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A
theory of tracer diffusion in hard-sphere suspensions is de-

veloped by using irreversible thermodynamics to obtain a col-
loidal version of the Kedem-Katchalsky equations. Onsager

reciprocity yields relationships between the cross diffusion coeffi-
cients of the particles and the reflection coefficient of the colloidal
suspension. The theory is illustrated by modelling a self-forming col-
loidal membrane that filters tracer impurities from the pore fluid.

1. Introduction

Diffusion of tracer particles in colloidal systems occurs in many natural and
technological settings including cells and tissues, polymer solutions, soils, water
purification systems, biofilms, drug delivery devices, waste containment barriers
and microfluidics systems [1]. In contrast to normal diffusion of tracer particles in
liquids, colloidal systems often involve coupled effects or membrane phenomena,
in which the colloidal particles affect the movement of the tracer particles and
vice versa [2, 3, 4]. Owing to the coupling effects, unexpected behaviour can
occur such as uphill diffusion [5], the development of anomalous pressures [6]
and nonGaussian diffusion [7]. Modelling such systems is challenging owing to
a multiplicity of competing effects. In this work a model of a relatively simple
case is developed in which the colloidal medium is a hard-sphere suspension

page 1 of 23



(a) (b)

x

V

V

Figure 1: Schematic of a self-forming dynamic colloidal membrane [8]. (a) A suspen-
sion of colloidal particles (grey) and tracer particles (red) is placed above
a membrane. The membrane is impermeable to the colloidal particles, but
permeable to the tracer particles. (b) A flow v = −V x̂ is imposed, consoli-
dating the colloidal particles against the membrane, and forming a dynamic
secondary colloidal membrane that traps the tracer particles.

containing tracer particles in the pore fluid. The results are applied to a water
purification system (figure 1) in which the colloidal particles form a dynamic
membrane that filters the tracer particles from the pore fluid yielding purified
water as the filtrate [8].

In section 2 the equations describing coupled diffusion in colloidal suspensions
are presented, and in section 3 the equations are written in a porous media
framework leading to a colloidal version of the Kedem-Katchalsky equations.
Onsager reciprocity then gives relations between the cross diffusion coefficients
and the reflection coefficient σ. Expressions for the dependence of the various
coefficients on the volume fraction of colloidal particles are obtained using
hydrodynamic models of hindered transport. In section 4 the governing equa-
tions are solved for the colloid and tracer particle concentration profiles in an
ultrafiltration system. The colloidal particles form a dynamic membrane that
filters the tracer particles from the pore fluid.
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2. Diffusion and cross-diffusion in colloidal
suspensions

From irreversible thermodynamics the flux equations describing cross-diffusion
in colloidal suspensions can be written as (see appendix A)

Jp = −Dp∇Φ− ΦDdp∇ϕ, (1)

Js = −ϕDcd∇Φ−Ds∇ϕ, (2)

where Φ is the volume fraction of the large colloidal particles and ϕ is the
volume fraction of the small tracer particles (volume of particles per unit
volume of mixture). The flux of colloidal particles is Jp = Φ(vp − v), where
vp is the average particle velocity and v is the volume average velocity of the
mixture. The tracer particle flux is Js = ϕ(vs − v) and the volume velocity
is v = Φvp + ϕvs + ωvw, where ω = 1 − Φ − ϕ is the volume fraction of the
suspending fluid.

The mutual or collective diffusion coefficient of the colloidal particles is Dp.
In binary systems containing only the solvent and colloidal particles, Dp is
determined by the generalized Stokes-Einstein equation

Dp = Φ
k

µ

(
∂Π

∂Φ

)
T,P

, (3)

where µ is the viscosity of the pore fluid, k is the permeability of the suspension
and Π is the colloid osmotic pressure [9, 10]. Diffusiophoresis modifies equation
(3) (Cf. Section 3), though the effect is small for dilute tracer concentrations.
In (2) Ds is the tracer diffusivity,

Ds = τDs0 , (4)

where Ds0 = kBT/(6πRsµ) is the Stokes-Einstein diffusivity of the tracer (kB
is Boltzmann’s constant, T is temperature and Rs is the radius of the tracer
particles) and τ is the diffusive tortuosity factor. Tracer diffusion is hindered
(τ < 1) in comparison to that in the pure suspending fluid because the tracer
particles diffuse in the restricted and convoluted pore space between the larger
colloidal particles. As will be seen in Section 3.2.2, similar to self diffusion in
concentrated suspensions [11] as the effective pore radius rp approaches the
size Rs of the tracer particles, τ → 0 and diffusion is effectively stopped by the
presence of the colloidal particles.

