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Abstract. This work addresses the problem of error concealment in video 
transmission systems over noisy channels employing Bregman divergences 
along with regularization. Error concealment intends to improve the effects of 
disturbances at the reception due to bit-errors or cell loss in packet networks.  
Bregman regularization gives accurate answers after just some iterations with 
fast convergence, better accuracy and stability. This technique has an adaptive 
nature: the regularization functional is updated according to Bregman functions 
that change from iteration to iteration according to the nature of the neighbor-
hood under study at iteration n. Numerical experiments show that high-quality 
regularization parameter estimates can be obtained. The convergence is sped up 
while turning the regularization parameter estimation less empiric, and more au-
tomatic.  
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1 Introduction 

The extraction of motion information from a given video sequence is a major under-
taking. In this milieu, optical flow (OF) (cf. [10]) is a recurrent concept with numer-
ous applications, e.g., image compression/coding (cf. [11, 14]), automatic movie edi-
tion/digitalization (cf. [12]), reconstruction of 3D surfaces by means of depth from 
stereo (cf. [13]), object recognition and motion estimation (see, for example, [14-16]). 



OF discontinuities are of particular interest and they should be distinguishable from 
object borders i.e., large gradients of grayscale values within the projections of mov-
ing objects. Furthermore, due to imperfect communication channels, it is nearly im-
possible to attain reconstructed pictures with suitable visual quality. That is why data 
protection and error reduction methods such as decoder-based error concealment (EC) 
algorithms are required. They rely on two types of redundancies: spatial (SEC) and 
temporal (TEC), requiring no alterations on the bit-stream syntax and transport tech-
nology. SEC algorithms: (a) interpolate the lost area using spatially neighboring im-
age data; (b) presuppose statistical correlation between adjacent image blocks; and (c) 
provide a good approximation for the lost macroblocks (MBs). TEC schemes utilize 
previously decoded image data to estimate motion vectors (MVs) of the lost MBs to 
compensate for errors. EC is largely dependent upon the ability of the system to detect 
errors, since EC operations are applied to corrupted MBs. Because the damaged pack-
etized bit-stream is thrown out and considered missing; we can obtain the MB posi-
tion where an error occurs by checking the MB address (MBA), which defines the 
absolute position of the MB. The Bregmanized regularization relies on Bregman di-
vergences constructed with the q-discrepancy functional [3, 4], so that the regulariza-
tion function does not have to be fixed at each interaction [2, 5]. Information on the 
discrepancy principle can be used to improve the stopping criterion as well [3, 4]. The 
connection with exponential distributions allows for entropy-based estimation me-
thods [8, 9] because numerous well-known divergences, such as relative entropy, can 
be expressed as Bregman divergences on the distribution parameters.  

In this paper, the problem of error concealment in transmission of video over noisy 
channels is addressed. Section 2 states the motion estimation problem used in this 
text. Section 3 casts the problem in terms of the minimization of a regularization func-
tional term depending on the Bregman divergence. The error concealment algorithm 
is introduced in Section 4. Experimental results are shown in Section 5. Finally, con-
clusions are drawn in Section 6.  

2 The Motion Estimation Problem 

OF is the distribution of apparent velocities of movement for intensities of pixels Ik(r) 
of the k-th frame at location r = [h, v]T in an image and it requires at least two consec-
utive frames. The displacement of every pixel in a frame forms the displacement vec-
tor field (DVF). We seek the corresponding displacement vector (DV) d(r) = [dh, dv]

T 
at the working point r, in the current frame k, in order to minimize the displaced 
frame difference (DFD) in an area containing the working point and assuming con-
stant image intensity along the motion trajectory. The perfect registration of frames 
results in Ik(r)=Ik-1(r-d(r)). Then, the DFD can be written as ∆(r;d(r))=Ik(r)-Ik-1(r-d(r)). 
An estimate of d(r), is obtained via minimization of the gradient Ik-1(r-di(r)) or by 
determining a linear relationship between these two variables through some model. 
This can be accomplished by using a Taylor series expansion of Ik-1(r-d(r)) about the 
location (r-di(r)), where di(r) represents a prediction of d(r) in the i-th step. This re-
sults in, where the displacement update vector is x=[xh, xv]

T = d(r) – di(r), and e(r, 



d(r)) stands for the truncation error resulting from higher order terms and =[δ/δh, 

δ/δv]
T represents the spatial gradient  operator [17]. Considering all points in a neigh-

borhood of pixels around r leads to 

                                                             y=Hx+η,                                                  (1) 

where the temporal gradients  Ik-1(r-di(r)) have been stacked to form  y containing 
DFD information on the pixels in a neighborhood, H contains the spatial gradient 
operators at each observation, and the error terms have formed the additive white 
noise vector η. the corrected DV is given by 

                 di+1(r) = di(r) + xi(r),                (2) 

at iteration i. The ordinary least squares (LS or OLS) estimate of the update vector is  

                                              x̂ LS =(HTH)-1HTy.                                                        (3) 

3 The Motion Recovery Algorithm 

Segmenting OF via EM algorithm for mixtures of DVs can be done successfully [15] 
because it is presumed that there is little or no interference amid individual sample 
constituents or that all the constituents in the samples are known ahead of time. The 
Tikhonov regularization functional (TRF) (cf. [1, 2]) associated to Eq. (1) is 

 

2M 1 M 1 N N

i 0 j 0 k N l N

q qM 1 M 1
i , j i , j q

i , j i , j i , j i , j
i 0 j 0

ˆ ˆQ( ) y( i, j ) b( k ,l )x( i k , j l )

