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Abstract Through the introduction of a new principle of physics, we extend
quantum mechanics by proposing three additional postulates. With them we
construct a quantum theory where gravitation emerges from the thermody-
namics of an entangled vacuum. This new quantum theory reproduces the
observations of the ΛCDM model of cosmology, predicting the existence of

massive vacua Mon =

√
~c
G

and Moff =

√
Λ2~3G

c5
. Finally, we propose an

experiment for the formers direct detection.

Keywords emergent gravity · entanglement · holography · dark energy ·
dark matter · inflation · thermodynamic vacuum · emdrive

1 Motivation

At the largest length scales, the universe is described by a differentiable man-
ifold whose dynamics are governed by Einstein’s Field Equations. At the in-
termediate length scales, it’s described by a smooth manifold, governed by
Hamilton’s equations of motion. At very small scales, the universe can no
longer be described by a manifold. Rather at these scales, it’s described by a
Hilbert space whose dynamics are governed by the Schrodinger equation.

On the one hand, the universe is commutative at large scales while on
the other hand, non-commutative at small scales. At the smallest length scale
(the Planck scale) is spacetime commutative or non-commutative? If it’s the
former, there exists a deep asymmetry where there’s a special scale in which
the universe is describable only by a Hilbert space. If it’s the latter, then how
is spacetime smooth at large scales? This incongruity is very puzzling. How
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can the commutative structure of a smooth manifold be reconciled with the
non-commutative structure of a Hilbert space?

During the early days of Quantum Field Theory (QFT), Heisenberg sug-
gested the use of a non-commutative spacetime geometry at sufficiently small
scales to introduce an effective UV cutoff [1]. In 1947, Synder formalized this
idea by introducing a formulation of quantum mechanics on a non-commutative
spacetime [2]. His reasoning was inspired by Heisenberg’s commutation rela-
tions [x̂i, p̂j ] = i~δij , where neither momentum nor position variables can be
considered points belonging to a smooth manifold. By extending this concept
to spacetime, Synder thought it possible to tame the divergences that plagued
QFT.

Snyder’s work was largely ignored because of the theoretical and experi-
mental successes of renormalization techniques. It was, however, unknown at
the time that these techniques would fail when taking gravitation into account.
Von Neumann further formalized the idea of a non-commutative phase space
by introducing topological spaces whose commutative C∗-algebras of functions
are replaced by non-commutative algebras [3]. Rather recently, a low energy
limit of string theory proposed that the commutation relations [x̂i, x̂j ] = 0
be replaced by [x̂i, x̂j ] = iθij , where θij is a real-valued antisymmetric ma-
trix with units of length squared [4]. Since then, non-commutative spacetime
geometries have received significant attention.

The motivation for modifying the commutation relations was derived from
the pathologies (UV and IR divergences) of QFT. The same reasoning can be
applied to resolve the pathologies of General Relativity (GR) from within an
extended quantum theory. Therefore, by modifying the commutation relations
between spatial positions and directions, it’s possible to introduce an effective
UV/IR cutoff.

2 Fundamental Assumptions

Taking the above ideas a step further, we make the following fundamental
assumptions:

1) Nature will always choose the structure of least description;
2) the Laws of Physics are scale-invariant and
3) do not allow infinite quantities.

Assumption 1) tells us if Nature must decide between a Hilbert space and
a manifold, She will choose the simplest of the two. From the constructivist
perspective, She selects the structure with the fewest relations required to
construct Her physics. Assumption 2) tells us this structure is invariant with
respect to scale transformations, implying one of these structures is an approx-
imation of the other at some sufficient scale. Assumptions 1) and 2), together
with 3), strongly suggests She will choose a locally finite-dimensional Hilbert



Universal Theory of General Invariance 3

space that’s approximated by a smooth manifold at sufficiently large scales.
With these assumptions in hand, we propose a new principle of physics.

The Principle of General Invariance: The laws of physics are scale-
invariant within a fundamental UV/IR regime.

Observational Motivation As our telescopes get more advanced and the sur-
face of last scattering becomes more resolute, the primordial matter-spectrum
appears to be converging to two numbers that follow a power-law of the
form P(k) = Akn [5, 6]. Fluctuations of this surface appear to only contain
scale-invariant Gaussian noise. This signal extends far beyond the surface of
last scattering. Across all length and time scales, power-law phenomena are
present. They appear in most (if not all) electronic devices [7–11], biologi-
cal systems [12–15], sociological and psychological systems [16–20], and even
the word frequency of this note [21]. Is the origin of power-law phenomena
intimately related to structure formation in the early universe? Could the un-
reasonable ubiquity (or rather the inescapability) of the phenomena be a clue
to the origins of spacetime?

3 Aim

Since Heisenberg’s Matrix Mechanics formulation, there has been eight for-
mulations of quantum mechanics (all of which produce the same predictions)
with a dozen or so ways of interpreting them. This suggests there exists a more
fundamental underlying theory; a quantum theory with additional postulates,
containing entanglement degrees of freedom with a scale-invariant metric. The
goal of this paper is to construct an extended quantum theory by 1) reformu-
lating the [x̂i, x̂j ] = 0 commutation relations such that they explicitly encode
the entanglement degrees of freedom, 2) replace the commutative relations be-
tween the directions of 3-space with the noncommutative Clifford algebra, and
3) construct a locally finite-dimensional Hilbert space with a scale-invariant
metric on the entanglement structure. In doing so, we aim to demonstrate
emergent spacetime and thus gravitation from quantum entanglement [22,23].

From a quantum information perspective, our toy model is a quantum
data structure. Our approach, therefore, carries a familial resemblance to the
thought that our universe is a quantum computer. Rather than proposing the
universe is a quantum computer [24–26], we propose the universe is a quantum
computer program. Spacetime from this perspective is then equivalent to the
way in which all degrees of freedom are configured in a computable background
independent structure.

