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Quantum information-theoretic approach has been identified as a way to understand the
foundations of quantum mechanics as early as 1950 due to Shannon. However there hasn’t been
enough advancement or rigorous development of the subject. In the following paper we try to find
relationship between a general quantum mechanical observable and von Neumann entropy. We find
that the expectation values and the uncertainties of the observables have bounds which depend
on the entropy. The results also show that von Neumann entropy is not just the uncertainty of
the state but also encompasses the information about expectation values and uncertainties of any
observable which depends on the observers choice for a particular measurement. Also a reverese
uncertainty relation is derived for n quantum mechanical observables.
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I. INTRODUCTION

Information theory resides at the heart of quantum
mechanics. Information theory as a way to understand
quantum mechanics has been a long sought out problem
as early as 1956 due to Shannon [1]. The idea was further
refined by Hartle [2], a supporter of the psi-epistemic [4]
veiw of quantum mechanics. According to him

...A quantum mechanical state being a summary of
the observers information about an individual physical
system changes both by dynamical laws, and whenever
the observer acquires new information about the system
through the process of measurement. The existence of
two laws for the evolution of the state vector...becomes
problematical only if it is believed that the state vector is
an objective property of the system...

However epistemic nature of quantum mechanics is
not exactly same as the information-theoretic approach.
The epistemic nature of the wavefunction requires the
existence of ontic variables, however the information-
theoretic approach relies on the fact that the act of
measurement is about gaining the information about the
system. As was clarified by Zurek [5],

...Quantum measurements are usually analyzed in
abstract terms of wavefunctions and Hamiltonians. Only
very few discussions of the measurement problem in
quantum theory make an explicit effort to consider the
crucial issuethe transfer of information. Yet obtaining
knowledge is the very reason for making a measurement...

In 1999 [3] Zeilinger formulated the Foundational
principle for the information-theoretic approach to
quantum foundations. The principles are given by

• An elementary system represents the truth value
of one proposition.

•An elementary system carries one bit of informa-
tion.

Even though the principles formed a starting point
for the rigorous development of the subject, it mostly
remained as philosophical construct. These ideas were
further refined by Peres [9], Fuchs and Peres [11], Fuchs
[10], Mermin [12], and Wheeler [13].

Entropy quantifies how much information we gain
about a system on an average or to quantify the re-
sources needed to store information [6],[7]. For a rigorous
information-theoretic approach it is important to find re-
lations among the quantum mechanical observables and
entropy. One conceptual difficulty for this approach is
that observables evolve unitarily. So all the observable
values change with time. However entropy is invariant
under a unitary transformation. Therefore no equality
relations should be expected, but some inequalities might
be useful to relate the concepts of quantum information
and quantum mechanics.

In this paper we will find the upper and lower bounds
for the expectation value of an observable and suprisingly
those bounds depend on the entropy. We also find the
upper bound for the uncertainty of an observable, which
also depends on the entropy. Entropy is also defined as
the uncertainty in the state of the physical system [6]. We
find a uncertainty like relation between the uncertainty
of an observable and the entropy and show that the limit
depends on the dimensions of the system. Also we find a
reverse uncertainty relation which gives an upper bound
for the product and sum of the variances of n quantum
mechanical observables.
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II. THE BOUNDS FOR THE EXPECTATION
VALUE OF AN OBSERVABLE A (〈A〉ρ)

The entropy is mathematically given by

S = −Tr(ρlog2ρ) (1)

It is trivial to show that [V]

S ≥ Tr(ρ− ρ2) (2)

Theorem 1. The expectation value of an hermitian
operator Â, is bounded by the sum of the entropy and
the purity of the state.

Proof. Using the inequality [2]

Tr(|Â|)S ≥ Tr(|Â|)Tr(ρ− ρ2) (3)

Since Â is hermitian opeartor, it can be diagonalised
and has real eigenvalues. So we take the diagonalised
Â. (From here onwards we will always consider that Â is
diagonalised.)

We know that

|Tr(DA)| ≤ Tr(|D|)Tr(|A|) (4)

where D is diagonal matrix and A is any matrix. The
|A| represents the matrix with the absolute values of the
elements of the matrix A.

Since the diagonal elements of ρ are all greater than
or equal to 0. The density matrix ρ is given in the basis
which diagonalises Â. Therefore from equ.[4]

Tr(|Â|)(S + Tr(ρ2)) ≥ Tr(|Â|)Tr(ρ) ≥ |Tr(Âρ)|
=⇒ Tr(|Â|)(S + Tr(ρ2)) ≥ |〈A〉ρ|

(5)

Therfore

Tr(|Â|)(S + Tr(ρ2)) ≥ 〈A〉ρ ≥ −Tr(|Â|)(S + Tr(ρ2))
(6)

This completes the proof.
The factor Tr(|Â|) can be defined as a normalization

factor as this factor is a constant for a particular opera-
tor. As we can see the expectation value is bounded from
above and below by the sum of entropy and the purity
of the state.

III. THE BOUNDS FOR THE UNCERTAINTY
IN THE VALUE OF AN OBSERVABLE A (σA)

Theorem 2. The variance of an hermitian operator
Â whose all eigenvalues are non-negative, is bounded by
the dimensions of the operator.

