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Abstract:
We show relations of the Relativity Principle (RP) to the linear features of
space(time), Sec 1. In Sec.2 RP is written in Minkowski’s space. Sec. 3 is
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devoted to Einstein’s relativity principle. The covariant form of equation and
the RP in the free Fock space (FFS) are discussed in Sec.4. In Sec.5 are also
discussed a possible trace of the quantum features in classical mechanics and
possible sources of nonlinearity of basic equations of nature. The final comments
are contained in Sec.6.

“Algebra is generous. She often gives more than is asked of her.”
Jean le Rond D’Alembert (1717-1783)

Contents

1 Principle of Relativity in Newton’s Mechanics
and abductive inference

In Wikipedia one can find that:
“In physics, the principle of relativity is the requirement that the equa-

tions describing the laws of physics have the same form in all admissible
frames of reference”. Following Galileo, we can explain this sentence using
an image of two ships traveling at different speeds and performing on decks the
same experiments in the belief that they will proceed in the same way:-).

Let’s illustrate the above principle of relativity (RP) in the case of New-
ton’s mechanics and the two-particle seen from the decks of two ships of course
HMSs! From the center of the first ship S where we are located, we carry out
respectively two radius vectors describing the location of two particles: −→r 1,−→r 2

and vectors from the center of the another ship S′, respectively: −→r ′
1,
−→r ′

2, de-
scribing the location of the same particles. Let the vector −→

R connects two
centers. We get:

−→r ′
1 =

−→
R +−→r 1

−→r ′
2 =

−→
R +−→r 2 (1)

The Newton’s equations in S are as follows:

m1
−̈→r 1 =

−→
F 1[−→r 1,−→r 2]

= m2
−̈→r 2 =

−→
F 2[−→r 1,−→r 2] (2)

where −→
F 1 is the force acting on the first particle and −→

F 2 is the force acting on
the second particle. Two dots over the vectors represent the second order of the
time derivative.

Substituting Eq.1 in Eq.2 we get:

m1{−
−̈→
R + −̈→r

′
1} =

−→
F 1[(−

−→
R +−→r ′

1), (−
−→
R +−→r ′

2)]

m2{−
−̈→
R + −̈→r

′
2} =

−→
F 2[(−

−→
R +−→r ′

1), (−
−→
R +−→r ′

2)] (3)
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So, if there is no relative acceleration between centers of the ships:

−̈→
R = 0 (4)

and forces −→F 1 and −→
F 2 do not depend on the vector −→R then the same (identical)

equations are satisfied for the both ships. In other words, the RP is fulfilled. But
what is most important here is that the RP can be derived from the linearity
of space (Euclidean vector space) and observations and/or measurements in
the one reference frame only! ’Consider the abstract bare-bones, scheme which
Peirce provides for abductive inference’, see [9], :

The surprising fact, C, is observed.
But if A were true, C would be a matter of course.
Hence, there is reason to suspect that A is true.
xxxxxxx
Treating the RP as surprising fact, we see from the above considerations

that the global linearity (vector space (space with free vectors)) accompanying
Newton’s physics is a legitimate assumption.

It is also important in all this that in S and S’ we can make real ob-
servations and measurements which are not usually explicitly stated!
Moreover, to ensure the fulfillment of the RP, S and S’ may not be inertial
systems: It is enough that r.h.s. of Eqs3 do not depend on the vector R⃗.

2 Relativity Principle (RP) in Minkowski’s Me-
chanics

It looks almost the same as in Newton’s mechanics with such difference that
the 3D vectors are substituted by 4D vectors and the Newton’s time derivatives
d/dt are substituted by the proper time derivatives d/dτ . So, so called the
generalized Newton’s equation, this time for one particle, looks the following:

d

dτ
(muν) = Kν , (5)

where Kν- certain 4-vector, known as the Minkowski’s force, [1].