The quantity Ddp in (1) is the diffusiophoresis coefficient characterizing
motion of colloidal particles in a gradient of tracer concentration [12]. In a
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diffusiophoresis experiment a colloidal particle is placed in a quiescent fluid
(v = 0) containing a gradient in tracer particle concentration ∇ϕ. The colloidal
particle moves owing to a variation in local fluid pressure over the particle
surface, set up by the tracer gradient [12]. Equation (1) becomes

vp = −Ddp∇ϕ (5)

so that, given ∇ϕ, a measurement of the particle velocity vp determines the
diffusiophoresis coefficient Ddp. For a single colloidal particle surrounded by
uncharged hard-sphere tracer particles, calculation of the fluid stress over the
particle surface leads to the theoretical relation Ddp = 9

4Ds0 [12, 13].
The osmotic-diffusion coefficient Dcd in (2) allows for a tracer flux driven by

a gradient in colloid particle concentration ∇Φ [14]. For a single tracer particle
in a quiescent system equation (2) becomes

vs = −Dcd∇Φ, (6)

so that a measurement of the average tracer velocity vs yields the osmotic-
diffusion coefficient. Experiments obtaining Dcd are less common than Ddp,
though recently Gosting interferometry has obtained Dcd for several colloidal
systems [15, 14]. In Section 3.1 Onsager reciprocity is used to obtain a relation
between Dcd and Ddp. In Section 3.2 hydrodynamic models of tracer diffusion in
pores are used to obtain the dependence of Dcd on the colloid volume fraction.

3. Porous media formulation

The flux equations (1) and (2) can be written in a porous media framework by
introducing equations of state for the pore pressure p and the tracer osmotic
pressure π (figure 2). In general p and π depend on temperature T , mixture
pressure P , colloid volume fraction Φ and tracer concentration ϕ, so that
p = p(T, P,Φ, ϕ) and π = π(T, P,Φ, ϕ). In this work T and P are assumed
constant. Differentiating π then gives

∇π = πΦ∇Φ + πϕ∇ϕ, (7)

where πΦ = (∂π/∂Φ)T,P,ϕ and πϕ = (∂π/∂ϕ)T,P,Φ. Similarly differentiating p
yields

∇p = −ΠΦ∇Φ−Πϕ∇ϕ, (8)

where ΠΦ = (∂Π/∂Φ)T,P,ϕ, Πϕ = (∂Π/∂ϕ)T,P,Φ and the colloid osmotic pressure
is the difference between the mixture and pore pressures, Π ≡ P − p.
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π = p− pwΠ = P − p
Figure 2: Illustration of osmotic equilibrium in a colloidal suspension containing

tracer particles in the pore fluid. P is the pressure on the full suspension
in compartment I, p the pressure on compartment II containing the pore
fluid and tracer particles, and pw the pressure on the pure fluid in III.
The membrane separating compartment I from II is permeable to the fluid
(blue) and tracer particles (red) but impermeable to the colloidal particles.
The difference between the pressures in the two compartments is the colloid
osmotic pressure Π ≡ P − p. The membrane separating compartments II
and III is permeable to the fluid but impermeable to the tracer particles. The
difference between the pressures in II and III is the tracer osmotic pressure
π ≡ p− pw. Owing to volume exclusion, the tracer particle volume fraction
ϕ in compartment I is less than the volume fraction ϕ∗ in II. In the absence
of depletion effects (dilute tracer concentrations) ϕ = nϕ∗ [16].

In the infinitely dilute tracer limit ϕ→ 0 the colloid osmotic pressure Π is
independent of ϕ [16] so that (8) becomes

∇p = −ΠΦ∇Φ. (9)

The osmotic pressure of the tracer particles is

π =
ϕ∗kBT

νs
, (10)

where νs = 4
3πR

3
s is the tracer particle volume and ϕ∗ = ϕ/n is the volume of

tracer particles per unit volume of pore space [16] (figure 2). When the tracer
concentration is non-dilute the osmotic pressures can be obtained, for example,
from multisolute osmotic pressure equations [17, 16].

