62 (1997) 13-16

[Goldreich 2011] Oded Goldreich, In a world of P=BPP, Studies in Complexity and
Cryptography. Miscellanea on the Interplay between Randomness and Computation
Volume 6650 of the series: Lecture Notes in Computer Science pp 191-232

[Nisan 1994] Noam Nisan, Avi Wigderson, Hardness vs. Randomess, Journal of
Computer and System Sciences, Volume 49, Issue 2, October 1994, pages 149-167,
Elsevier

[Physicist 2009] Do physicists really believe in true randomness?, Ask a
mathematician, ask a physicist Blog, Link:
http://www.askamathematician.com/2009/12/q-do-physicists-really-believe-in-true-
randomness/

Abdelwahab, N.

	

239	

239	

[Randomness. (2016, August 30)]. In Wikipedia, The Free Encyclopedia. Retrieved
08:00, September 10, 2016, from
https://en.wikipedia.org/w/index.php?title=Randomness&oldid=736945819

[Rubinfeld 2012] Ronitt Rubinfeld, Randomness and Computation, lecture notes,
Lecture 4, MIT,
permalink: http://people.csail.mit.edu/ronitt/COURSE/S12/handouts/lec4.pdf

[Rudell 1993] R. Rudell, Dynamic Variable ordering for ordered binary decision
diagrams, ICCAD-93. Digest of Technical Papers., 1993 IEEE/ACM International
Conference on Computer-Aided Design, 1993

[Selman 1992] Alan L. Selman, A survey of one-way functions in complexity theory.
Mathematical systems theory, 25(3):203–221, 1992

[Sieling 1995] D. Sieling and I. Wegener, Graph driven BDDs - a new data structure
for Boolean functions, Theoretical Computer Science, 141, 1995, 283-310

[Tani 1993] Tani, S., Hamaguchi, K., The Complexity of the Optimal Variable Ordering
Problems of Shared Binary Decision Diagrams, Proceedings of the 4th International
Symposium on Algorithms and Computation, 1993

[Vadhan 2012] Salil P. Vadhan, Pseudorandomness; Foundations and Trends in
Theoretical Computer Science: Vol. 7: No. 1–3, pp 1-336 (2012),
http://dx.doi.org/10.1561/0400000010

[Vaeaenaenen 1993] A short course on finite model theory, Juko Vaeaenaenen,
Department of Math, University of Helsinki, Finland

[Wegener 1988] I. Wegener, On the complexity of branching programs and decision
trees for clique functions, Journal of the ACM, 35, 1988,461-471

[Wegener 2000] Ingo Wegener, I. Althafer et al. (eds.), Communication complexity and
BDD Lower bound techniques; Numbers, Information and Complexity, 615-628.
Kluwer Academic Publishers 2000

[Whitehead 1963] Whitehead, Alfred North, Russell, Bertrand, Principia Mathematica,
Cambridge University Press, 2nd edition, 1963

[Williams 2010] Ryan Williams, Comment on the Blog of rjliption: Goedel’s Lost Letter
and P=NP, Subject: Fatal Flows in Deolaliker’s Proofs? permalink:
https://rjlipton.wordpress.com/2010/08/12/fatal-flaws-in-deolalikars-proof/#comment-
5368

[Zak 1984] S. Zak, An exponential lower bound for one-time-only branching programs,
MFCS'84, LNCS 176, 1984, 562-566