3 A possible approach to gravity theory?
It was indeed a completely new approach to the principle of relativity. Albert
Einstein concentrates primarily on space, and actually space-time, in which the
laws of physics are written. What could possibly be the reason for this? In my
opinion, Einstein, under influence of Ernst Mach’s influence, wants, according
to his deeper understanding the extended relativity principle, that admissible
spacetime is physical space, that is space where observations and measure-
ments take place. Einstein accomplishes this in his equations by linking the
distribution of mass and energy (stress-energy tensor) to the curvature of space-
time. But physics of space-time means additionally that space ceases to be a

3



passive actor observing the happening phenomena, but acts on their course and
vice versa. In other words, the principle of action and reaction takes place,
see [2]. This demand is realized in theories in which a space-time metric occures
as the dynamical variable interacting with other variables. But it is also possi-
ble that an active role of space-time can be substituted by the gravitation field
(fourth fundamental interaction) which interact with all other material objects -
among other things, affecting the clocks work and other macroscopic properties,
see also [5].

We must remember that underlying are linear equations for n-pf, see e.g.
author papers, that express our ignorance, and nonlinearity is the result of an
approximation to n-pi expressions by 1-pfi which is related to the elimination
of µ-scales.

In my opinion, the covariance of equations are not a necessary factor
in formulation of laws of Nature because Newton’s equations are not covariant.
The covariant description of equations means that they are reformulated in such
a way that by means of one solution one can construct a whole set of solutions
with different initial configurations of the system (coordinate free theories). This
must indeed complicate the original non-covariant equations and, perhaps, this
is a source of problems in constructing the quantum gravity. It is not excluded
that the quantum gravity, in spite of excelent successes of Einstein’s equations in
large scales, does not need them at all! Moreover, it would be very interesting to
find simple, equivalent, noncovariant formulations of Einstein’s GR, if of course
such formulation are possible, see also Sec.6.

4 Covariant description of equations and an ana-
logue expression of Relativity Principle (RP)
in the free Fock space (FFS)

J. L. Lagrange, “M´ecanique Analytique” (1788) The
reader will find no figures in this work. The methods which I set
forth do not require either con- structions or geometrical or me-
chanical reasonings, but merely algebraic operations subjected to a
regular and uniform rule of procedure. Those who are fond of Math-
ematical Analysis will observe with pleasure Mechanics becoming
one of its new branches and they will be grateful to me for having
thus extended its domain.

If the initial and / or boundary conditions of the considered equations are
treated as random numbers, then the mean values of the solutions and their
correlation functions (n-point information (n-pi)) are interesting or, so-called
expectation values in the case of quantum theory. These n-pi, denoted by
V (x̃(n) ≡ V (x̃1, · · · , x̃n) are generated by the generating vectors

|V >=
∑
n

ˆ
dx̃(n)V (x̃(n))η̂(x̃1) · · · η̂(x̃n)|0 >,
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where x̃ contains the space-time variables and other variables describing inte-
rior degrees of freedom of particles, see, e.g. [5]. These n-pi are related to
the primary quantities fields φ[x̃;α], where α denote initial or/and boundary
conditions, through averaging procedures:

V (x̃(n)) =

ˆ
δαφ[x̃1;α] · · ·φ[x̃n;α]P [α] ≡< φ(x̃1) · · ·φ(x̃n) >

where P [α] is a probability density and
´
δα may denote the functional integral.

The vectors |V > satisfy the linear equations!:

Â|V >= |Φ > (6)

with given operator Â and defined, up to zero’s component, vector |Φ >, see e.g.
[3], [4]. In the free Fock space (FFS) the operator Â is usually right invertible
operator. It means that a right invertible operator R̂ exists such that

ÂR̂ = Î (7)

where Î is the unit operator in the FFS. It means that Eq.6 can be described
in an equivalent way as:

R̂Â|V >= R̂|Φ > (8)

expressions b Let us notice that operators

R̂Â ≡ Q̂ = Î − P̂ (9)

are projectors (idempotence). The projector P̂ is called an initial operator for
the operator Â, see [8].

