THE INFINITY OF TWIN PRIMES

JOSEPH DISE

DEFINITION 1

 $6x \pm 1$ are twin primes where $x = 6nm \pm (n \pm m)$ has no solution for positive integers x, n, and m.

DEFINITION 2

Given *n* and *m* are interchangeable,

all solutions for x are
$$x \mod (6n \pm 1) \pm n = 0 \equiv (x \pm n) \mod (6n \pm 1) = 0$$
, for all $n \le \sqrt{\frac{x}{6}}$.

There are four results for each $x, n : (x \pm n) \mod (6n \pm 1)$.

DEFINITION 3

The distribution of x values with no solution is bounded by

$$D(x) \ge x \prod_{n=1}^{\left\lfloor \sqrt{\frac{x}{6}} \right\rfloor} \frac{6n-3}{6n+1}$$

such that $0 < \frac{D(x)}{x} \le 1$ for all x.

DEFINITION 4

$$\because \left[6(2n-1) \times \prod_{1}^{n} \frac{6n-3}{6n+1}\right] > 1 \quad \text{for all } n,$$

and : Definitions 1, 2, and 3,

: for any range $\langle x \rangle$ where $|\langle x \rangle| = 6(2n - 1)$ and $6(n + 1)^2 \ge x \ge 6n^2$ there will exist at least one x with no solution per Definition 1,

 \therefore there will exist twin primes to infinity.

Dedicated to Kelly and Jean Dise and Virginie Henry.