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Abstract: In this work we propose a covariant formulation for the gravitational field and 

derive equations that can be used to construct the spacetime structures for short-lived and 

stable quantum particles. We also show that Schrödinger wavefunctions can be used to 

construct spacetime structures for the quantum states of a quantum system, such as the 

hydrogen atom. Even though our discussions in this work are focused on the microscopic 

objects, the results obtained can be applied equally to the macroscopic phenomena. 

 

1. A covariant formulation of classical physics 

In this section we show that the three main formulations of physics, namely, Newton’s 

second law of motion, the field equations of the electromagnetic field and the field equations 

of the gravitational field can be formulated in similar covariant forms so that the formulations 

differ only by the nature of the geometrical objects that represent the corresponding physical 

entities. We will show that Newton’s law can be represented by a scalar, the electromagnetic 

field by a symmetric affine connection and the gravitational field by a symmetric metric 

tensor. In classical physics, for conservative forces, Newton’s second law can be written in 

terms of a potential energy   as follows [1] 

   
   

   
                                                                                                                                                   

                                                                                                                                                           

and the conventional Maxwell field equations of the electromagnetic field are written as [2,3] 

     
   
  

                                                                                                                                             

    
  
 
                                                                                                                                                      

                                                                                                                                                             

    
  

  
                                                                                                                                            

      
  

  
                                                                                                                                     

and Einstein field equations of the gravitational field are written in the covariant form [4] 
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However, Maxwell field equations of the electromagnetic field can be formulated in the 

following covariant form 

    

   
                                                                                                                                                     

where the electromagnetic tensor     is expressed in terms of the four-vector potential 

         as              . The four-current    is defined as           . Since 

the electromagnetic tensor     is anti-symmetric, it can be expressed in terms of a dual 

vector. In terms of the electromagnetic tensor    , the electromagnetic energy-momentum 

tensor     for the free electromagnetic field with the defined Lagrangian of the form 

   
 

 
       can be established  

       
      

      
 

 
       

                                                                                           

where     is the Minkowski metric tensor [2,3]. We now show how a covariant form as 

given in Equation (9) for the electromagnetic field can be formulated for Newton’s law of 

mechanical dynamics and the field equations of the gravitational field. 

In order to formulate Newton’s law of dynamics covariantly, we write Newton’s second law 

given in Equations (1) and (2) in terms of the potential energy   with the coordinate notation 

           as follows 

 
    

   
 
  

   
                                                                                                                                    

From the definition of work done in classical mechanics, which is defined as the line integral 

of a force   along a path  ,        
 

, the conserved energy   for a particle of inertial 

mass   is established as 

  
 

 
   

   

  
 
  

   

                                                                                                                          

From Equation (12), we obtain the following relation by differentiation 

  

   
  

    

   
 
  

   
                                                                                                                             

If the dynamics of the particle satisfies Newton’s second law                            

then we obtain 
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It is seen that Equation (14) has the covariant form similar to Maxwell equations of the 

electromagnetic field given in Equation (9). However, the covariant equation for Newton’s 

dynamics is related to a scalar rather than a tensor as in the field equations for 

electromagnetism. Furthermore, it is interesting to observe the following. While the total 

energy       of a physical system is the sum of the kinetic energy and the potential 

energy, the Lagrangian       of a physical system is essentially the difference between 

the kinetic energy and the potential energy. As in the case for the total energy  , we can write 

  

   
  

    

   
 
  

   
                                                                                                                             

Equation (15) can be used to describe, for example, the expansion of a physical system in 

which the term        can be considered as a repulsive force. If the Lagrangian of a 

physical system is conserved 

  

   
                                                                                                                                                        

then we obtain 

 
    

   
 
  

   
                                                                                                                                    

We now show that the field equations of the gravitational field can be proposed and 

formulated in a covariant form similar to the covariant form of the electromagnetic field 

given in Equation (9). It is shown in differential geometry that the Ricci tensor     satisfies 

the Bianchi identities [5] 

   
   

 

 
                                                                                                                                       

where          is the Ricci scalar curvature. Even though Equation (18) is purely 

geometrical, it has a covariant form similar to Equation (9) for the electromagnetic tensor 