With the help of these projectors one can describe the general solution to
Eq.6 as

|V >= P̂ |V > +R̂|Φ > (10)

with an arbitrary projection P̂ |V >.
Amazing Analogies’
By a symmetry of the Eq.6 we mean a transformation of its vector solutions,

that the transformed vectors satisfy the same equation. Thus, denoting the
symmetry operator by Ĝ, we should have:

ÂĜ = Â (11)

It is easy to see that the transformed vectors denoted by |V >′= Ĝ|V >, where
|V >satify Eq.6 and Ĝ is any symmetry operator, satisfy also Eq.6. From Eq.9
and Eq.7 one can see that for the initial projector P̂ we have:

ÂP̂ = 0 (12)
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expressions b It means that P̂ projects on the null space of the operator Â.
Hence, the symmetry transformation Ĝ of Eq.6 can be constructed as follows:

Ĝ = Î − P̂ T̂ (13)

where T̂ is an arbitrary operator acting, like all operators here, in FFS. So, the
transformed vector

|V >′≡ Ĝ|V >= (Î − P̂ T̂ )|V >= |V > −P̂ T̂ |V >, (14)

for an arbitrary operator T̂ , satisfies the same Eq.6 as the vector |V >. In
the case under considexpressions beration the symmetry transformation Ĝ has
infinite number of parameters represented by the operator T̂ acting in the linear
FFS. It is easy to show with rather mild assumption that |V >′ represents
arbitray solution to Eq.6 at fixed vector |V>, see AppendixA.

If Ĝ is an inverse operator then from Eq.6 and Eq.14 the vector |V ′
>

satisfies

ÂĜ−1|V >′= |Φ > (15)

or

Â
′
|V >′= |Φ >′ (16)

and where
Â

′
= ĜÂĜ−1, |Φ >′= Ĝ|Φ > This is covariant description of Eq.6.

Since Ĝ is a group, see AppendixB, any similar transformation of Â
′
, |V >′ and

|Φ >′ gives a new equation equivalent to Eq.6.
Because, in general

Â
′
≡ ĜÂĜ−1 ̸= Â, (17)

expressions b (covariance does not mean invariance).
In this section we have considered the general symmetry associated with the

given linear equation, allowing from one solution to create all other by means
of symmetry transformations.

The GR symmetry is less(!) general and concerns ’only’ different configura-
tion of the system bypassing the initial movements of the system. This leads to
creating by Albert Einstein a coordinate-free approach of GR, [6]. See also
[7]. Of course, this is not the only feature of GR. The characteristic feature
of this theory is its local Lorentz invariance and the correlation of time-space
curvature with the stress-energy tensor. As I wrote in [5], it is not excluded
that some of these properties cause difficulties in creating quantum gravity.

Amazing analogies”
The vectors r⃗ and r⃗′in Eqs1 with the condition 4 fulfill the same Newton’s

equations and both of these vectors have similar physical interpretation. This
is called the relativity principle. The transformation 1 with the condition 4 is
called the ’Galilean’ symmetry transformation.
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The vectors |V >, |V >′ in Eq.14 also satisfy the same equation, but they
both do not have to be generating vectors of n-pi. The analogy of ’Galilean’
symmetry in the FFS is described by the operator Ĝ given by Eq.13 in which
the arbitray operator T̂ is chosen in such a way that both vectors |V> and
|V>’ are physical : By this we understand that n-pi generated by them are
obtained by means of appropriate averaging or smoothing procedures which
they do not necessarily have to be related to the transformation of the space-
time coordinates. It would be interesting to find such transformations explicitly.
However, it is intersting that ’Galilean’ symmetrey structure persists even in the
case of generating vectors |V >, |V >′ which generate multitimes functions what
are n-pi.

It can also be suspect that these analogies have their origin in the quantum
structure of space-time, which Eddington assumed in his book: Fundamental
Theory, see [10].

5 Linearity and nonlinearity in physics
In Wikipedia (29.05.017) you can find the following sentence:

“In physics and systems theory, the superposition principle, also known
as superposition property, states that, for all linear systems, the net response
at a given place and time caused by two or more stimuli is the sum of the
responses that would have been caused by each stimulus individually.”