The ultimate goal of this work is to explicitly derive this structure from
three additional postulates, such that it is not only entirely consistent with
the ΛCDM model of cosmology but also produces new predictions beyond the
Standard Model.
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4 Postulates

I. Two points in spacetime are entangled if they don’t commute and are not
entangled if they do commute.

[x̂i, x̂j ] = il2pÊij (1)

where

Ê =

{
1, x̂i is adjacent to x̂j
0, else.

(2)

Postulate I. proposes the entanglement degrees of freedom are indistin-
guishable from the commutation relations of spacetime. When two points are
entangled, they no longer commute and therefore no longer belong to a smooth
manifold. Since at large scales spacetime is commutative, we immediately de-
duce that as the universe expands, Ê becomes sparse and sufficiently approx-
imated by a smooth manifold. Extrapolating from this implies the universe
began in a state of maximal entanglement, where all points are entangled with
one another. The arrow of time is then identified with Ê flowing from a dense
to a sparse state.

If the indices of [x̂i, x̂j ] are continuous, then spacetime requires an un-
countably infinite number of degrees of freedom to specify. Therefore, diag-
onalizing Ê would require an infinitely powerful computer. We regard such
an apparatus as unphysical, implying our ’spacetime’ Hilbert space is locally
finite-dimensional.

II. For every quantum mechanical operator Â there exists an underlying graph
G. When spacetime is in superposition, the vertices V = {e1, e2} of G are
elements of the Clifford algebra Cl(2). The commutation relations are given
as e2

ii = 1 and eiej = −ejei with imaginary constant i2 = e1e2. When
spacetime is not in superposition, the vertices V = {e1, e2, e3} of G are
elements of the Clifford algebra Cl(3), with imaginary constant i3 = e1e2e3.

Postulate II. proposes Holography [27–38] is indistinguishable from a loss-
less compression of the degrees of freedom in 3-space to 2-space. In our con-
struction, the vertices of Ê are sent to the graphs G such that they contain
the position operators (x̂, ŷ, ẑ). The vertices of this graph are the algebraic
constants of Cl(3), with commutation relations between the x̂, ŷ, and ẑ di-
rections. Since this relation doesn’t commute, it’s impossible to measure the
precise position of a particle with respect to more than one axis.

III. The operator-valued power-spectrum P[Â(G)] ≡ |G〉, generates a Hilbert
space H of dimension |V| with metric eigenfunction |g〉 = |g+〉+ |g−〉.
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Postulate III. proposes a way to take G and construct a locally finite-
dimensional Hilbert space with a scale-invariant metric. Presumably, this would
be sufficient to explain structure formation in the early universe.

In GR, the field equation Gab = κT ab is solved for the metric tensor gab for
a given source T ab . Similarly, the field equation proposed below is solved for
the metric eigenfunction |g〉 = |g+〉+ |g−〉 given the source |G〉.

5 The Entanglement Field Equation

To construct a field equation for the entanglement degrees of freedom we look
to Postulate III. As a small example, consider a traceless 2× 2 adjacency ma-
trix with eigenvalues λ1 = −λ2. Disregarding the coefficient matrix gives

P(λ) = λθ/π(1 + eiθ). (3)

When n(= θ/π) is integral the above is a real number. When n is non-integral,
the above is a complex number. When P(λ) is multiplied by its coefficient ma-
trix, the entries become the number of walks of length n from vertices i to j.
Therefore, the continuation of n assigns the complex phase eiθ to a continuum
of walks specified by the adjacency matrix. This analytic continuation allows
the construction a Hilbert space that’s finite in its spatial degrees of freedom V
and infinite in its rotational degrees of freedom θ. In general, the entanglement
field equation is defined as

|G〉 = L+ |g+〉+ L− |g−〉 (4)

where the plus and minus super and subscripts denote a summation over the
positive and negative eigenvalues of G. The left-hand side of this equation
describes the topology of a patch of spacetime, where the right-hand side
describes all possible ways of moving through this spacetime. We derive the
above and demonstrate with proof 〈g|g〉 <∞ [1].

6 Information-theoretic Operators

To solve the entanglement field equation, we look to Postulates I & II. In the
Cl(2) basis there is only one non-empty graph to choose from. Likewise, in the
Cl(3) basis there are only five non-empty graphs to choose from. We demon-
strate with proof [2] that N independent quantum harmonic oscillators in the
Cl(3) basis takes the vertices of Ê and sends them to

Ĝ =
1

2mvacc
P̂ ◦ P̂ +

1

2
mvaccω

2Q̂ ◦ Q̂

=
1

2mvacc
p̂⊗ p̂ +

1

2
mvaccω

2q̂⊗ q̂

(5)
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where

p̂ = −e1e2e3~∇, q̂ = x̂e1 + ŷe2 + ẑe3 (6)

with the Hamiltonian

Ĥvacc = tr Ĝ (7)

and with mvacc unknown. The ’atoms’ of the decompressed spacetime have
the graph-theoretic bit representations

Fig. 1 The vertices of the graphs are elements of the Clifford algebra Cl(3). The orientations
of the edges are representative of a measured spin value of +1/2 and -1/2.

with the background independent operator-valued adjacency matrix

Q̂ =

 x̂e1

√
x̂e1

√
ŷe2e1

√
x̂e1

√
ẑe3e1√

ŷe2

√
x̂e1e2 ŷe2

√
ŷe2

√
ẑe3e2√

ẑe3

√
x̂e1e3

√
ẑe3

√
ŷe2e3 ẑe3

 . (8)

In the Cl(2) basis,

Ĝ =
1

2mvacc
p̂ · σ +

1

2
mvaccω

2q̂ · σ (9)

where

p̂ = −e1e2~∇, q̂ = x̂e1 + ŷe2 + ẑe3, σ = σ1e1 + σ2e2 + σ3e3 (10)

with a minimized Hamiltonian

Ĥvacc = tr Ĝ = 0. (11)

The ’atoms’ of this compressed spacetime have the qubit representation
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Fig. 2 The vertices of this graph are elements of the Clifford algebra Cl(2). The edge of
this graph has no orientation, representing a superposition of the spin +1/2 and -1/2 values.

