
Implementation of a Core(c) Number Sieve.

Helmut Preininger
1200 Vienna

Austria
August 28, 2017

mailto: helmut.preininger@chello.at
hosted at: ww.vixra.org

Abstract

In this paper we give an implementation of a Core(c) Number Sieve (for a given
c=1,2,3,.. we sift out numbers that have in there factorization a prime with a power ¿=
c). For c=2 we have a squarefree number sieve. (Note, that, for c=1, our implemen-
tation compute the usual prime number sieve.) Our goal is to use only one codebase
and avoid extra algorithms for every c.
We use some well known algorithms and adopt it for our purpose.

1 The Sieve

Let P be the set of all prime numbers pi ∈ N. Every natural number m ∈ N can be expressed
as m = Πip

αi
i , with pi ∈ P.

Let c ∈ N, c > 1. Every m ∈ N can be decomposed into m = a · b, with

a = Πip
αi
i , αi < c

and
b = Πjp

αj

j , αj = nj · c , nj = 1, 2, . . .

Let S(c) be a sieve where all numbers m ∈ N (less than an upper bound), of the form
m = Πip

αi
i , αi < c, are marked.

In the special case S(1) our implementation computes the usual prime number sieve.

1.1 Prerequisite: The programming language.

Every programming language1 that admits bitwise boolean operations, bitwise shift opera-
tions and bytewise memory copies is fine.

1We use PureBasic, a small procedural programming language. It is bundled with a compiler, an IDE, a
debugger and runs on all three major platforms.

1

1.2 The Data

Let UB ∈ N be the upper bound of S(c). For every number m = 0, .., UB we only store the
information: m ∈ S(c) or m /∈ S(c). If the i-th bit is 0 it means i ∈ S(c). Therefore we
allocate a UB + 1 bit memory block. For large UB this approach is not usable.
We implement a segmented sieve, i.e. only a small portion of the sieve is present in the
memory at one time (for more details to segmented sieves see for example [RICHJ]).

1.3 Bitwise access

It is not possible to access one bit of a memory block directly. Therefore we have to use
bitwise shift and bitwise boolean operations. Fortunately this operations are very fast. To
avoid a function call we realize it as macros.
If the memory is organized in 64 bit pieces, the macros are (note, that the syntax is related
to PureBasic. It can be easily adopted to every other programming language which provide
similar operations.):

Macro BitSet(_var_,_pos_)

var\i[(_pos_) >> 6] | (1 << ((_pos_) & 63))

EndMacro

Macro BitRead(_var_,_pos_)

var\i[(_pos_) >> 6] & (1 << ((_pos_) & 63))

EndMacro

Remark 1. .

• _var_\i refer to the 64 bit piece with index i of a memory block (the first piece has
index 0)

• _pos_ is the _pos_-th bit of a memory block and is associated with the number m =
pos

• a >> 6 is equivalent to a/64

• 1 << k is equivalent to 2k

• & .. bitwise boolean AND (Note, _pos_ & 63 = _pos_ MOD 64.)

• | .. bitwise boolean OR

• a | b is a short version of a = a | b

2

1.4 The Segment

A 4-tupel [LB,UB, c, Seg] is called segment where LB is the lower bound, UB the upper
bound, c is the core level and Seg is a memory block of at least UB − LB + 1 bits. This
segment include all numbers m in the interval [LB,UB] and the i-th bit of the memory block
Seg is associated with the number m = LB + i. Note, the first bit in the block is the 0-th
bit.

1.5 The Basic Algorithm

Note, we mark all numbers m that are not in S(c). (i.e. if m /∈ S(c) the m-th bit is
set to 1)

The basic algorithm:
For all primes pi with p

max(2,c)
i ≤ UB (since for c = 1 we have p2i) we process the following

procedure:
First we calculate the offset (starting value), where we begin to mark. This value offset
is a function of c and LB. Now we marked every number m, offset ≤ m ≤ UB with m is
a multiple of pci as m /∈ S(c).

Unfortunately the algorithm is slow and needs some improvements. We observe, that for all
primes pi, the mark pattern of pci is periodic with length ki. All our improvements rely on
this fact. Note, that this improvements are well known (see, for example, [RICHJ]).

