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Abstract
The Eyring’s rate process theory and free volume concept are employed to treat protons (or

other particles) transporting through a 2D (two dimensional) crystal like graphene and hexagonal

boron nitride. The protons are assumed to be activated first in order to participate conduction and

the conduction rate is dependent on how much free volume available in the system. The obtained

proton conductivity equations show that only the number of conduction protons, proton size and

packing structure, and the energy barrier associated with 2D crystals are critical; the quantization

conductance is unexpectedly predicted with a simple Arrhenius type temperature dependence.

The predictions agree well with experimental observations and clear out many puzzles like much

smaller energy barrier determined from experiments than from the density function calculations

and isotope separation rate independent of the energy barrier of 2D crystals, etc.. Our work

may deepen our understandings on how protons transport through a membrane and has direct

implications on hydrogen related technology and proton involved bioprocesses.
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I. INTRODUCTION

Proton transport occurs in many important natural or man-made systems like the pho-
tosynthesis in green plants, proton pumps in human body, and the production of electricity
in a fuel cell. Many proton conductivity mechanisms have been proposed to explain specific
rather than generic systems. Grotthuss mechanism, the proton hopping along hydrogen
bonds, probably is the earliest theory proposed to explain the proton transport.1 Structural
reorganization, diffusional motions, presolvations, etc., are thought to be responsible for
proton transfer, while proton tunneling is thought to be unlikely at high temperatures2–4

but was visualized in very low temperature.5 Single and double proton transfer is found to
co-exist6 and protons behave very similar to electron7 obeying the Holstein’s polaron model.

A strong interest has arisen since two dimensional atomic thick crystals like graphene and
hexagonal boron nitride (hBN) were found to exhibit subatomic selectivity that can be po-
tentially used to separate proton and its isotopes.8–10 Experimental results have shown that
protons only can penetrate the monolayer of graphene and hexagonal boron nitride and un-
able to go through bilayer graphene, multilayer hexagonal boron nitride, and even monolayer
molybdenum disulfide; With the proton was replaced with deuteron, the transportation rate
is almost 10 times slower due to the large atom of deuteron.10 Ab initio quantum chemistry
method based on density function theory has been employed to estimate the proton perme-
ation energy barrier for understanding the proton isotope separation phenomena, predicting
the separation ratio of P+/D+ should be about 12.9 Despite some degrees of success, there
is a huge discrepancy between the density function predictions and the experimental results,
such as the proton transport energy barrier is calculated to be 1.2 to 2.2 eV for graphene,
resulting in millions of times smaller proton conductivity than experimental observations
that yield 0.78 eV.8

For the purpose of resolving those discrepancies and explaining unexpected experimen-
tal observations, we provide a quite different theoretical framework, other than traditional
density function theory, to understand the proton permeation through 2D crystals phenom-
ena; The Eyring’ rate process theory11 and free volume concept12–16 are utilized to target
generic proton transport systems without involving the complicated quantum mechanical
calculations. Eyring’s rate process theory, originated from quantum mechanics, argues that
every physical or chemical phenomenon is a rate controlled process, such as chemical re-
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actions, electron transfer, conductivity, viscous flows, diffusions, etc.; every process needs
an activated energy to move from the initial state to the final state. Free volume the-
ory, originated from molecular systems, is a most successful mean field theory in dealing
with many-body problems. All different kinds of interactions among entities are factored
into a single term, the free volume available in the systems. Since the free volume theory
adequately resolves how large freedom the entities have and Eyring’s rate process theory
adequately describes how fast the process is, we thus integrate these two theories together
to describe many seemingly unrelated systems or phenomena like glass liquids,15 colloids
and polymers,17 granules,18,19 electrical conductivity,20 and Hall Effect21 with great success.
Proton transportation through 2D crystals should be a rate controlled process and the rate
should be directly related to how much free volume available in 2D crystals.