with the operator-valued adjacency matrix

q̂ · σ =

[
−ẑ x̂+ e2e1ŷ

x̂+ e1e2ŷ ẑ

]
. (12)

7 Emergence of Time

Since in the Cl(3) basis spin-1/2 is stored by the orientations of the edges
of the graph, (p̂ ⊗ p̂, q̂ ⊗ q̂) is regarded as bitspace. Since in the Cl(2) basis
spin-1/2 is stored by both the vertices and edges, (p̂ · σ, q̂ · σ) is regarded as
qubitspace. Bitspace carries two copies of SO(3) and qubitspace carries two
copies SU(2). The qubitmorphisms (p̂ ⊗ p̂, q̂ ⊗ q̂) −→ (p̂ · σ, q̂ · σ), together
with the bitmorphisms (p̂ · σ, q̂ · σ) −→ (p̂⊗ p̂, q̂⊗ q̂), generates the

SU(2)× SU(2) −→ SO(4)

SO(4) −→ SO(3)× SO(3)
(13)

representation of 4-dimensional Euclidean space R4, thereby rendering this
extended quantum theory Lorentz invariant and therefore relativistic. This
extenstion can therefore be considered a finite QFT. From Postulate I., space-
time is constructed by entangling N independent quantum harmonic oscil-
lators (gluing the algebraic constants of respective graphs) in the Cl(3) and
Cl(2) bases. Therefore, for arbitrary N our spacetime is written down in Cl(3)
as a 3N × 3N block matrix and in Cl(2) as a 2N × 2N block matrix.

Since the off-diagonal elements of Ĝ encode all possible configurations of
the entanglement structure Ê, and since the diagonal elements store the total
energy of the system, for all configurations of the entanglement structure, the
total energy of the system remains constant

∀δÊ, δ tr Ĝ = 0 (14)

and therefore

δÊ ∼= t. (15)

This can be considered a strict emergence of time (an isomorphism between
changes in [x̂i, x̂j ] and t). This, however, only demonstrates a local conservation
of energy in the Cl(3) basis (energy is automatically conserved in the Cl(2)
basis). Transitions from Cl(2) to Cl(3) have the Hamiltonian representation
Ĥvacc |g〉 −→ Ĥ |g〉, yielding 0 −→ E |g〉. This is a gross violation of a global
conservation of energy. We deem this unphysical and demand energy to be
conserved globally.
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Endowing the Cl(3) graph with a hyper-edge E , allows a one-to-one corre-
spondence between the fundamental charges

+1←→ {e1, e2, e3}, +1/3←→ {e1, e3, e2}, +2/3←→ {e2, e1, e3}

−1/3←→ {e2, e3, e1}, −2/3←→ {e3, e1, e2}, −1←→ {e3, e2, e1}, 0←→ {∅}.

Ĝ and therefore Ĥvacc are invariant under spin, charge, and parity conjugation
(SCP symmetry)

Q̂ −→ Q̂>

off-diag Q̂ −→ −off-diag Q̂

diag Q̂ −→ −diag Q̂,

(16)

which can all be conveniently expressed as

Q̂ −→ −Q̂>. (17)

Since the actions on Ê are the turning on and off of entanglement between
the qubits and bits that hold spacetime together, and since these actions are
indistinguishable from time, reversing these actions is equivalent to reversing
time

δÊ −→ δ−1Ê. (18)

The bitmorphism takes every point on a symplectic manifold and sends it
to a graph in GCl(3). Thus, GCl(3) is an infinite-dimensional Hilbert space
invariant under the actions of SO(3). The qubitmorphism takes every graph
in GCl(3) and sends it to a graph in GCl(2); a 2-dimensional Hilbert space
invariant under the actions of SU(2). For energy to be conserved globally,
transitions between GCl(3) and GCl(2) must be one-to-one and onto. Thus,
GCl(3) must be 3-dimensional. This implies GCl(2) is the bounded region of
GCl(3).

8 Emergence of Measurement

.Postulate III. allows the construction of a locally finite-dimensional Hilbert
space from the entanglement structure, if and only if the information-theoretic
operators are traceless. Since we demand degrees of freedom can neither be
created nor destroyed, the diagonal elements of Q̂ and P̂ must be traced out
and stored; not as operator-valued numbers but as real-valued numbers. This,
then, implies transitions from GCl(2) to GCl(3) are quantum-to-classical, sug-
gesting p and q are stored in the observer’s memory. From this perspective,
the collapse of the wavefunction can be considered a flow of qubits in GCl(2)
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to bits in GCl(3). This quantum-classical phase transition is therefore indistin-
guishable from the act of observation, suggesting the observer is an arbitrary
information processing and storage device.

In 1936, two formal systems of computation were developed independently
of one another, Church’s λ-calculus [39–41] and the Turing machine [42–44].
Shortly after their development, Church and Turing proved both of these
systems formally equivalent, in what is now known as the Church-Turing
thesis [39–44]. In 1958, Curry found a remarkable connection between the
typed combinators of the λ-calculus and representations of proofs in first-
order logic [45–47]. In 1969, Howard discovered a correspondence between de-
ductive proofs and certain typed λ-terms [47]. The Curry-Howard correspon-
dence draws a deep connection between mathematical proofs and computer
programs. Inspired by the λ-calculus, we propose the following measurement
calculus as a bookkeeping device for the observer’s memory. The flow from
GCl(2) to GCl(3) is abstracted as

O.(q̂ · σ)(Q̂) = O.q (19)

which yields the mapping 1

O : q̂ · σ −→

{
Q̂

∣∣∣∣ O ⊃ q

}
. (20)

Here, an observer O takes the position-qubit q̂ · σ and transforms it to the
position-bit Q̂ by taking its position data q to memory. Stated another way,
qubits stored in GCl(2) are decompressed to bits stored in GCl(3). This 3-
dimensional Hilbert space is where the observer’s memory resides, suggesting
the only physically meaningful degrees of freedom are precisely the degrees
of freedom that the observer stores. Effectively, the role of the observer is to
move the system from its zero-point energy state in GCl(2) to an excited state
in GCl(3).