1.5.1 Helper: CopySieveBytes

The helper function CopySieveBytes has three parameters:
Sieve .. The address of the memoryblock + offset

n .. The length, in bytes, of the smallest period.
MaxBytes .. The length of the memoryblock (in bytes) = SegmentBytes - offset

The algorithm: CopySieveBytes(Sieve,n,MaxBytes)
1. kNow = n

2. kEnd = kNow * 2

IF kEnd >= MaxBytes

Goto Step 4

ENDIF

3. CopyMemory(Sieve,Sieve + kNow,kNow)

kNow = kEnd

Goto Step 2

4. IF kNow < MaxBytes

CopyMemory(Sieve,Sieve + kNow,MaxBytes - kNow)

3

ENDIF

How does it work? We assume, that the first n bytes of the memory block are correctly
marked (Step 1). We want to fill the memory block with this pattern. Each copy doubles
the size of the correct pattern (kNow) (Step 2 - Step 3). Therefore we have only O(ln2(k))
copy operations, where k = (length of the memory block in bytes) / n. In Step 4 we fill the
rest.

1.5.2 Helper: GetStart

The helper function GetStart has three parameters:
c .. The ”core level”
SegNr .. The segment number (the first segment has SegNr = 1)
Prime .. The prime number.

and returns the value of the first marked number, in relation to c,SegNr,Prime

The algorithm: GetStart(c,SegNr,Prime)
1. IF c = 1 AND SegNr = 1

kNum = Prime2

ELSE

kNum = Primec

ENDIF

2. IF SegNr = 1

Start = knum

ELSE

Start = mod ((LB − 1), kNum)
IF Start > 0

Start = kNum - Start - 1

ENDIF

ENDIF

3. RETURN Start

How does it work? We estimate Start (the starting value) where we begin to mark num-
bers. In Step 1 we handle the special case c = 1 and SegNr = 1 and set the temporary
variable kNum. In Step 2 we compute the offset corresponding with the lower bound LB of
the segment.

1.6 Improvement: The Even Prime

Let SegNr be the index of the current segment. The first segment has SegNr = 1. We
mark all even numbers m of the segment (except for c = 1 and SegNr = 1 the number 2).

4

The Function EvenPrime has two parameters:
c .. The ”core level”
MaxBytes .. The length of the Segment in Bytes.

The algorithm: EvenPrime(c,MaxBytes)
1. offset = 0

kBytes = 1

2. IF SegNr = 1

SELECT c

CASE 1

BitSet(0,1,4,6,8,10,12,14)

offset = 1

CASE 2

BitSet(0,4)

OTHERWISE

BitSet(0)

kBytes = b2c/8c
ENDSELECT

GOTO 4

ENDIF

3. SELECT c

CASE 1

BitSet(0,2,4,6)

CASE 2

BitSet(0,4)

CASE 3

BitSet(0)

OTHERWISE

offset = bRem(LB, 2c)/8c
IF offset > 0

offset = pc/8− offset
ENDIF

BitSet(offset * 8)

kBytes = pc/8
ENDSELECT

4. CopySieveBytes(Sieve + offset, kBytes, SegmentBytes - offset)

How does it work? First we compute the offset (starting value) in bytes and the pe-
riod kBytes. The offset depends on c and SegNr. In Step 2 we handle SegNr = 1. Note,
if c = 1, then the number 2 is not marked. In Step 3 we handle the other segments. Only if
2c > 8 then kBytes > 1 and therefore the offset depends on the lower bound LB of the
segment.

5

1.7 Improvement: The Small Odd Primes

The Function SmallOddPrimes has two parameters:
c .. The ”core level” i.e. pc

MaxBytes .. The length of the segment in bytes.
and return the smallest prime which is not processed.

The algorithm: SmallOddPrimes(c,MaxBytes)
1. kProd = 2c

IF kProd < 8

kProd = 8

ENDIF ;

Prime = 3

kProd = kProd * Primec

2. IF kProd > (SegmentLength / 4)

GOTO Step 5

ENDIF

BeginPeriod = GetStart(c,SegNr,Prime)

EndPeriod = BeginPeriod + kProd

k = 0

3. IF (k * Primec) + BeginPeriod) >= EndPeriod

GOTO Step 4

ENDIF

BitSet(BeginPeriod + k * Primec)
k = k + 1

GOTO Step 3

4. BeginByte = bBeginPeriod/8c
CopySieveBytes(Sieve + BeginBytes, bEndPeriod/8c , MaxBytes - BeginBytes)

Prime = Nextprime()

kProd = kProd * Primec

GOTO Step 2

5. RETURN Prime

How does it work? For example, the period (in bytes) of 3c · 5c is kBytes = 15c ·max(8, 2c)
(Since we copy bytes we have max(8, 2c)). In general we have kBytes = max(8, 2c)Πip

c
i with

i > 1. Up to an appropriate limit of kBytes we can also use the CopySieveBytes method.
In Step 1 we set the period (we start with Prime = 3). In Step 2 we test the terminate
condition and set the bounds of the period. In Step 3 we mark only the period. In Step 4 we
copy the pattern of the period to the rest of the memory block and choose the next prime

6

1.8 Improvement: The Wheel

Our implementation of the wheel is in some sense generic, i.e. it depends on c (the core).