II. THEORY

Inspired with the neutron scattering evidences for proton polaron in hydrated metal
oxide proton conductors7 and visualization of proton tunneling at low temperatures,5 we
further extend the idea that protons may transport very similarly to that of electrons,
though proton is much heavier and larger than electron. For electron transportation, i.e.,
the electrical conductivity, the velocity, based on the Eyring’s rate process theory, can be
expressed as11,20:

vd = K+λ[exp
αeλE

kBT
− exp

−(1− α)eλE

kBT
] (1)

where vd is the drift velocity of electrons, K+ = kBT
h

exp(−∆G/RT ), is the specific velocity
rate in any direction for the undisturbed system, kB is the Boltzmann constant, ∆G is the
standard Gibbs free energy of the activation process, R is the gas constant, h is the Planck
constant, λ is the distance between the initial equilibrium position to the final position, e
is the charge of an electron, E is the applied electric field, T is the temperature, and α is a
fraction operative directly related to the coordinate number (cn) of an electron or molecule
in the system with the relationship, α = 1/cn. Eq.1 is for electrons but should work for
protons, too.

The parameter, λ, the distance that a proton can travel from one equilibrium position to
the next, should be related to how much the free volume available for a conduction proton
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in penetrating monolayer 2D crystals as illustrated in Fig. 1. Assume that the number of
hexagons is Nh and the number of protons that penetrate each hexagon is Np. Therefore,
the total number of conduction protons is Nc. Apparently,

Nc = NhNp (2)

When protons penetrate through the holes of 2D crystal, we may reasonable assume that
protons may form certain packing structures. As one may know, the size of an atom is in
the order of 10−11m, while that of an proton is about 10−15m, very small compared with
an atom. Reasonably, an atom thick 2D crystal can still be viewed as three dimensional
(3D) structure for protons. The size of the protons and how protons pack together should
directly impact the free volume available for each proton, which in turn determines λ. For
estimating the free volume of protons, we still utilize the method developed by Hao in
dealing with the free volume of particulate systems using the inter-particle spacing (IPS)
concept.22 This method has been successfully employed for estimating the free volume of
particulates or electrons to derive the viscosity of colloidal suspensions, polymers, granular
dry powders,17–19,23,24 and electron conductivity.20 The IPS may be expressed as22:

IPS = 2( 3
√
ϕm/ϕ− 1)r (3)

where r is the effective radius of an proton, ϕm is the maximum packing volume fraction
achieved by the conduction protons, and ϕ is the volume fraction of conduction protons.
Suppose that the area of the 2D crystal is A, and the thickness is t, so the volume fraction
of conduction protons can be expressed:

ϕ =
4
3
πr3Nc

Aft
(4)

where f is a fraction parameter between 0 and 1, thus the term Aft represents the free
volume available in 2D crystal for protons to penetrate. Replacing ϕ in Eq. 3 with Eq. 4
leads to:

IPS = 2
(3ϕmAft)

1/3 − (4πr3Nc)
1/3

(4πNc)1/3
(5)
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FIG. 1: Schematic illustration of protons • packed in the hexagonal holes created by a 2D crystal

.

Adopting the similar method of treating particles or electrons in our previous
publication,19,20,23 we still argue that a proton can move both left and right sides with
the distance of IPS. Thus the equilibrium distance of a proton that can travel, λ, may be
expressed as:

λ = 2IPS = 4
(3ϕmAft)

1/3 − (4πr3Nc)
1/3

(4πNc)1/3
(6)

It is worth to mention that the volume of a proton in comparison with the available hole
size per proton is critical; if the former is larger than the latter, λ will be negative and there
should be no any proton transportation happening. The conductivity, σ, can be expressed
as25:

σ = eNc
vd
E

(7)

Replacing vd with Eq.1 leads to:

σ =
eNcK

+λ

E
[exp

αeλE

kBT
− exp

−(1− α)eλE

kBT
] (8)