Proof. From quantum theory [8] we know that

σ2
A = Tr(Â2ρ)− (Tr(Âρ))2 (7)

From the inequality [4]

Tr(Â2ρ) ≤ Tr(Â)Tr(Âρ) (8)

Therefore

Tr(Â2ρ)− (Tr(Âρ))2 ≤ Tr(Â)Tr(Âρ)− (Tr(Âρ))2 (9)

Now from equ. [7]

σ2
A ≤ Tr(Âρ)(Tr(Â)− (Tr(Âρ)))

=⇒ σ2
A ≤ Tr(Âρ)(Tr(Â(I − ρ)))

(10)

Again using eq. [4]

Tr(Â(I − ρ)) ≤ Tr(Â)Tr(I − ρ) = Tr(Â)(d− 1) (11)

where d is the dimension of the operator Â. From equ.
[7], we have

σ2
A ≤ Tr(Âρ)(Tr(Â(I−ρ))) ≤ Tr(Âρ)Tr(Â)(d−1) (12)

Therefore

σ2
A ≤ 〈A〉ρTr(Â)(d− 1) (13)

This completes the proof.
As the above result shows that the variance of any

quantum mechanical hermitian opertors whose eigenval-
ues are positive is bounded above by the product of the
dimensions of the system and the the expectation value
of the observable with a normalization factor given by
Tr(Â).

Theorem 3. The variance of any general hermi-
tian operator Â, is bounded by the sum of the entropy
and the purity of the state.

Proof. Since the diagonal elemnents of Â2 are greater
than or equal to 0.
Therefore

Tr(Â2)S ≥ Tr(Â2)Tr(ρ− ρ2) (14)

Using eq. [4]

Tr(Â2)(S + Tr(ρ2)) ≥ Tr(Â2)Tr(ρ) ≥ Tr(Â2ρ) (15)

From eq. [7]

Tr(Â2)(S + Tr(ρ2)) ≥ σ2
A + (Tr(Âρ))2 (16)

Therfore

Tr(Â2)(S + Tr(ρ2)) ≥ σ2
A + 〈A〉2ρ (17)

Since 〈A〉2ρ is always greater than or equal to 0. Therefore

Tr(Â2)(S + Tr(ρ2)) ≥ σ2
A (18)

This completes the proof.
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As shown above that the variance of any general
quantum mechanical hermitian operator is bounded
above by the sum of the entropy and the purity with a
normalization factor given by Tr(Â2).

Corollary 1. A weaker limit for the product of
entropy S and the uncertainty of an observable σA which
resembles Heisenberg’s uncertainty relation, is given by

∆A S ≤ f(d)

√
Tr(Â2) (19)

where f(d) is a function dependent on the dimension d
given by f(d) = log2d

√
log22d.

Proof. From eq. [18]

σA ≤
√
Tr(Â2)(S + Tr(ρ2)) (20)

Since S ≥ 0,

σAS ≤ S
√
Tr(Â2)(S + Tr(ρ2)) (21)

Since S ≤ log2d and Tr(ρ2) ≤ 1,

σAS ≤ log2d
√
log2d+ 1

√
Tr(Â2) (22)

This gives us the desired result

∆A S ≤ f(d)

√
Tr(Â2) (23)

where f(d) is given by f(d) = log2d
√
log22d.

This completes the proof.
The above result shows that the product of the stan-

dard deviation and the von Neumann entropy is bounded
above by a function dependent only on the dimensions
of the system with a normalization factor given by√
Tr(Â2).

A recent result by A.K. Pati et. al [14] showed the
existence of reverse uncertainty relations. The reverese
uncertainty results means that the product or the sum
of the variances of the observables are also bounded
from above. A similar reverse uncertainty relation can
be obtained where the bound is dependent on the sum
of the entropy and the purity of the state.

Corollary 2. An upper bound for the product and
sum of the variances of two observables which resembles
the reverse Heisenberg’s uncertainty relation, is given by

σ2
Aσ

2
B ≤ Tr(Â2)Tr(B̂2)(S + Tr(ρ2))2 (24)

and

σ2
A + σ2

B ≤ Tr(Â2 + B̂2)(S + Tr(ρ2)) (25)

Proof. From eq. [18], we have

σ2
A ≤ Tr(Â2)(S + Tr(ρ2)) (26)

Also

σ2
B ≤ Tr(B̂2)(S + Tr(ρ2))2 (27)

Since variances are always positive, therefore multiplying
the eq. [26] and eq. [27]

σ2
Aσ

2
B ≤ Tr(Â2)Tr(B̂2)(S + Tr(ρ2))2 (28)

Similarly adding eq. [26] and eq. [27], we get

σ2
A + σ2

B ≤ Tr(Â2 + B̂2)(S + Tr(ρ2)) (29)

The above result could be trivially extended to n quan-
tum mechanical observables.

σ2
A1
σ2
A2
...σ2

An
≤ Tr(Â1

2
)Tr(Â2

2
)...T r(Ân

2
)(S+Tr(ρ2))n

(30)
and

σ2
A1

+ σ2
A2

+ ...σ2
An
≤ Tr(Â2 + Â2

2
+ ...Ân

2
)(S + Tr(ρ2))

(31)

IV. CONCLUSIONS

As we know that in an experiment on any quantum
system, the expectation values of different observables
and the uncertainty of those variables define the system.
As shown above these quantities are bounded by the sum
of the entropy and the purity of the state. The results
point out that quantum information is intrinsically con-
nected to quantum mechanics. Though von Neumann
entropy is only dependent on the quantum state, any
observable values which depends on the measurements
carried out by the observer is bounded by the entropy.
Therefore quantum information or von Neumann entropy
can also be defined as the maximum value of the expecta-
tion value of any general quantum mechanical observable
or the maximum uncertainty of any general quantum
mechanical observable (keeping in mind that the purity
has to be subtracted from these values and also the
presence of the normalization constant as defined above).
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V. APPENDIX

As

S = −Tr(ρlogρ) = −〈logρ〉 (32)

Using the Mercartor series for logarithm, we have

− 〈logρ〉 = 〈1− ρ〉+ 〈(1− ρ)2〉/2 + ... (33)

Therefore

S = SL + some positive terms =⇒ S ≥ SL (34)
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