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Abstract: In this paper, we present a unified minimal compartmental model to estimate mathematically the concentration of a 

Therapeutic Agent injected intravenously in a steady state into Human tissues divided into two compartments; the blood and tissues. The 

model takes into consideration most, if not all physiological factors of the Human system in conformity with the physical realities vis-a-

vis the Therapeutic Agent concentration before uptake by the compartments. The models were a system of first order non-homogeneous 

ordinary differential equations. And, the result from the models gives a zero concentration in both the blood and the tissues before the 

advent of the Therapeutic agent.  
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1. Introduction 
 

Several attempts at building a satisfactory model of the 

diffusion of foreign agents in Human system are recorded 

in literature.  The minimal model, which is currently used 

in physiological research for interpretation of substances 

concentration, was proposed in the early eighties. In order 

to study the intravenous injection of Therapeutic Agents in 

Human, a unified model would be desirable. Therapeutic 

agents (TA) as they are known are meant to cure illness 

and or help Human beings to relaxed, but many causes a 

lot of tissue damages and probably death as a result of its 

adverse effect. Its diffusion into the human tissues occurs 

rapidly because of highly permeable nature of the capillary 

membranes. And it may accumulate in tissues in higher 

concentration, above the upper therapeutic range than 

would be expected from diffusion equilibrium as a result 

of binding to intracellular constituent or partitioning lipid. 

It can be toxic, in concentration above the therapeutic 

range, and can also be ineffective in concentration below 

the therapeutic range. Thus, for it to have the desired effect 

it must remain within the desired therapeutic range. 

 

Many researchers have used mathematical compartmental 

analysis to study the Human biological system [2], [3], [5] 

and [7]. Traditionally, compartmental systems are tools 

used to describe the circulation of substances in models of 

biological processes [8] and [11]. This biological 

compartmental system rest on the concept of 

compartments sometimes called pools or domains. By 

compartmental models we mean the mathematical 

properties of the equations which arise from the 

description of the biological interchange between different 

physical system which are homogeneous and distinct in 

respect of chemical biological transformation of transport 

[9] and [12]. 

 

2. The Compartments 
 

The blood is the transport medium of the body, it is an 

extremely complex substance, carrying a wide variety of 

cells and substances to all parts of the human body. The 

intercellular fluid acts as the ‘middle man’ in the transport 

exchange between the blood and the cells [1]. Transfer of 

TA from the blood to tissues are due to causes such as 

diffusion, osmosis, etc, and the rate cannot be increased 

any further when these processes has reached its limit 

 

TA administered intravenously are in aqueous form and 

are readily soluble in blood and binding to plasma protein 

is superb. In particular, the flow of blood to all tissues 

(Fig. 1) is proportional at normal conditions. 

 

 
Figure 1: Human Tissues divided into two compartments 

 

3. Formulation of the Models 
 

TA administered intravenously does not require absorption 

since they immediately reach the vascular system and 

bioavailability is 100%. We assume the TA is 

administered at a constant rate into the blood and is taken 

up by the tissue on which it exerts its biochemical reaction. 

 

A two compartment (blood and tissue) system will now be 

considered with the parameters of the blood compartment 

being: the total amount of the TA in the blood x gm; the 

volume of blood v1; and the concentration of the TA in the 

blood c1, while those of the tissues compartment are: the 

total amount of the TA in the tissue w; the volume of the 

tissue v2; and the concentration of the TA in the tissue c2. 

Finally the rate of injection is denoted by v gm/s. 

 

We also have that 

 

x = c1v1                                                               (1) 

w = c2v2                                         (2) 

 

The rate of penetration of a TAcm
-2

s
-1

 from the blood into 

the tissue through the squamous epithelium (SE) will be 
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h(c1-kc2)                                      (3) 

 

where h is the permeability of SE and k is a constant 

known as the partition coefficient of the TA between the 

blood and tissues. 

 

If c1 = kc2, the two compartment will be in equilibrium and 

no flow through SE will take place. If S denote the total 

area of SE then the total flow from the blood to the tissue 

per second will be 

 

Sh(c1- kc2)                                     (4) 

 

This will be the rate of loss of the TA from the blood to the 

tissue. Moreover, normally when a TA is administered it 

undergoes decomposition in the blood. We consider for 

our modelling purpose that the TA decomposes at a rate 

proportional to its own concentration c1. Thus we may 

write the rate of decomposition as 

 

k1c1                                          (5) 

 

where k1 is a constant of proportionality. Hence the rate of 

disappearance of the TA from the blood due to 

decomposition is  

 

k1c1v1                                         (6) 

 

and thus the total rate of disappearance of the TA from the 

blood is 

 

Sh(c1-kc2) + k1c1v1                              (7) 

 