Our construction doesn’t require the existence of an observer. Devoid of any
observers, the universe remains frozen in its zero-point energy state, retaining
dynamics through changes in its entanglement structure. Time, however, only
becomes meaningful in GCl(3), explaining why the collapse of the wavefunction
appears instantaneous.

Since for every position-qubit, there are two copies of the position-bit, and
since they both go to memory, implies there exists a conjugate observer in a
mirror universe. In this conjugate universe all spin up measurements become
spin down measurements, all matter is replaced with antimatter, the positions
of all particles are reflected, and time is reversed. Therefore, the total energy

1 notation The left-hand side of the measurement calculus O.(a)(b), denotes a transfor-
mation of a into b (in a black box). The right-hand side O.(c), denotes the information
traced out from b (c = tr b) and sent to the observer’s memory. The internal configuration

of the observer is a sub-configuration of Ê in GCl(2).
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of the universe and its conjugate is exactly zero. From the perspective of the
observer and their conjugate, both universes evolve forward in time, forever
remaining causally disconnected from one another.

The measurement process is then characterized by O measuring along the
ei direction of GCl(2) and O† measuring along the ej direction of GCl(2).

Upon measurement, O observes Q̂ and O† observes −Q̂>. The collapse of ψ
then specifies the state of O’s memory and the collapse of ψ† specifies the
state of O†’s memory. The O-calculus for this ”coupleverse”

O.q = O†.q (21)

yields the one-to-one mapping

O,O† : q̂ · σ −→

{
Q̂ ◦ Q̂

∣∣∣∣ O,O† ⊃ q,q

}
. (22)

Here, an observer O and O† with memory specified by the collapse of ψ and
ψ†, measure along opposite directions in GCl(2), decompressing the position-
qubit q̂ ·σ to the position-bits Q̂ ◦ Q̂, taking the diagonal of each position-bit
to O and O†’s memory. Prior to measurement, the contents of the observers
memory is specified by the expectation value

〈q̂〉 = 〈ψ| q̂ |ψ〉 (23)

with the probability of O and O† having a non-empty memory of

〈ψ|ψ〉 = 1. (24)

A transition from GCl(2) to GCl(3) is a lossless decompression of the spa-
tial degrees of freedom stored by GCl(2). Since this transition is one-to-one
it has an inverse. Therefore, a transition from GCl(3) to GCl(2) is a lossless
compression of spatial degrees of freedom. This, in turn, implies the collapse
of the wavefunction is reversible. The inverse transition takes the measured
quantities q and restores the initial state q̂ · σ. The inverse O-calculus

O−1.(q)(Q̂) = O−1.(q̂ · σ) (25)

yields the one-to-one mapping

O−1 : q,q −→

{
Q̂ ◦ Q̂

∣∣∣ O−1 ⊃ q̂ · σ

}
. (26)

Here the position data is taken from O and O†’s memory, transformed back
to the position-bits, compressed to the position-qubits, and sent to O−1’s
memory, uncollapsing the wavefunction. Since GCl(2) is the bounded region
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of GCl(3), O’s memory is completely encoded in the bulk and O−1’s memory
is completely encoded on the boundary.

9 Emergence of Spacetime

Suppose we prepare Ê as a false singularity. This is done by entangling all
points of spacetime with all other points, e.g. Ê is a complete graph. Now
suppose we cut this graph into two pieces, labeling them G and H. The length
of |g〉 is proportional to the number of eigenvalues and therefore the number
of vertices of G and H. If the graph is cut into a small and large piece, they
will be far away from each other. If the graph is cut into two pieces of similar
size, they will be close together. Therefore, dilations are generated by cutting
the graph such that |V (G)| is strictly decreasing with respect to |V (H)| and
contractions are generated if |V (G)| is approaching |V (H)|.

Suppose we now treat Ê as a finite-state machine. If at every iteration 2N

entanglement degrees of freedom are turned off, such that |V (G)| is strictly
decreasing with respect to |V (G)|, then observers in this patch of spacetime
will experience an acceleration away from each other. If at every iteration
2N entanglement degrees of freedom are turned on, such that |V (G)| is ap-
proaching |V (H)|, then observers in this patch of spacetime will experience
an acceleration towards each other. Therefore, from the equivalence principle,
the rate of entanglement sources gravitation and the rate of disentanglement
sources anti-gravitation.

9.1 Solution to the Entanglement Field Equation

We demonstrate with proof [3] that for the position-qubit in GCl(2), the metric
eigenfunction at the Planck scale is

g(δ) = lδ/2πp (1 + ei2δ/2) (27)

where δ is a free parameter, lp is the Planck length, and i2 is the imaginary
constant in Cl(2). Choosing

δoff = −πkBc
3

G~
and δon = −πkBΛ (28)

gives the holographic entropies

Soff = −kBc
3

4G~
ln
(G~
c3

)
and Son = −kBΛ

4
ln
(G~
c3

)
(29)

which are interpreted as the entropy of disentanglement and entanglement,
respectively. The Bekenstien-Hawking entropy [27–38, 48–58] is then derived
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as the total entropy of the entanglement structure

SBH =
∑

(i,j)∈Ê

Son + Soff. (30)

g(δon) and g(δoff) become a coupled system of equations of state for Ê, de-
pending on pressure, area, and temperature

g21 = g(P21, Ap, T ) = A−kBΛ/4p

(
1 + exp

{
−lpe2e1P21

3π2T

})
(31)

g12 = g(P12, Ap, T ) = A−kBc
3/4G~

p

(
1 + exp

{
−lpe1e2P12

3π2T

})
. (32)

Here, T is the Unruh temperature [59–61], Ap is the Planck area, e1 and e2

are the spatial directions of GCl(2), and P12 and P21 are the pressures

P21 =
Λ~a
lpc

and P12 = − c
2a

lpG
. (33)