Now, we have the free distance that a conduction electron can travel as shown in Eq.6 and
need to determine the parameters Nc and K+. For determining Nc, one may assume that
protons need to go through the Eying’s activation energy barrier that is related to 2D crystal
materials. Analogous to the electron conduction band theory, protons need to gain a certain
energy in order to transport from the side that the protons are injected to another and
participate the conduction process. The needed energy overcoming the activation barrier
may be written EB = Ec − Ef , where Ec is the energy of conduction band edge, and Ef is
the Fermi energy of the material. As one may tell, there are a huge amount of protons in
the systems with an effective concentration or activity Ne1 initially, and only a small portion
of protons is activated and penetrate through 2D crystal with the effective concentration
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Nc/(Aft) , while the big portion of protons still remains conduction uninvolved with the
effective concentration of Ne2. This process can be simply described as below:

Ne1

EB
 Nc +Ne2

Since the concentration of conduction protons should be much smaller than the initial con-
centration of protons, Ne2 should be almost identical to Ne1. So the equilibrium constant of
this process, Kc, can be written as:

Kc =

Nc

Aft
Ne2

Ne1

=
Nc

Aft
(9)

One may further assume that protons will obey the Fermi-Dirac statistics. Since the size of
a proton is usually ten thousand times smaller than an atom, the proton transport through
2D crystal should be considered as 3D rather than 2D process. For a 3D conduction system,
the conduction electron concentration has been theoretically obtained using Fermi-Dirac
statistics26,27 and can be analogously applied to protons:

Nc/(Aft) = 2(
2πm⋆kBT

h2
)3/2F1/2(ϵ) (10)

where m⋆ is the effective mass of a proton, F1/2(ϵ) is the Fermi-Dirac integral of order 1/2,
and ϵ =

−(Ec−Ef )

kBT
. Since 2D graphene and hBN are not a good proton conductive materials

and the activation energy is always needed, one may reasonable assume that Ef is well below
Ec, obeying (Ec −Ef ) > 2kBT , the extreme non-degeneracy condition,27 thus Eq.10 can be
rewritten as:

Nc/(Aft) = 2(
2πm⋆kBT

h2
)3/2 exp(−Ec − Ef

kBT
) (11)

= 2(
2πm⋆kBT

h2
)3/2 exp(− EB

kBT
) (12)

From Eq.12, one may obtain conduction proton concentration, or the parameter Nc.
Now we have to determine the parameter K+, the specific velocity rate in any direction

for the undisturbed system, which can be expressed below11,21:

K+ = Kc
1

δ
(
kBT

2πm∗ )
1/2 (13)

where δ is the length of top activation barrier. Replacing Kc in Eq. 13 with Eq. 9 and 2πm⋆

with Eq. 12 leads to:
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K+ =
Nc

Aft

1

δ
(
kBT

2πm∗ )
1/2 =

3
√
2kBT

δh
(
Nc

Aft
)2/3 exp(− EB

3kBT
) (14)

Now we have everything and the proton conductivity Eq. 8 can be rewritten as:

σ =
25/3eN

4/3
c kBT

δhE

[(3ϕm)
1/3 − (4πr

3Nc

Aft
)1/3]

(πAft)1/3
exp(− EB

3kBT
)[exp

αeλE

kBT
− exp

−(1− α)eλE

kBT
]

(15)
Eq. 15 gives a complicated relationship but can be simplified further, as proton conduction
experiments are typically performed at higher temperatures and may meet the condition
αeλE < kBT . Using the approximation ex ≈ 1 + x when x < 1, one may obtain:

σ =
e2

h

8Nc

δ
(
3

π
)2/3[(ϕm)

1/3 − (
4πr3Nc

3Aft
)1/3]2 exp(− EB

3kBT
)

= ν
e2

h
(16)

where ν = 8Nc

δ
( 3
π
)2/3[(ϕm)

1/3 − (4πr
3Nc

3Aft
)1/3]2 exp(− EB

3kBT
), a parameter only related to the

material properties of 2D crystals.