The constants are:
c .. The ”core level”
UBPrime .. An upper bound for the maximal wheel = Πip

c
i with pi < UBPrime.

SegLength .. The length of the segment.
UpperBound .. The maximum of the segment.
LowerBound .. The minimum of the segment.
kSqrt .. Process only primes p with p ≤ max(2,c)

√
UpperBound

The variables are:
From .. The actual number that is performed.
FullStep .. The length of the actual wheel.
NumList(p) .. A list of all pi ≤ p.
StepList() .. A list of numbers 1 ≤ m ≤ FullStep with m - FullStep.
WList(p) .. A list of numbers wi = mi ·pc for all mi ∈ StepList(), and p is a given prime.

The algorithm: SingleWheel(Prime)
1. WList(Prime) /* Fill WList() with all primes pi ≤ Prime */

Adder = FullStep * Primec

Limit = SegLength - Adder

2. IF From > Limit

GOTO Step 3

ENDIF

FOR EACH w IN WList()

BitSet(From + w)

ENDFOR

From = From + Adder

GOTO Step 2

3. /*mark the rest, if any*/

FOR EACH w IN WList()

IF (From + w) >= Limit

GOTO Step 4

ENDIF

BitSet(From + w)

ENDFOR

4. Terminate

How it works? In Step 1 we fill some variables and the WList(). Note, the StepList is
already filled. In Step 2 we mark all elements of WList added with an offset. In Step 3 we

7

mark the rest.

The algorithm: AllWheels(StartPrime)
1. kPrime = StartPrime

2. SetNumList(kPrime)

FullStep = Πp∈NumList()p
c

SetStepList(FullStep)

3. IF kPrime > kSqrt

GOTO Step 7

ENDIF

From = GetStart(kPrime)

4. IF ((GCD(From,FullStep)= 1) OR (From > UpperBound))

GOTO Step 6

ENDIF

5. BitSet(From - LowerBound)

From = From + kPrimec

GOTO Step 4

6. IF From < SegLength

Wheel()

ENDIF

kPrime = NextPrime(kPrime)

IF kPrime < UBPrime

GOTO Step 2

ELSE

GOTO Step 3

ENDIF

7. Terminate

How it works? Let c = 1 and let NumList = {2,3}, i.e. all numbers m ∈ Segment with
gcd(m, 2 · 3) > 1 are marked. Thus, the mark schema has the period 2 · 3, i.e. only the
numbers of the form 6k + 1 and 6k + 5, k = 0, 1, .., are not marked. Therefore we have
StepList = {1,5}.
Now we handle a prime p > 3. The variable FullStep is FullStep = 6*p. First we mark all
numbers up to the smallest number of the segment with gcd(From, FullStep) = FullStep
in the usual way (in function AllWheels()). Then we mark all numbers m of the form
(FullStep · k+ 1 · p) +From and (FullStep · k+ 5 · p) +From, with k = 0, 1, .. (in function
SingleWheel()).

1.9 The Main procedure: SegSieve

Finally the Main procedure, that puts everything together, is given by:

8

Sieve .. A global variable, the address of the memory block
c .. The ”core level”
MaxBytes .. The length of the segment in bytes

The main procedure SegSieve has one parameter:
Sieve .. The address of the memoryblock

Item .. The number Item has to be in the computed segment.

The algorithm: SegSieve(Item)
1. SegNr = (Item / SegLength) - 1

LowerBound = (SegNr - 1) * SegLength

UpperBound = LowerBound + SegLength + 1

2. EvenPrime(c,MaxBytes)

Prime = SmallOddPrimes(c,MaxBytes)

AllWheels(Prime)

How does it work? In Step 1 we set appropriate constants. In Step 2 we call the, above
defined, procedures and compute the segment.

References

[RICHJ] J. Richstein, Segmentierung und Optimierung von Algorithmen zu Problemen aus
der Zahlentheorie, 1999, Diss.

9