With the pressure-force relation and Newton’s 2nd Law, the vacuum masses

Mon =

√
~c
G

= 2.176× 10−8kg, (34)

and

Moff =

√
Λ2~3G

c5
= 5.68× 10−130kg (35)

are obtained.
Formally, these vacua are irreducible representations of the entanglement

degrees of freedom (the atoms of spacetime) stored by SU(2). Since Moff is
asymptotically close to zero, it exerts an enormous negative pressure (w = −1)
proportional to the area density ρ12 = c2/lpG = 1061kg/m2 on Mon(= Mp);
which pushes back with an extremely small positive pressure (w ≈ 0), propor-
tional to ρ21 = Λ~/lpc = 10−60kg/m2. The ratio of the area densities of Mon

and Moff

ρ21

ρ12
= Λl2p (36)

simultaneously provides a simple explanation for both the accelerating expan-
sion of the universe and its missing mass. Since Ê evolves from a dense to a
sparse state, our toy universe begins in an Mon dominated epoch proportional
to the entanglement entropy

Son = −kBΛ
4

ln
(G~
c3

)
at time ton =

√
G~
c5

(37)



Universal Theory of General Invariance 13

with temperature Ton =

√
~c5

Gk2
B

(38)

and evolves towards an Moff dominated epoch proportional to the disentan-
glement entropy

Soff = −kBc
3

4G~
ln
(G~
c3

)
halting at toff =

√
c

Λ2G~
(39)

with temperature Toff =

√
Λ2~3G

k2
Bc

. (40)

As entropy production increases so too does production of Moff, predicting the
accelerating expansion becomes more pronounced with the arrow of time.

This thermodynamic model of the vacuum tells us nothing about the initial
configuration of Ê, or for that matter any particular configuration of Ê, only
that it must evolve from a dense to a sparse state. If we recall, for the universe
to be sufficiently approximated by a smooth manifold at large scales, then Ê
must have evolved from a dense to a sparse state.

In the simplest inflationary models, the universe doubled in size at least
60 times between 10−36 and 10−33 seconds [62, 63]. In our toy model, the
inflationary epoch corresponds to a quantum-classical phase transition, where
260 entanglement degrees of freedom were turned off at the Planck time ton.
This Bang of disentanglement explains why GR works so well at large scales. In
fact, GR is implicit in the architecture of this model. This is seen from the fact
that the only quantities required to calculate curvature are distances, angles,
and their rates. Since for any configuration of Ê we can calculate distances
and angles with the metric eigenfunction, and since flipping entanglement on
and off emerges the rate of time, gravitation manifests itself as the curvature
of spacetime. This extended quantum theory, therefore, reproduces the central
prediction of GR. Moreover, it predicts empty space is a dynamic medium that
gravitates.

If we remove all matter and radiation in this toy universe, it undergoes
a classical-quantum phase transition to GCl(2). All configurations of Ê then
have the zero-point energy

Ĥvacc |g〉 = E0 |g〉
= 0

(41)

with the commutation relations

[x̂i, x̂j ] = e1e2l
2
pÊ. (42)
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Some time after 260 entanglement degrees of freedom are turned off, observers
emerge as sub-configurations of Ê; the system then undergoes a quantum-
classical phase transition from GCl(2) to GCl(3). All configurations of Ê then
have the vacuum energy

Ĥvacc |g〉 = Evacc |g〉 (43)

where

Ĥvacc = Ĥon + Ĥoff (44)

with the commutation relations

[x̂i, x̂j ] = e1e2e3l
2
pÊ. (45)

Since our Hilbert space is locally finite-dimensional, it’s UV/IR finite. The
reduced Compton wavelength of Moff and Mon provide the cutoffs

λon = lp, λoff =
1

Λlp
. (46)

The cosmological constant thus becomes the fundamental UV/IR regime

Λ =
1

λonλoff
. (47)

If we were to vary the fundamental constants, we would slide λon ≤ λ ≤ λoff

across the number line. Λ would therefore remain constant regardless of the
values G, ~, or c takes.

Since entanglement is ”mediated” by Mon, if we turn entanglement off be-
tween two qubits, energy must be conserved through the mass-energy equiva-
lence principle. Since the atoms of our emergent spacetime are spin-1/2, Mon

must decay into spin-1/2 particle-antiparticle pairs

Mon −→ fermions + anti-fermions +Moff. (48)

At first sight, the only way this is possible is if new degrees of freedom are
created, which would signal a violation of unitary evolution. This, however,
can be resolved by considering the union of Ê and a much larger empty graph
Ê∗. Energy can therefore be conserved in two ways: either Mon flows from Ê
to Ê∗, or Mon decays into particle-antiparticle pairs in Ê∗. Computing the
Schwarzschild radius

rs = 2lp (49)
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we see it is exactly twice the reduced Compton wavelength, implying Mon is
the black hole quanta and Moff the mass gap [64–66].

Fig. 3 A region of spacetime Ê with observers O, entangled through the event horizon
ÊEH, to its conjugate Ê† with observers O†. When qubits entangled between conjugate
regions of spacetime rupture, particle-antiparticle pairs are separated into Ê and Ê†.

The above cartoon is illustrative of a region of spacetime entangled with
its conjugate, possessing the commutation relations

[x̂i, x̂j ] = i3l
2
pÊ, [x̂†, x̂†j ] = i3l

2
pÊ
†, [x̂i, x̂

†
j ] = [x̂†i , x̂j ] = i2l

2
pÊEH . (50)

Where the conjugated entanglement structure is defined as

Ê† =

{
0, x̂†i is adjacent to x̂†j
1, else.