   
      . If the quantity 

 

 
       can be identified as a physical entity, such as a four-

current of gravitational matter, then Equation (18) has the status of a dynamical law of a 

physical theory. In this case a four-current           can be defined purely geometrical as 

   
 

 
                                                                                                                                                

In later sections we will show that the purely geometrical four-current    defined by Equation 

(19) can be established as physical entities, however, in the following we want to show that 

for the case of a purely gravitational field in which 
 

 
        , the proposed field 

equations given in Equation (18) also arrive at the same results as those from Einstein’s 

formulation of the gravitational field. For a purely gravitational field, Equation (18) reduces 

to the equation 
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The field equations given in Equation (20) play the role of Maxwell field equations for the 

free electromagnetic field. Even though rigorous solutions to the dynamical field equations 

given in Equation (20) would require laborious mathematical investigations, we can obtain 

solutions that are found from the original Einstein field equations, such as Schwarzschild 

solution, by observing that, since    
    , Equation (20) implies 

                                                                                                                                                       

where   is an undetermined constant. Equation (21) can also be written in a covariant form as 

                                                                                                                                                       

Using the identities     
     and     

    , we obtain      . If we consider a 

centrally symmetric gravitational field with the metric 

                                                                                                             

then the Schwarzschild solution can be found as [6] 

       
   

 
 
   

 
          

   

 
 
   

 
 

  

                             

It is observed that, as in the case of the free electromagnetic field, with the Schwarzschild 

solution obtained, the energy-momentum tensor     for the gravitational field can be 

established if we define it through the relation     
 

 
     

 

 
     .  

 

2. Probabilistic characteristics of geometrical objects 

In this section, we discuss the possibility of identifying geometrical objects with physical 

entities and we show that the identifications provide a route to formulate dynamical equations 

that describe probabilistic processes in physical theories. In particular, by assuming the 

purely geometrical Bianchi identities as covariant field equations of the gravitational field we 

are able to derive a geometric diffusion equation and a Schrödinger-like wave equation that 

can be used to describe random movement of particles as spacetime structures. First we want 

to show that the probabilistic characteristics of geometrical objects also manifest even in 

semi-classical theory such as Bohr’s theory of the hydrogen atom [7]. As shown in the 

appendix 1, the momentum   of the particle and the curvature   of its trajectory in a plane are 

related through the relation     . According to the canonical formulation of classical 

physics, the particle dynamics is governed by the action principle           . Using 

the relationship      and the expression of the curvature of a trajectory      in a plane, 

                , the action integral   takes the form  
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It is shown in the calculus of variations that to extremise the integral                   , 

the function      must satisfy the differential equation [8] 

  

  
 
 

  

  

   
 
  

   
  

    
                                                                                                                     

However, with the functional of the form given in Equation (25),               , it is 

straightforward to verify that the differential equation (26) is satisfied by any function     . 

This result may be considered as a foundation for the Feynman’s path integral formulation of 

quantum mechanics, which uses all classical trajectories of a particle in order to calculate the 

transition amplitude of a quantum mechanical system [9]. Since any path can be taken by a 

particle moving in a plane, if the orbits of the particle are closed, it is possible to represent 

each class of paths of the fundamental homotopy group of the particle by a circular path, 

since topologically, any path in the same equivalence class can be deformed continuously 

into a circular path. This validates Bohr’s assumption of circular motion for the electron in a 

hydrogen-like atom. This assumption then leads immediately to the Bohr quantum condition 

             
  

 
                                                                                             

The Bohr quantum condition possesses a topological character in the sense that the principal 

quantum number   is identified with the winding number, which is used to represent the 

fundamental homotopy group of paths of the electron in the hydrogen atom. 