III. RESULTS

As one may already notice, the amazing feature of Eq. 16 is that the proton conductivity
is predicted to show conductance quantization typically dubbed the Hall effect for electron
conductivity. The highly reproducible experimental data for different samples even with
different proton injection materials but same 2D crystals8 may support that Eq. 16 is
indeed valid. In addition, the ”proton Hall effect” has been experimentally observed in ice28

and hydrogen in Palladium,29 further validating the predictions of Eq. 16.
Clearly, the proton conductivity has Arrhenius type relationship with temperature, which

is consistent with the experimental observations.8 The energy barrier for proton conduction
is predicted to be one third of the energy needed for activating protons from the ground state
to conduction state. This interesting prediction may provide some clues on the puzzles why
the calculated energy barrier is much larger than the experimental derived values, 1.2 ∼ 2.2

and 0.7 or 0.9 eV calculated from ab initio molecular dynamics simulations8,30–33 vs.0.78
and 0.3 eV determined from experimental results for graphene and hBN, respectively.8

7



Fig.2 shows the experimental data points taken from the literature8 and regressed very well
with Eq. 16. The obtained energy barriers based the experimental data and Eq. 16 are
EB = 2.49 ± 0.040eV for monolayer graphene and EB = 1.17 ± 0.016eV for monolayer
hBN, which are more reasonably close to the theoretical calculated values, especially when
all factors like the structural optimization, the role of the solvent, surface curvature, and
proton transport through hydrogenated samples are taken into considerations.33 Again, the
discrepancy between the theoretical calculations and experimental values are mainly caused
by the fact that the former should be 3 times higher than the latter, as indicated by Eq.
16; all corrections made for lowering energy barrier to be consistent with experimental data
actually go to the opposite direction and push the calculated values even higher.33

FIG. 2: The areal conductivity of proton transport through monolayer graphene is plotted against

the temperature. The data points are taken from Figure 2 of the reference8 and the curved

lines are regressed with Eq.16 of the goodness R2 = 0.9968 for monolayer graphene and 0.9915 for

monolayer hBN. The inset is the natural logarithm of areal conductivity vs. T−1 with a linear fit of

the goodness R2 = 0.9920 for monolayer graphene and 0.9957 for monolayer hBN, which yields the

conductivity energy barrier EB = 2.49±0.040eV for monolayer graphene and EB = 1.17±0.016eV

for monolayer hBN , in line with theoretical calculations.

.

Eq. 16 tells that the conductivity is dependent on the size of the particles penetrating 2D
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crystals. For a same 2D crystal, taking proton and deuteron as an example, the conductivity
difference between proton and deuteron will be resulted from the radius and the number of
conduction particles. The data from NIST indicate that the radius of proton and deuteron
is 0.8751 and 2.1413 fm,34 respectively, though the latest measurement gives 0.8356 and
2.1277 fm.35 Assume that both of protons and deuterons may take random close packing
structure when penetrating 2D crystals. Many articles have proved, both experimentally
and theoretically, the maximum packing fraction of random close packing is about 0.63,
most times independent of particle sizes when particle interactions are negligible; However,
particle size impact cannot be ignored if particle surface area or surface energy is large
and the container sizes are comparable with the particle sizes.37–41 The lattice constants of
both graphene and hBN are about 0.25 nm, very larger in comparison with the sizes of
protons and deuterons.42 Therefore the surface area or energy impact cannot be neglected.
An equation correlated the packing fraction, ϕ, with the particle size of monospheres has
been developed43:

ϕ = ϕtm(
1

1 + 3k/r
) (17)

where r is the radius of particles, and ϕtm is the true maximum packing fraction when particle
surface impact is considered, and k is a constant scaling the ratio of volume to surface area of
particles and independent of particle sizes. Assume both protons and deuterons are perfect
spheres and use the radius ratio of deuteron to proton about 2.5, an average value from
NIST and the literature,35 one may easily find that the packing fraction of deuterons, ϕD,
and that of protons, ϕP , based on Eq. 17, have a relationship:

ϕD = 1.429ϕP (18)

calculated when protons are used as a reference and k =
4
3
πr3P

4πr2P
= rP

3
, the ratio of proton

volume to surface area. When particle sizes increase from protons to deuterons, the extra
packing volume created by deuterons is analogously considered to be a thick layer attached
on proton particle surfaces but remain a same k, very similar to the cell model employed for
calculating the IPS.22 Eq. 18 therefore can be re-written as in term of particle volumes:

4

3
πr3DNcD = 1.429× 4

3
πr3PNcP (19)

NcP

NcD

= 0.67(
rD
rP

)3 (20)
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where rP and rD, NcP and NcD are the radius and the number of conduction proton and
deuteron, respectively. According to Eq. 16, the conductivity ratio of proton to deuteron is:

σP

σD

≈ NcP

NcD

= 10.93 (21)

Clearly, Eq. 21 shows that the conductivity ratio of proton to deuteron is independent of
many seemingly important factors like 2D crystals, the energy barriers, the sample sizes,
experimental setups, etc., which are in great consistency with experimental observations.10

Amazingly, the predicted conductivity ratio of proton to deuteron is about 10.93, in a very
good agreement with ∼ 10 obtained experimentally.10 Of course, our prediction is greatly
dependent on the precision of radius data that need further refinements,35 however, it will
not change too much.

IV. DISCUSSION

Two important assumptions are employed in deriving proton conduction equations in
this article. They are extreme non-degeneracy condition that an energy needed to activate
protons for participating conduction process meets (Ec − Ef ) > 2kBT , and the relatively
high temperature condition that αeλE < kBT . They are very reasonable assumptions in
term of how typical proton transport experiments are performed. Both Eq. 15 and 16 are
pretty general and can be applied to many systems. When temperature is low enough that
αeλE > kBT , Eq. 15 should be used. Similar to electron pairing at low temperatures, if
protons are pairing where α = 1, thus Eq. 15 will be rewritten as:

σ =
25/3eN

4/3
c kBT

δhE

[(3ϕm)
1/3 − (4πr

3Nc

Aft
)1/3]

(πAft)1/3
exp(−EB − 3eλE

3kBT
) (22)

under the condition that exp( eλE
kBT

) ≫ 1. The energy barrier value determined experimentally
should be much lower than the calculated energy barrier, EB.

Note that conductivity equations derived in this article are not specifically limited to
protons and should be applicable to any other charge carriers. the sign of elementary charge
e should be changed accordingly, for example, changed to positive for protons in all related
equations.
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V. CONCLUSION

In summary, the Eyring’s rate process theory and free volume concept are successfully
employed to treat the proton transport through 2D crystals. The obtained conductivity
equations show the conductance quantization similar to the Hall effect associated with elec-
trons; The conductivity is only related to the number and size of conduction protons, packing
structures of protons, and the energy barrier from 2D crystals; It is independent of proton
injecting materials and sample sizes. Our equations resolve several puzzles, like why the en-
ergy barrier obtained experimentally is much smaller than theoretical values calculated with
density function theory, why deuterons transport about 10 times slower than protons, and
why the isotope effect is independent of 2D crystal membranes or the energy barrier, etc..
Our theory presents an excellent agreement with the experimental observations, deepening
our understandings on proton transport through 2D crystals and shedding light on how to
optimize proton transport systems.

The theoretical framework utilized in this article is same as the ones employed to treat
colloidal suspensions,24 polymers,15,24 granular powders,18,19 electrical conductivity,20 Hall
effect,21 and even our universe.36 The success of current work extends our previous idea that
the multi-scale systems spanning from the microscopic to the macroscopic worlds could be
treated with a single theoretical formulation, the combination of the Eyring rate process
and free volume theories.
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