In order not to complicate the matter, let us agree with the author of this
sentence and suppose that the stimuli move at infinite speed like in Newton’s
mechanics. In this case a stimulus can be a force acting on the particle located
at the point r⃗1 coming from the second particle located at the point r⃗2. In
the presence of third particle located at the point r⃗3we can say that on the
particle located at the point r⃗1act two stimuli originating from two particles
located in the points r⃗2 and r⃗3 which is the sum of the responses that would
have been caused by each stimulus individually. It is not excluded that the
above superposition principle is a result of the quantum nature of atoms
forming the classical objects.

Where are we dealing here with nonlinearity? Nonlinearity in this example
and in a more general situation may arise from the fact that the stimulis and
reactions can depend on the positions and the time in which these objects are
located. Functions describing gravitational interaction are not linear. There
is another manifestation of the quantum properties of the basic components of
matter, says Eddington in his Fundamental Theory, where he states that the
curvature of space arises out of the statistical fluctuations of distribution of
a large number of particles, see [10].

Now we will try to clarify the above superposition principle in the case of
the electromagnetic field described in the form of linear equation

K̂φ(x̃) = ϱ(x̃) (18)
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non-local theories where K̂ is a linear operator like d’Alambert one and x̃ some
variables containing in addition to spatial-temporal variables, discrete variables
describing the field components. It seems that the above linearities is the result
of averaging (e.g. a transition from micro electrodynamics to macro) as well
as the quantum nature of the described processes, see [4, 5]. Assuming that ϱ
represents stimuli and corresponding responses are represented by the field φ
we will show that “the net response at a given place and time caused by two
or more stimuli is the sum of the responses that would have been caused by
each stimulus individually”: For that purpose, let us assume that ϱ is composed
with two stimuli:

ϱ = ϱ1 + ϱ2

For every stimulus, we have the same Eq.18:

K̂φ1,2(x̃) = ϱ1,2(x̃)

Hence, and from linearity of these equations, it is seen that

φ(x̃) = φ1(x̃) + φ2(x̃)

satisfies Eq.18♣.
For quantum fields we should substitute the classical equation 18 by the

operator one in which fields φ are substituted by operators φ̂. Also ρ are sub-
stituted by the operators ϱ̂. So, we consider:

K̂φ̂(x̃) = ϱ̂(x̃) (19)

Hence, by going to physical quantities like the expectation values of observables
in the right and left hand sides of the equality above, we get:

K̂ < Φ|φ̂(x̃)|Φ >=< Φ|K̂φ̂(x̃)|Φ >=< Φ|ϱ̂(x̃)|Φ > (20)

where |Φ > is a state of the system. For two states |Φ1,2 > such that

< Φ1,2|ϱ̂(x̃)|Φ2,1 >= 0 (21)

we get, for the superposition state, |Φ >= |Φ1 > +|Φ2 > the superposition
principle for the expectation values φ(x̃) =< Φ|φ̂(x̃)|Φ >.

Over time, I am more and more inclined to accept the hypothesis that basic
equations of nature, which take into account the imperfection of measuring
instruments, or the very nature of measurement, are linear. Nonlinearity is a
result of the approximation of the infinite series of equations consisting either
of the truncation of these chains either by expressing their elements by 1-pi or
the higher order n- pi in the case of more strong correlations.