Now we show that the geometrical objects that are identified as physical entities from the 

covariant form of the field equations of the gravitational field given in Equation (18) also 

manifest the probabilistic characteristics. From the four-current of matter given in Equation 

(19), by letting    , we obtain the matter density component of the four-current  as 

     
 

 
       

 

 
                                                                                                               

It is seen from Equation (28) that in order to be able to define matter in terms of geometrical 

objects, the Ricci scalar must depend explicitly on the coordinates   . In particular, if the 

metric tensor     is diagonal and the Ricci tensor depends explicitly on the temporal 

coordinate       then we have the geometrical density 

  
 

  
                                                                                                                                                

In order to give the entity   a physical content, we introduce a dimensional constant    and 

Equation (29) is rewritten as 
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We will assume that the field equations of general relativity given in Equation (18) can be 

applied to the microscopic space-time structures of quantum particles and, furthermore, in 

order to specify a particular form for the quantity    , we will adopt Weyl’s postulate, even 

though the postulate has mainly been used for considerations of macroscopic phenomena. 

Weyl’s postulate requires that the geodesics of the perfect fluid particles are orthogonal to a 

family of spacelike hypersurfaces. As a consequence, a commoving frame can be introduced 

such that the line element can be written in the form [5] 

        
               

                                                                                                     

It is noted that Weyl’s hypothesis allows us to think of the geometry in which spatial 

structures evolve over time. With this view, quantum particles that are formed from the 

microscopic space-time structures can be regarded as normal elementary particles in three-

dimensional Euclidean space. As a consequence, we will assume that the matter density   in 

Equation (30) also satisfies the Poisson’s equation for a potential   in classical physics 

                                                                                                                                                     

where    is a dimensional constant. Normally, Poisson’s equation is used to describe the 

potential field of a conservative force, which is time-independent. However, Poisson’s 

equation can also be used for time-dependent potentials if the Coulomb gauge is applied. In 

fact, Poisson’s equation can also be formulated for non-conservative forces in which the 

potentials are time-dependent [10]. And, even though it conserves the energy-momentum 

tensor, general relativity is non-conservative. Therefore, we can assume that the potential in 

Poisson’s equation given in Equation (32) is time-dependent. As in the case of Einstein 

theory of general relativity in which the field equations are proposed by observing the 

similarity between the Bianchi identities     
    

 
        and the conservation of the 

energy-momentum tensor    
    , in the following we will assume that the scalar 

potential   and the Ricci scalar to be related by the relation 

                                                                                                                                                           

where    is an undetermined dimensional constant. With the above assumptions, from 

Equations (30), (32) and (33) we obtain 

        
      
  

                                                                                                                         

Equation (34) is rewritten as 

    
   

         
                                                                                                                               

In order to investigate further we need to specify the time component     of the metric tensor 

   . It is seen from Equations (2) and (4) given in the appendix 2 that a real spacetime 

structure that is described by the Ricci tensor can admit a real metric tensor or an imaginary 

metric tensor. If the metric tensor     is real then we obtain a diffusion equation  
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where the constant              
    . While investigating the theory of the Brownian 

movement of particles suspended in a liquid, Einstein derived the following one-dimensional 

differential equation for diffusion [11] 

       

  
  

        

   
                                                                                                                           

where        can be identified with the concentration per unit length of the number of 

particles or of the substance under study, and   is the coefficient of diffusion. The solution to 

Equation (37) is 

       
 

     
  

  

                                                                                                                              

where            
 

  
 is the total number of particles or the total mass of the substance. 

For the case of a three-dimensional diffusion equation given in Equation (36), solutions can 

be found to take the form [12] 

           
 

       
  

 
        

                                                                                                      

Equation (39) determines the probabilistic distribution of an amount of geometrical substance 

  which is defined via the Ricci scalar   and manifests as observable matter. On the other 

hand, if the metric tensor     is imaginary, then since the Ricci tensor     is real and the 

Ricci scalar   is a contraction of the metric tensor and the Ricci tensor given by the relation 

        , the Ricci scalar   is imaginary. If we let      then Equation (36) can be 

written as 

                                                                                                                                                     

Equation (40) is similar to the free particle Schrödinger wave equation in quantum mechanics 

       

  
  

 

  
                                                                                                                                

The similarity between Equations (40) and (41) suggests that the Schrödinger wavefunction 

       may intrinsically be related to the geometrical structure of spacetime that can be 

materialised to become observable as quantum particles. However, it is seen that unless 