But the total rate of change of the amount of the TA in the 

blood is equal to the rate of administration V less the total 

rate of disappearance. Hence 

 

  
11121

vckkccShVx 
                     (8) 

 

or, using equations (1) and (2) 

 

xk)
v

w
k

v

x
(ShVx

1
22


                       (9) 

We will now introduce two more parameters namely 


, 


, where 

 

2

1

v

kv


                                       
(10) 

1
v

Sh


                                        (11) 

 

Substituting equations  (10) and (11) in (9), we have 

 

xk)wx(Vx
1


                       (12) 

 

The amount of drug entering the tissue is equal to the 

amount leaving the blood, since we consider the case 

where only one tissue takes up the drug. This amount is 

given by (4), which simplifies to 

)wx()vkcvc(
v

Sh
)kcc(Sh

1211
1

21


      (13)
 

 

Furthermore, in the tissue the drug is also used up and 

therefore is gradually destroyed. 

 

Similar, to the above analysis we assume that destruction 

of the drug is proportional to the concentration c2 in the 

tissue. Thus we may write the rate of destruction in the 

tissue using the same constant of proportionality k1 as 

 

k1c2                                       (14) 

 

For the whole tissue, the rate destruction is k1c2v2 g/s 

which is equal to k1w  from  (2). Hence the total rate of 

change, w , of the amount of the drug in the tissue is  

 

wk)wx(w
1

                       (15) 

 

The system of differential equation given by (12) and (15) 

can be readily solved by standard methods. This equation 

contains three constants, ,kand,
1

 and expresses the x 

and w as a function of time and the three constants.  

 

From (12) and (15) 

 

xk)wx(vx
1

                       (16) 

wk)wx(w
1

                        (17) 

 

On adding (16) and (17), we obtain 

 

      )wx(kv)wx(
dt

d
1


                  

 (18) 

 

By multiplying (17) by λ and subtracting from (16) we 

obtain 

 

       )wx)(kk(v)wx(
dt

d
21


          

 (19) 

 

Where 

 

        )1(k
2                             (20) 

 

By introducing two new variables, 

 

        wxz
1

                               (21) 

        wxz
2


                            (22) 

 

(18) and (19) simplifies to 

 

        111
zkvz 

                            (23) 

         2212
z)kk(vz 

                    (24) 
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4. Result 
 

At the beginning of injection, t = 0, x(0) = w(0) = 0 and 

hence z1(0) = z2(0) = 0 at t = 0. 

 

Solving the (23) and (24), we get 

 

         )e1(
k

v
z
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1
1

1


                          (25) 

and 

          )e1(
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                 (26) 

 

Using (21) and (22) in (25) and (26), we get 
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(27) shows that for t = 0, w = 0, which is should  

realistically be the case, for we began with the injection at 

t = 0 and there was no drug in the system prior to the 

injection  (also this was an initial condition so the result 

was not surprising ). As t tends to ∞, w asymptotically 

approaches a constant value given by 
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The greater the injection rate V, the greater the asymptotic 

value w∞. Since both k1 and k2 are positive, we have w∞ as 

a positive quantity. The TA exerts observable action when 

its total concentration reaches or exceeds some threshold 

value w
*
 in the tissues. Let us consider that the action in 

question is tissue-damage. Then if w ≥ w
*
 , tissue damage 

occur. If the quantity w∞ given equation 68 is less than that 

in the critical value w
*
 , then no matter  how long the TA is 

injected no lethal effect will be observed. in other that this 

should be the case we must have from equation (29) that 
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From the mathematical models of equation (27) and (28),  

 

r is the rate of intravenous injection, k is Partition 

coefficients for the penetration of the TA, v1 is the Volume 

or mass of the blood, v2 is the Volume or mass of the 

tissue, 

 

  1k
2

 

 

 

1
v

sh
   

s is the total area of the boundary between the blood and 

the tissue or area of the membrane. h is the permeability of 

the capillaries (permeability of the membrane), k1 is the 

clearance rate constant  of the TA (decomposition constant 

of the TA). And t is the time after the administration of a 

TA. 

 

5. Conclusion 
 

In this paper, we modelled the steady-state intravenous 

injection of a Therapeutic agent into Human tissues 

divided into two compartments, the blood and the tissues. 

We assumed that there exists a steady-state of flux of the 

Therapeutic agent into the initial compartment. And, all 

variables of the system are equal to zero when the system 

is at rest (until external intravenous injection of a 

Therapeutic agent intervenes). In the compartmental 

analysis, the squamous epithelium was taken as the 

exchange medium between the blood and the tissues. The 

resulting Mathematical models showed a remarkable 

relationship between the two compartments. This was 

especially obvious when t = 0. That is before the advent of 

the Therapeutic agent. The concentration at this point was 

also zero, which is expected and also in conformity with 

real life situation. 
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