(51)

Demanding Ê† evolve from a dense to a sparse state is equivalent evolving Ê
in reverse. From the frog’s perspective, O and O† observe identical universes
evolving forward in time. From the bird’s perspective, the past, present, and
future all exist simultaneously as a reversible quantum computer program – a
kind of eternal and unchanging block universe, emulating dynamics only from
the perspective of the observer.
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When entanglement is ruptured between two qubits, Mon instantaneously
decays into causally disconnected particle-antiparticle pairs and remnant masses
Moff. The event horizon is therefore identified as the entanglement structure
ÊEH (the boundary between Ê and Ê†). What lies beneath the horizon is
neither a singularity nor an interior, only a 2-dimensional boundary between
conjugated regions of spacetime. If an observer were to fall through the hori-
zon, all of the bits that encode their 3-dimensional structure would be com-
pressed to qubits and stored on its surface. Formally, the observer is mapped
to their inverse O −→ O−1. Since ÊEH evolves from a dense to a sparse
state, the horizon will evaporate into a cloud of Moff and causally disconnected
particle-antiparticle pairs, thereby resolving both the black hole information
paradox [67–77] and baryon asymmetry problems [78–80].

10 Experimental Design

Extraordinary claims require extraordinary evidence. While our claims could
be considered speculative, they are unavoidable consequences of the postu-
lates put forth. Nonetheless, the oracle of truth is not theory (no matter how
rigorous or beautiful) but experiment. Since Mon is the Planck mass, its grav-
itational effects will become the dominant interaction in particular laboratory
frames. Indeed, there’s compelling evidence it’s already been detected.

Our central prediction: the entanglement mass Mon sources gravitation
and the disentanglement mass Moff sources anti-gravitation. Fluctuations in
the gravitational field correspond to surface density fluctuations of Mon and
Moff. Since the earth’s rate of rotation (length of day) oscillates with a period
of 5.9 years, so too does the density of Mon. Since this mass is present in all
experiments, it will interfere with measurements of the gravitational constant
G. In 2015, Anderson et al. looked at all measurements of G spanning from
1962 to 2014. They concluded that the value of G oscillates with a period of
5.9 years and an amplitude of (1.619± 0.103)× 10−14m3kg−1s−2, resulting in
a G/LOD correlation with a statistical significance of 0.99764 [81].

The G/LOD correlation isn’t the only phenomenon to be expected. If black
hole quanta are the constituents of spacetime, momentum can be exchanged
with them. In 2016, White et. al at NASA developed an electromagnetic
resonant cavity thruster that produced a consistent thrust-to-power ratio of
1.2±0.1 mN/kW in vacuum [82]. They argue from Pilot-Wave theory that the
vacuum is an immutable medium, capable of supporting acoustic vibrations
for the emdrive to push off of. Presumably, the electromagnetic field inside the
device couples to spacetime outside of it. Thrust can, therefore, be generated
by disentangling spacetime in front of the device and entangling spacetime
behind it, effectively pushing off of a surface of Mon. Therefore, the emdrive
can be used to design a direct detection experiment.

As a thought experiment suppose a ball is dropped passed a speaker and
into a cup. When the speaker is on, acoustic vibrations transfer momentum to
the surrounding air, colliding with the ball and nudging it slightly to the right.
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By turning the speaker on and off, the ball’s rate of free fall is perturbed in the
z direction. Replacing the speaker with the emdrive, the ball with an ensemble
of atoms, the cup with an atom interferometer (Mach-Zehnder or gravimeter
type), and the air molecules with vacuum, Mon can be directly detected.

When the emdrive is off the ensemble feels earth’s gravitational pull. When
the emdrive is on the following momenta is transferred to the ensemble along
the x axis

pon = Monv (52)

resulting in a perturbation of the rate of free fall

g′ =

(
Mtest −Mon

Mtest

)
g. (53)

If Mtest is an order of magnitude larger than Mon, then the rate of free fall will
decrease by an order of magnitude. Since this effect is so large, it’s possible to
conduct this as a relatively inexpensive table top experiment.

Fig. 4 Cesium interferometer based gravity gradiometer. Hyperfine splitting of cesium in
its ground state acts as the ruler of the apparatus which employs a π/2−π−π/2 light pulse
sequence on two identical ensembles of cesium atoms. This apparatus achieved a differential
acceleration sensitivity of 4× 10−9g/

√
Hz and an accuracy of ≤ 10−9g [83].
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11 Conclusion

Through the introduction of the Principle of General Invariance, three addi-
tional quantum mechanical postulates have been put forth. Postulates I & II
propose entanglement and holography arise from an underlying noncommuta-
tive structure between spatial positions and directions. Postulate III proposes
an observationally motivated field equation governing these noncommutative
degrees of freedom. The solution to this equation yields a coupled system of
equations of state, describing the thermodynamics of the vacuum. To great
surprise, these equations predict the existence of the vacua Mon and Moff.
These so-called atoms of spacetime reproduce the observations of the ΛCDM
model of cosmology – bringing dark energy, dark matter, inflation, and gravi-
tation into a single unified framework. Finally, (and most importantly) we’ve
designed a relatively simple and inexpensive table-top experiment to falsify
such extraordinary claims.
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13 Appendix

Theorem 1 Let G be a non-empty graph with a traceless adjacency matrix.
The power-law,

P(r) = Arα (54)

with boundary condition,

P(0) = 0 (55)

as a function of the adjacency matrix A(G), maps the graph G to an eigen-
function g, belonging to the complex L2-space of functions.

Proof Let us denote A = A(G). It’s rather trivial to show that P(A) is com-
plex. Since A is symmetric, it is always diagonalizable and can always be
written as P(A) = OP(Λ)O>. Λ is the diagonal matrix of the eigenvalues of
A and O is an orthogonal matrix belonging to the Orthogonal group O(n),
whose columns are the eigenvectors of A. Since A is traceless, the sum of the
eigenvalues is always zero. We are therefore guaranteed at least one negative
eigenvalue (−λ)α = eiπαλα. In a stepwise manner,
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1. A = A> ⇒ A is always diagonalizable.

2. Since A is always diagonalizable, P(A) is a function of only the eigenvalues
of A.

3. Since tr A =
∑
i λi = 0, we are guaranteed at least one negative eigenvalue.

4. P(−λ) = A(−λ)α = Aeiπαλα.

Let us rewrite λα = eα lnλ and θ = απ and compute the spectral decomposition

P[A] = OP[Λ(θ)]O>

= OP(Λ+)O> + OP[Λ−(θ)]O>

=

N∑
n=1

OnmP(λ+
n ) +

M∑
m=1

Onme
iθP(λ−m)

=

N∑
n=1

Onm exp

{
θ

π
ln (λ+

n )

}
+

M∑
m=1

Onm exp

{
θ

π

(
ln (λ−m) + iπ

)}
.