     , Equation (40) can only be realised within the existing framework of mathematics if 

there exist real functions whose rates of change are imaginary functions. In fact, such 

functions can be used to describe real physical processes without their property of producing 

imaginary rates being realised. For example, if the rates of change of a real function      are 

given as                  and                           , where    and    are 

real, then                       is a real equation, which can be used to describe a 
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wave motion. If we generalise Equation (36) by assuming that the Ricci scalar   can take 

complex-valued values then a complex solution to Equation (36) can be obtained as  

           
 

        
  

  
        

   
 
                                                                                               

Equation (42) can also be rewritten in the form 

           
  

       
  
      

 
      

        

   
       

        

   
           

 

3. The spacetime structures of elementary particles 

In this section we investigate spacetime structures of quantum particles by deriving equations 

that can be used to construct line elements for given Ricci scalar curvatures. The diffusion 

equation given in Equation (36) describes the density fluctuations of a geometrical substance 

that is undergoing diffusion. We assume that the geometrical substance materialises to appear 

as quantum particles from spacetime structures. For the Ricci scalar given in Equation (39), 

due to the spatial symmetry of the Ricci scalar, we seek a line element of the form 

                                                                                                         

where   is constant. As shown in the appendix 2, the quantity             satisfies the 

following differential equation 

 
 

    

   

   
 
 

  
    

 

   
      

 

       
  

 
        

                                                        

Asymptotically, Equation (45) describes a wave motion for     given the gauge condition 

that involves the first derivatives. Those quantum particles that can be described by Equation 

(45) are short-lived subatomic particles. They appear for a short time and then disappear into 

the purely gravitational field with a wave motion when    . However, whether Equation 

(45) can be solved to obtain exact solutions requires further investigation. If the metric tensor 

of the line element given in Equation (44) is complex, then instead of Equation (45), we 

obtain the following equation for the complex function            

 
 

    

   

   
 
 

  
    

 

   
      

 

        
  

  
        

   
 
                                                 

Now, it is noted that if the Ricci scalar is time-independent then Equation (36) reduces to 

Laplace equation 
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From the relation           
 

 
       

 

 
      , for the case of a symmetric metric 

tensor, we have    , therefore the spatial structure of a quantum particle is visualised only 

in terms of the three-current   . Apart from the interesting question that arises from this result 

about what form of matter the three-current    to represent, such physical structure is possible 

only when the metric tensor itself depends explicitly on time but the contraction          

reduces the Ricci scalar to time-independent. For example, from the defined relation of the 

Ricci scalar           
       

       
     , if        is time-independent and 

   ,     and     are time-dependent, a time-independent Ricci scalar can be obtained if 

        
       

       .  

If the spatial structure of a quantum particle is considered to be spherically symmetric then its 

materialised spatial structure can be described using spherical coordinates        . Equation 

(47) takes the form 

 

  
 

  
   

  

  
  

 

      

 

  
     

  

  
  

 

       
 
   

   
                                                         

The general solution for the Ricci scalar   can be found as [13] 

                
      

               

 

    

 

   

                                                                   

where          is the spherical harmonics and the coefficients     and     can be 

determined from the boundary conditions. 

If the spatial structure of an elementary particle is considered to be cylindrically symmetric, 

such as a thin disc that forms the rotor of a gyroscope, then its materialised spatial structure 

can be described using cylindrical coordinates        . The Laplace equation given in 

Equation (47) now takes the form 

   

   
 
 

 

  

  
 
 

  
   

   
 
   

   
                                                                                                           

The general form of the solution for the boundary problem where the cylinder has a radius   

and a height   is found as [13] 

                         

 

   

                              

 

   

                       

where       is Bessel function,           with     are the roots of          , and 

the coefficients     and     can be determined from the boundary conditions. 