In Quantum Field Theory (QFT), called also second quantization theory,
the ’density’ operator ϱ̂ occuring on the r.h.s. of Eq.19 is expressed by fields
which describe the material components of the system (with fractional spins) as
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well as the fields describing the interaction between them (with integer spins).
With supper field̃ φ(x̃), in which the particular fields are distinguished by the
one of the component of the ’vector’ x̃ , the Eq.19 can be described as follows:

K̂φ̂(x̃) = ϱ̂[x̃; φ̂] (22)

where in the quantum electrodynamics, the standard theory of elementary par-
ticles and some gravity models, [13], the operator ϱ̂depends polynomially on the
operators φ̂(x̃). So, the Eq.22 are nonlinear. The linear equations are obtained
from the above equation when we introduce a more physical quantities called
the n-point fuctions (n-pf) or n-point information (n-pi):

< 0|φ̂(x̃1) · · · φ̂(x̃n)|0 >≡ V (x̃(n)) (23)

which satisfy linear equations discussed in previous author papers, e.g, [3]. See
also Sec.4. Moreover, for polynomial modes, the operators appearing in the
equations satisfied by n-pi 23, in the FFS, are usually right or left invertible
what allows for their different fruitful transformations, see e.g. [4].

6 Final remarks
The symmetry of the Eq.6 means that with the help of symmetry transforma-
tion, from one particular solution, a whole set of solutions can be generated
with different innitial and / or boundary conditions. Postulating the principle
of conservation of dificulties, one can conclude that for a more symmetrical
equation is a more difficult to findsome of its solutions at least.

This makes the covariant Eq.16 to be more complicated than the equations
6 written in non-covarianr form, see 17, in spite of a possibility that in a certain
cases Eq.16 can be simpler then Eq.6.

Here we would like to point out that the symmetry considered in Sec.4 is the
most general symmetry refered to a given equation because by means of such
symmetry transformations one can generate, from a one solution, all solutions.
In the hierarchy of symmetries, below are symmeries by means of which only
some set of solutions can be generated by so-called symmetry transformations
appearing in GR, SRT or in Newton’s equations They are related to specific
demands as the constant velocity of light in any inertial coordinate system, or
the independence of physics laws from the reference frames. However, by writing
physical laws in a covariant manner, we artificially increases the symmetry of
equations thus leading by this to their complications, see Sec.4. Perhaps the
reference frames are merely auxiliary quantities as the generating vectors or
functions in mathematics. It is not excluded that GR or other good gravity
theory can be described in an equivalent or almost equivalent way but not in
the covariant way of GR, see also [13].

Following the development of modern physics from Galileo, Newton, Einstein
to Bohra, Dirac and others, it is astonishing that the linearity appears in a
greater or lesser degree. Taking into account Bohm’s and Peat’s view that ’a
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certain continuity is always preserved during a scientific revolution’, see [11];
18p, we are inclined to argue that it is precisely the linearity that belongs to
the ’tacit infrastructure of ideas’ which will survive in one or another form, [11];
13p. In particular, we relate here the lack of interactions with the linearity of
space and space-time:-)

7 Appendix A
(about an arbitrary solution of linear systems)

We show with rather mild assumption that |V >′ given by Eq.14:

|V >′≡ Ĝ|V >fix= (Î − P̂ T̂ )|V >fix

represents, at fixed solution |V >fix to Eq.6, an arbitray solution to Eq.6.
That vector |V >′is a solution of Eq.6 it is seen from the property 12 of the
initial projector P̂ and that |V >fix is a solution. Now we have to show that
the projection P̂ |V >′ can be an arbitrary projection: Because operator T̂ is
arbitray, we can choose T̂ = Î − B̂, where B̂ is an arbitrary operator. Hence
and from Eq.14 we get,

P̂ |V >′= P̂ B̂|V >fix

For a fixed vector |V >′ and an arbitrary operator B̂ one can expect that the
above equation is satisfied♡.

8 Appendix B
(about group symmetry of linear systems)

We show that tranformations given by Eq.13

Ĝ = Î − P̂ T̂

can be a group. Takin a product: Ĝ1Ĝ2 = Î − P̂ T̂2 − P̂ T̂1 + P̂ T̂1P̂ T̂2 we see
that it has the structure of the transformation Ĝ. If we assume that operators
(parameters) T̂ are such that that every Ĝ ≡ Ĝ(T̂ ) has the inverse operator then
transformations Ĝ form a group. This is the ful symmetry group of a considered
equation.

9 Appendix C
(Excersite: A symmetry in nonlinear systems)
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