ˆ( x ) ( x )1
ˆ ˆx ( x ) ( x x ) ,

1 q q


 

   

 

 

 
      

 

 
    

   

   

 

x

             (4) 

               
where  is the regularization parameter, and  is the estimate of x obtained with Eq. 
(4). S corresponds to a family of functions (Bregman divergences) given by 
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x̅ stands for a reference value and q is an adjustable parameter (q-discrepancy).  The 
nonlinear system becomes 
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for r,s=0,1,2,...,M-1. We seek the q and x̂ t  that minimize Eq. (6), where t  is an itera-
tion counter and x̂ 0   is the initial estimate of x.  The Newton-Raphson method yields 
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A first-order Taylor expansion of Eq. (6) results in 
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With the help of the  Gauss-Seidel method, we find 
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with ∆x ̂t,0 = 0,   c is the iteration counter and  
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Now, the update term becomes 
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Once the corrections ∆x̂RS are calculated, new estimates ∆x ̂ t+1  can be obtained 
from Eq. (11) and with a convergence factor γ, where 0 < γ < 1, Eq. (7) becomes 

 
t 1 t tˆ ˆ ˆx x x , t 0,1,2,....      (12) 

The previous expression converges faster than Eq. (7).   
 
 
 

 

 

 

 

 

Fig. 1. (a) Decoded 14-th frame; and (b) Missing macro block location for the Foreman se-
quence (inter frame). 
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Fig. 2. PSNR plots for the Foreman sequence. 

 

 

Fig. 3. (a) Decoded 8-th frame; and (b) Missing macro block location for the Mother and 
Daughter sequence (inter frame). 

 

Fig. 4.  PSNR plots for the Mother and Daughter sequence 



4 Error Concealment   

A priori information on the images as well as redundancies in both space (h-v direc-
tions) and time help to detect and correct errors. Intra frames of compressed video are 
basic frames that help generating inter frames: if intra frames contain lost data, then 
this will affect inter frames. This work assumes that missing MVs are correlated to the 
MVs of their neighbors. The proposed method assumes that a finite number of MV 
clusters exists. Each cluster corresponds to the displacement of a given region inside a 
frame (cf. [9, 13]). Once the received information is depacketized, a frame will have 
its pixels labeled as containing legitimate and erroneous regions. The legitimate ones 
can be used to calculate MVs with a simple procedure such as the one from Eq. (3). 
The motion recuperation algorithm from the previous section will be applied to clus-
ter and correct the whole OF. The regularization operator 
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from Eq. (4) is critical since it incorporates prior knowledge about the original uncor-
rupted frame into the recovery problem. The choice of the regularization parameter α 
also affects the final result. 

5 Experimental Results 

Two 176×144 QCIF sequences were used: the “Foreman” and “The Mother and 
Daughter”. The peak signal to noise ratio (PSNR) was chosen as a measure of perfor-
mance. For an 8 bit M×N image, the PSNR in dB is given by 
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where w and ŵ are, correspondingly, the original and restored images. The experi-
ments considered a 5% cell loss. Fig. 1 and Fig. 3 show examples with a complete and 
a corrupted frame (i.e., missing macroblocks) for each sequence used. For all experi-
ments, it was assumed that q=1 and =0.8. The algorithm was applied to compute 
Q(x), by means of a constant regularization parameter  and with an optimal . How-
ever, a constant   may yield bad convergence as the maximum number of iterations 
grows because the curve for Q(x) resumes increasing after a few iterations.   To 
some extent, increasing the value of 0 remediates this behavior. This becomes neces-
sary due to the need to obey other bounds on errors and trends used to assess and to 
make a decision upon the optimum estimate selection. Multicriteria and an adaptive 
Bregaminized regularization algorithm give better results, although increasing the 
computational load.  Experiments were also performed with a simple EC algorithm 
relying on the average of the MVs from neighbors (AVGN) and without loss of cells. 
Fig. 2 and Fig. 4 show PSNR plots when the three algorithms are applied to the 



“Foreman” and the “Mother and Daughter” sequences. It is important to mention that 
the use of Bregman Divergence s improved the displacement vectors around borders. 

 

6 Conclusions 

 
This work solves the error concealment problem by means of Bregman divergence s 
and regularization [5,8,9,10], where the regularization function does not have to be 
fixed at each interaction any longer. It is important to devise lower and upper values 
for 0, so that convergence and optimization are more efficient. Certainly, the conver-
gence, stability and merit of the estimates are improved when judged against to itera-
tions relying on invariable values of . The fact that more local information on the 
image neighborhood is added to the regularization procedure is the main motive for 
these improvements.  Occasionally, Bayesian estimation introduces estimation bias by 
prior information that may be needless. A possibility is to model estimation as a mi-
nimization of an expected Bregman divergence between the unknown and the pro-
jected distributions. It has been proven that Bregman iteration also approaches a solu-
tion with much less computational complexity than conventional regularization. Fur-
thermore, when stopped according to the discrepancy principle, Bregman iteration is 
also a choice method for solving compressed sensing problems and they are very 
suitable for parallel implementations due to its characteristics [14-16]. Bregman di-
vergences [13, 14] can be employed as measures of nearness—these divergences are 
natural for learning low-rank kernels since they maintain rank as well as positive 
semi-definiteness. Special cases of the proposed framework yield faster algorithms for 
several learning problems, and experimental results show that this algorithm can ef-
fectively learn both low-rank and full-rank kernel matrices.  
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