Although it is almost impossible to construct line elements for the whole value of the Ricci 

scalars given in Equations (49) and (51), it is possible to construct a line element for each 
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quantum state for discrete values of   and  . For example, the quantum state with     and 

    for the spherically symmetric Ricci scalar given in Equation (49) is 

     
 

   
 
   
 
                                                                                                                            

If we assume a spherically symmetric line element of the following form 

                                                                                                     

where  ,     and     are undetermined constants, then using the result obtained in the 

appendix 2, we arrive at the differential equation 

 

   
  

  
 
 

  
   

 

 
  

 

   
 
   
 
                                                                                             

Equation (54) is a first order non-linear differential equation and in general there exists a 

unique solution to the initial value problem that involves such equation.  

 

4. A relationship between Schrödinger wavefunctions and spacetime structures  

In this section, we show that there is a relationship between Schrödinger wavefunctions and 

the spacetime structures of a quantum system in the sense that Schrödinger wavefunctions are 

considered purely as mathematical objects that can be used for the construction of spacetime 

structures of the quantum states of a quantum system. In order to construct the spacetime 

structures for quantum particles, as discussed above, we observed the similarity between the 

equation                 and the equation        
  . We assumed that the scalar 

potential   and the Ricci scalar to be related by the relation      , where               

are undetermined dimensional constants. In the following we will discuss a procedure to 

construct spacetime structures for the quantum states of a quantum system in which the 

Schrödinger wavefunctions are employed as a pathway. We also assume that the relation 

      is hold for any potential defined in classical physics. Since Schrödinger’s original 

works were on the time-independent quantum states of the hydrogen atom, we first recapture 

the main ideas of Schrödinger’s method to obtain the time-independent wave equation for the 

hydrogen atom. Schrödinger commenced with the Hamilton-Jacobi equation, written in terms 

of the Cartesian coordinates         as [14,15] 

 
  

  
 
 

  
  

  
 
 

  
  

  
 
 

      
   

 
                                                                                  

However, in order to obtain a partial differential equation that would give rise to the required 

results, Schrödinger introduced a new function  , which is real, single-valued and twice 

differentiable, through the relation  
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where the action   is defined by 

                                                                                                                                                        

and   is the Lagrangian defined by 

                                                                                                                                                        

with   is the kinetic energy and   is the potential energy. In terms of the new function  , 

Equation (55) takes the form 

 
  

  
 
 

  
  

  
 
 

  
  

  
 
 

 
  

  
   

   

 
                                                                            

Then by applying the principle of least action        , Schrödinger arrived at the 

required equation 

    
  

  
   

   

 
                                                                                                                     

Now we show that Schrödinger wavefunction   can be used to construct the spacetime 

structures of the quantum states of the hydrogen atom. By using the relations        , 

                 
      

   ,               
    and      , we obtain 

             
 

   

            
     

 

   

                                                                           

In terms of the Schrödinger wavefunction  , Equation (61) can be rewritten as 

              
 

   

  
           

      
   

 
                                                                  

From the assumed relations       and      , we arrive at the following relation 

between the Schrödinger wavefunction   and the Ricci scalar   

  
 

  
           

 

   

 
 

 

           
      

   

 
                                                             

Since we will use spherical coordinates for the Schrödinger wave equation given in Equation 

(60), the Ricci scalar should also be written in terms of spherical coordinates        . In 

terms of spherical coordinates, the Ricci scalar given in Equation (63) takes the form 
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In terms of the spherical coordinates        , the eigenfunctions             for the 

hydrogen atom, which are solutions to the Schrödinger wave equation given in Equation (60), 

can be found [7] 

                                                                                                                                    

where the spherical harmonics          and the radial functions        are given as 

               
            

        
 

 
 

  
                                                                        

          
 

   
 
         

          
  

 
 

  
 
       

                                                                           

where          and         
     . The first few normalised wave functions for the 

hydrogen atom and their corresponding Ricci scalars are given below 

            
 

  
 
 

  
 

 
 
 
 
 
                                                                                                               

  
 

  
  
  

  
 
 

         
  

  
 
 

    
  

  
 
 

 
 

   

  

  
                                                            

            
 

    
 
 

  
 

 
 
   

 

  
  

 
 
                                                                                        

  
 

  
  
  

  
 
 

         
  

  
 
 

    
  

  
 
 

 
  

   

  

  
                                                            

            
 

     
 
 

  
 

 
 
    

   

  
 
   