(56)

We’ve separated the spectrum Λ into its non-negative part Λ+ and its nega-
tive part Λ−,

Λ+ =


λ+

1

. . .

λ+
n

. . .

0

 , Λ− = eiθ



0
. . .

λ−n+1

. . .

λ−m

 . (57)

The eigenfunctions of the respective spectrums are

|g+〉 := exp

{
θ

π
ln (λ+

n )

}
, |g−〉 := exp

{
θ

π

(
ln (λ−m) + iπ

)}
. (58)

Defining the linear operators

L+ :=
∑
n

Onm, L− :=
∑
m

Onm (59)

we express the power-spectrum of the adjacency matrix as

|G〉 ≡ L+ |g+〉+ L− |g−〉 (60)

where the plus and minus sub and superscripts are representative of sum-
mation over the negative and non-negative eigenvalues. Taking the real and
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imaginary parts we have

Re g =

N∑
n=1

exp

{
θ

π
ln (λ+

n )

}
+

M∑
m=1

cos θ exp

{
θ

π
ln (λ−m)

}
(61)

Im g =

M∑
m=1

i sin θ exp

{
θ

π
ln (λ−m)

}
. (62)

We immediately see that Im g = 0 when α = ±1,±2,±3, ... but is non-zero
when α = ±(1/2),±(2/3),±(3/4), ... or more generally when α is any real
number. If we ask how many possible ways there are to move from one vertex
to the next for a non-integral number of steps, a complex phase is assigned
returning a complex number. The power-spectrum of a traceless adjacency
matrix is thus the analytic continuation of the graph-theoretic walk. An im-
mediate property of the complex walk is that it’s not possible to enumerate
any of its elements. These sets act as perfect black boxes, preventing us from
keeping track of any of the vertices.

We are now in the position to sum over all walks in a continuous inter-
val, thereby reconstructing the path integral as an inner-product of the above
eigenfunction. As an example, let’s calculate all walks in the (0, 2π) interval
for some arbitrary graph G.

〈g|g〉 = 〈g+|g+〉+ 〈g+|g−〉+ 〈g−|g+〉+ 〈g−|g−〉

=
1

π

∫ 2π

0

dθ
∑
n

[
e2θπ−1 ln (λ+

n ) + 2 cos θeθπ
−1 ln (λ+

nλ
−
n ) + e2θπ−1 ln (λ−

n )

]

=
1

π

∑
n

[
πe2θπ−1 ln (λ+

n )

2 lnλ+
n

+
eθπ

−1 ln (λ−
n λ

+
n )(cos θ ln (λ−n λ

+
n ) + π sin θ)

2 ln (λ−n ) ln (λ+
n ) + ln2 (λ−n λ

+
n ) + π2

+
πe2θπ−1 ln (λ−

n )

2 lnλ−n

]2π

0

=
1

π

∑
n

(
(e2 ln (λ−

n λ
+
n ) − 1) ln (λ−n λ

+
n )

2 ln (λ−n ) ln (λ+
n ) + ln2 (λ−n λ

+
n ) + π2

+
π

2

e4 ln (λ+
n ) − 1

lnλ+
n

+
π

2

e4 ln (λ−
n ) − 1

lnλ−n

)

We observe that the last two terms are indeterminates of the form 0/0 when
λ+
n and λ−n → 1. Upon a change of variable the limit becomes,

lim
x→1

π

2

x4 − 1

lnx
= 2π (63)

and we have our desired result

〈g|g〉 <∞ ∴ g ∈ L2(0, 2π). (64)
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It’s rather straightforward to demonstrate that the above is true for any
bounded interval. We need not concern ourselves with the unbounded case
since we’d be integrating over an infinite number of backtracked walks. Fur-
thermore, to capture all non-redundant walks from the graph, we need only
integrate over its longest path. This ensures no divergences of any kind can
appear within the theory. The proof is thus completed.

13.1 Identities

1. 〈δ(θ − π)|G〉 = A(G)
2. 〈δ(θ + π)|G〉 = A+(G) (Moore-Penrose Psuedo Inverse)
3. 〈δ(θ)|G〉 = L

13.2 Metric

We identify the eigenfunction |g〉 = |g+〉+ |g−〉 as a metric on a state space of
graphs Ω = {G1,G2,G3, ...,Gi}

d(Gi,Gj) = ||gi − gj || =
√
〈gj − gi|gj − gi〉 (65)

Theorem 2 There exists a graph Gq̂ and Gp̂ with the self-edges Eself = (x̂, ŷ, ẑ)
and Eself = (p̂x, p̂y, p̂z); with the vertices V = (e1, e2, e3) such that the mor-
phisms Gq̂ −→ G′q̂ and Gp̂ −→ G′p̂ give a graph with the reduced vertex set
V = (e1, e2) such that tr A(G′) = 0.