  
   

 
 
                                                                   

  
 

  
  
  

  
 
 

         
  

  
 
 

    
  

  
 
 

 
 

 
 
     

  
 
  

  
                                            

It is seen from the above results that unless particular conditions are imposed, such as the 

constancy of the kinetic energy of the electron on each quantum state, the mathematical 
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construction of possible spacetime structures of the quantum states would require laborious 

mathematical investigations.  However, we would like to give the following interesting 

discussion about the geometric structures of spacetime that are closely related to the 

undeterministic character of the quantum states of a quantum system. We would like to show 

that the undeterministic characteristics of a quantum system in quantum physics are the result 

of its geometrical structures. If we consider quantum spacetime structures as embedded 

surfaces in the Euclidean space    then the Ricci scalar curvature   is related to the Gaussian 

curvature          as  

  
 

    
                                                                                                                                                    

where    and    are the principal radii of the surface. Consider a surface defined by the 

relation             in Cartesian coordinates           . The Ricci scalar curvature 

given in Equation (74) can be found as 

  
              

 

     
    

   
                                                                                                                            

where           and                [16]. Let   be a 3-dimensional physical 

quantity which plays the role of the momentum   in the 2-dimensional space action integral. 

The quantity   can be identified with the surface density of a physical quantity, such as 

charge. Since the momentum   is proportional to the curvature  , which determines the 

planar path of a particle, in the 3-dimensional space the quantity   should be proportional to 

the Ricci scalar curvature  , which is used to characterise a surface. If we consider a surface 

action integral of the form                 , where   is a universal constant, which 

plays the role of Planck’s constant, then we have 

  
 

 
 

            
 

     
    

     
                                                                                                            

According to the calculus of variations, in order to extremise the action integral of the form 

               
        , the functional             

   must satisfy the differential 

equations 

  

  
 

 

   
  

   
 

  

      
  

    
                                                                                                         

However, it is straightforward to verify that with the functional of the form obtained from 

Equation (76),                      
       

    
      , the differential equation 

given by Equation (77) is satisfied by any surface. Hence, we can generalise Feynman’s 

postulate to formulate a quantum theory in which the transition amplitude between states of a 

quantum mechanical system is a sum over random surfaces, provided the functional   in the 

action integral        is taken to be proportional to the Ricci scalar curvature   of a 

surface. Consider a closed surface and assume that we have many such different surfaces 
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which are described by the higher dimensional homotopy groups. As for the case of positive 

curvatures, we choose from among the homotopy class a representative spherical surface, in 

which case we can write 

     
 

  
                                                                                                                                      

where    is an element of solid angle. Since     depends on the homotopy class of the 

sphere that it represents, we have        , where   is the topological winding number of 

the higher dimensional homotopy group. From this result we obtain a generalised Bohr 

quantum condition 

                                                                                                                                                      

From the result obtained in Equation (79), as in the case of Bohr’s theory of quantum 

mechanics, we may consider a quantum process in which a physical entity transits from one 

surface to another with some radiation-like quantum created in the process. Since this kind of 

physical process can be considered as a transition from one homotopy class to another, the 

radiation-like quantum may be the result of a change of the topological structure of the 

physical system, and so it can be regarded as a topological effect. Furthermore, it is 

interesting to note that the action integral            is identical to Gauss’s law in 

electrodynamics and the constant   can be identified with the charge of a particle. In this case 

the charge   represents the topological structure of a physical system, and must exist in 

multiples of  . Hence, the charge of a physical system, such as an elementary particle, may 

depend on the topological structure of the system and is classified by the homotopy group of 

closed surfaces. This result may shed some light on why charge is quantised even in classical 

physics.  

As a concluding remark, we would like to mention here that even though our discussions 

have been focused on the quantum objects, the results are equally applied to macroscopic 

phenomena.  

 

Appendix 1 

In differential geometry, the position vector     , the unit tangent vector     , the unit 

principal normal vector      and the unit binormal vector     , defined by the relation 

              , satisfy the Frenet equations [16] 

  

  
    

  

  
        

  

  
                                                                                       

where      and      are the curvature and the torsion respectively, and           is the 

linear element. If we consider the motion of a particle in a plane, as in the case of Bohr’s 

model of a hydrogen-like atom, the Frenet equations reduce to  



15 
 

  

  
    

  

  
                                                                                                                               

By differentiation, we obtain the following system of differential equations 

   

   
 
      

  

  

  
                                                                                                                           

   

   
 
      

  

  

  
                                                                                                                         

If the curvature      is assumed to vary slowly along the curve     , so that the condition 

            can be imposed, then      and      may be regarded as being oscillating 

with a spatial period, or wavelength, λ, whose relationship to the curvature   is found as 

  
  

 
                                                                                                                                                         

In the case of the Bohr’s planar model of a hydrogen-like atom with circular orbits, the 

condition             is always satisfied, since the curvature remains constant for each of 

the orbits. In order to incorporate this elementary differential geometry into quantum 

mechanics, we identify the wavelength defined in Equation (5) with the de Broglie’s 

wavelength of a particle. This seems to be a natural identification since the spatial period   is 

the wavelength of the unit tangent vector     . With this assumption, the momentum   of the 

particle and the curvature   are related through the relation  

                                                                                                                                                              

 

Appendix 2 

In this appendix, we show in detail the derivation of the equations to determine the metric 

tensor of the line element given in Equations (45) and (54). In differential geometry, the 

Riemann curvature tensor       is defined in terms of the affine connection    
 

 as  

      
    

 

   
 
    

 

   
    

    
     

    
                                                                                             

The contraction of the Riemann curvature tensor given in Equation (1) with respect to the 

indices   and   gives the Ricci tensor 

    
    

 

   
 
    

 

   
    

    
     

    
                                                                                                   

On the other hand, the contraction of the Riemann curvature tensor with respect to the indices 

  and   gives the segmental curvature tensor [17] 
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It is seen from Equation (3) that if the affine connection    
 

 is symmetric with respect to the 

indices   and   then the segmental curvature tensor     is anti-symmetric and in this case it 

might be used to formulate the electromagnetic field as given in Equations (9). In order to 

formulate the field equations for the gravitational field it is necessary to introduce a 

symmetric metric tensor     in terms of which the affine connection    
 

 is defined as 

   
  

 

 
    

    
   

 
    

   
 
    

   
                                                                                                    

However, with the introduction of the symmetric metric tensor, it can be shown that the 

segmental curvature tensor vanishes. This result shows that the electromagnetic field and the 

gravitational field may not be formulated on the same structure of a Riemannian manifold. 

With the line element given in Equation (44), we obtain the following non-zero components 

of the affine connection [18] 

   
     

  
 

   

  

  
               

     
  

 

   

  

  
    

     
   

 

   

  

  
                                   

   
  

 

   

  

  
    

  
 

  

  

  
          

   
 

  

  

  
               

   
 

  

  

  
                                    

   
     

  
 

  

  

  
          

     
  

 

  

  

  
         

     
  

 

  

  

  
         

     
  

 

  

  

  
          

   
  

 

   

  

  
             

  
 

  

  

  
           

  
 

  

  

  
              

   
 

  

  

  
                                        

   
  

 

   

  

  
            

   
 

  

  

  
           

   
 

  

  

  
           

  
 

  

  

  
                                        

   
     

  
 

  

  

  
            

     
  

 

  

  

  
                                                                                       

From the components of the affine connection given in Equation (5), we obtain 
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Using the relation           
       

       
      we obtain 

   
 

    

   

   
 
 

  
    

 

   
                                                                                                 

 

With the line element given in Equation (53), we obtain the following non-zero components 

of the affine connection are [19] 

   
  

 

  

  

  
          

   
 

 
    

     
  

 

 
               

     
  

 

 
                                              

   
   

 

 
                 

                      
     

                                                              

From the components of the affine connection given in Equation (24), we obtain 

     
 

  

  

  
                                                                                                                                               

    
 

 
 

 

   
  

  
                                                                                                                                   

     
 

 
 

 

   
  

  
                                                                                                                         

                                                                                                                                                              

Using the relation           
       

       
      we obtain 
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