Proof Let us consider the 2nd-rank symmetric tensor

q̂⊗ q̂ =

x̂2 x̂ŷ x̂ẑ
ŷx̂ ŷ2 ŷẑ
ẑx̂ ẑŷ ẑ2

 . (66)

We seek a background independent operator that stores the operator-valued
coordinates (x̂, ŷ, ẑ) and the orthonormal basis (e1, e2, e3). We construct this
operator such that its trace is q̂ = x̂e1 + ŷe2 + ẑe3 and such that we can define
a product of these operators which gives us q̂ ⊗ q̂. If we define the following
”square root vector” √

q̂ · e := (
√
x̂e1,

√
ŷe2,

√
ẑe3), (67)

we can construct a background independent operator with the following outer-
product



22 M.P. Benowitz

±(
√

q̂ · e) ·e ⊗ ±
√

q̂ · e =

 x̂e1

√
x̂e1

√
ŷe2e1

√
x̂e1

√
ẑe3e1√

ŷe2

√
x̂e1e2 ŷe2

√
ŷe2

√
ẑe3e2√

ẑe3

√
x̂e1e3

√
ẑe3

√
ŷe2e3 ẑe3

 . (68)

We then solve for G by identifying the algebraic constants under the radical
give us an adjacency relation, where the algebraic constants outside of the
radical give us the orientation of this relation. Therefore G = K3, a com-
plete directed graph on 3 vertices. Let us denote the adjacency relation as
ei ∼ ej ≡ eij , then

K3 = (V, E) =
(
{e1, e2, e3}, {eij , eii}

)
. (69)

The ±1 pre-factor in eq (68) indicates that it transforms as a spinor. We can
re-write it as

Q̂(K3) := ei3δs(q̂ · e)s · e ⊗ ei3δs(q̂ · e)s s = (1/2)

where the transpose flips the orientation of the edges, sending s 7→ −s

Q̂>(K3) := e−i3δs(q̂ · e)−s ⊗ e−i3δs(q̂ · e)−s · e s = (−1/2).

We recover our 2nd-rank tensor through the schur-product (element-wise prod-
uct)

Q̂(K3) ◦ Q̂(K3) = q̂⊗ q̂. (70)

Given N independent quantum harmonic oscillators in 3-dimensions

Ĥ =
∑ 1

2m
p̂ · p̂ +

1

2
mω2q̂ · q̂ (71)

we send the vertices of Ê to

Ĝ(K3) :=
∑ 1

2m
P̂(K3) ◦ P̂(K3) +

1

2
mω2Q̂(K3) ◦ Q̂(K3)

=
∑ 1

2m

 p̂2
x p̂xp̂y p̂xp̂z

p̂yp̂x p̂2
y p̂yp̂z

p̂z p̂x p̂z p̂y p̂2
z

+
1

2
mω2

x̂2 x̂ŷ x̂ẑ
ŷx̂ ŷ2 ŷẑ
ẑx̂ ẑŷ ẑ2

 (72)
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where

p̂x = −i3~
∂

∂x
= −e1e2e3~

∂

∂x
x̂ = x

Ĥ = tr Ĝ(K3)

= tr Ĝ.

(73)

Since tr Â(G′) = 0 the morphism G −→ G′ minimizes the Hamiltonian. To
solve for G′ we demand

tr Q̂(K3) ◦ Q̂(K3) = q̂ · q̂ = 0 and tr P̂(K3) ◦ P̂(K3) = p̂ · p̂ = 0 (74)

which forms a 2-dimensional operator-valued isotropic Hilbert space, a suffi-
cient condition for the construction of spinors. We can write down a matrix
Q̂(G′) that represents q̂ in complex 3-space. This matrix admits a factoriza-
tion as an outer-product

Q̂(G′) = 2

[
ζ̂0
ζ̂1

] [
ζ̂0 ζ̂1

]
, (75)

yielding the overdetermined system of equations

ζ̂2
0 − ζ̂2

1 = x̂

i2(ζ̂2
0 + ζ̂2

1 ) = ŷ

−2ζ̂0ζ̂1 = ẑ

(76)

with the solutions

ζ̂0 = ±
√
x̂− i2ŷ

2
, ζ̂1 = ±

√
−x̂− i2ŷ

2
. (77)

We can solve eq. (75) by taking the Pauli vector

σ = σ1e1 + σ2e2 + σ3e3 (78)

and dotting it with q̂,

Q̂(K2) = q̂ · σ =

[
−ẑ x̂− i2ŷ

x̂+ i2ŷ ẑ

]
. (79)

Thus, under the following map,

Q̂(K3) −→ Q̂(K2), P̂(K3) −→ P̂(K2) (80)
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we get

Ĝ =
∑ 1

2m
p̂ · σ +

1

2
mω2q̂ · σ,

=
∑ 1

2m

[
−p̂z p̂x − i2p̂y

p̂x + i2p̂y p̂z

]
+

1

2
mω2

[
−ẑ x̂− i2ŷ

x̂+ i2ŷ ẑ

]

=
∑ 1

2m

[
−p̂z p̂x − e1e2p̂y

p̂x + e1e2p̂y p̂z

]
+

1

2
mω2

[
−ẑ x̂− e1e2ŷ

x̂+ e1e2ŷ ẑ

]

=
∑ 1

2m

[
−p̂z p̂x + e2e1p̂y

p̂x + e1e2p̂y p̂z

]
+

1

2
mω2

[
−ẑ x̂+ e2e1ŷ

x̂+ e1e2ŷ ẑ

]

(81)

where

p̂ = −i2~
∂

∂x
= −e1e2~

∂

∂x
x̂ = x

Ĥgrav = tr Ĝ(K2).

= tr Ĝ′

= 0

(82)

and
K2 =

(
{e1, e2}, {e2, e1}, {e11, e22}

)
. (83)

Theorem 3 The solution to the entanglement field equation at the Planck

scale is g(δ) = l
(δ/2π)
p (1 + ei2δ/2).

Proof From Theorem 1 and 2

P(q · σ) = (q · σ)θ/π = (q · σ)δs/π = (q · σ)δ/2π (84)

which is re-written as the entanglement field equation and solved for the met-
ric eigenfunction by the spectral decomposition

|G〉 = L+ |g+〉+ L− |g−〉

=
∑
i

Uij |gi〉+
∑
j

Uij |gj〉

=
∑
i

Uij exp

{
δ

2π
ln
√
x̂2 + ŷ2 + ẑ2

}
+
∑
j

Uij exp

{
δ

2π

(
ln
(√

x̂2 + ŷ2 + ẑ2
)

+ i2π
)}

(85)
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yielding

|g〉 = |g+〉+ |g−〉 = e(δ/2π) ln
√
x̂2+ŷ2+ẑ2(1 + ei2δ/2). (86)

Substituting lp =
√
x̂2 + ŷ2 + ẑ2 completes the proof.
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