Inserting (9) and (7) into equations (1) and (2) leads to

q = −k
µ

(∇p− σp∇π), (11)

JD = σd
k

µ
∇p− Ds

ϕπϕ
∇π, (12)
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where q = n(vf − vp) = −Jp/Φ is the flux of fluid and tracer particles relative
to the colloidal particles, n = 1−Φ is the porosity (void fraction) of the colloidal
particle matrix, JD = nJs/ϕ + Jp = n(vs − vf ) is the tracer particle flux
relative to vf , and vf = (ϕvs + ωvw)/n = (v − Φvp)/n is the volume velocity
of the fluid and tracer particles in the pore space. The permeability k in (11) is

k

µ
≡ −∇p

q
|∇π=0 =

Dp

ΦΠΦ
−
ϕDdp

nΠΦ
. (13)

Solving (13) for Dp leads to a modification of the generalized Stokes-Einstein
equation (3) of the form

Dp = Φ
k

µ
ΠΦ +

Φϕ

n
Ddp. (14)

Thus a positive value of the diffusiophoresis coefficient Ddp acts to enhance
mutual diffusion of the colloidal particles. For the dilute solute concentrations
(ϕ ∼ 10−5) considered here, however, the second term on the right-hand-side of
(14) is negligible so that (14) is equivalent to (3).

The reflection coefficient σp in (11) is

σp =
µ

k

Ddp

πϕ
, (15)

and the corresponding coefficient in (12) is

σd =
µ

kΠΦ

(
nDcd +Dp −

πΦ

πϕ
(nDs/ϕ− ΦDdp)

)
. (16)

Finally, the effective diffusivity Ds in (12) is

Ds = Ds + ΦϕDdp/n. (17)

3.1. Kedem Katchalsky equations

Equations (11) and (12) are in the form of Kedem-Katchalsky equations,

q = −LP∇p− LPD∇π, (18)

JD = −LDP∇p− LD∇π, (19)

where

Lp =
k

µ
, LPD = σp

k

µ
, LDP = σd

k

µ
, LD =

Ds
ϕπϕ

(20)
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are Onsager transport coefficients and Onsager reciprocity implies LPD = LDP
[18, 19] (Appendix A.3). Equation (20) then yields

σp = σd = σ. (21)

With (21) equation (15) yields a relation between the diffusiophoresis coefficient
and the reflection coefficient

Ddp = σ
k

µ
πϕ. (22)

Inserting (15) and (16) into (21) yields an Onsager relation between the cross
diffusion coefficients:

nDcd =

(
nπΦ

ϕπϕ

)
Ds −Dp +Ddp

(
ΠΦ − ΦπΦ

πϕ

)
. (23)

In the following section hydrodynamic models of the reflection coefficient σ and
tortuosity τ for the case of hard spherical particles are used along with the
Onsager relation (23) to obtain the volume fraction dependence of the cross
diffusion coefficients.

3.2. Volume fraction dependence

3.2.1. Permeability and osmotic pressure

For sufficiently dilute tracer concentrations (ϕ → 0), the permeability and
osmotic pressure of a bidisperse suspension depend only on the volume fraction
Φ of the larger particles [16, 25]. The permeability can then be written in the
form

k =
2R2

9Φ
K(Φ), (24)

where K is a dimensionless hindrance factor [9]. For hard-sphere suspensions a
Richardson-Zaki type equation

K = (1− Φ)α, (25)

where α = 6.55− 2.5Φ, matches experimental data well (figure 3a), agrees
with Batchelor’s result K = 1 − 6.55 Φ in the dilute limit [26] and with the
Kozeny-Carman equation K = (1−Φ)3/10Φ at high colloid concentrations [21].

The colloid osmotic pressure can be written as

Π =
ΦkBT

νp
Z(Φ), (26)
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Figure 3: Plots of (a) hindrance function K and (b) compressibility factor Z as
functions of the colloid volume fraction Φ. In (a) the data are from sedi-
mentation experiments (squares) [20], permeation experiments (star) [21],
and numerical simulations (circles) [22]. The curves are from equation (25)
with α = 6.55− 2.5Φ (solid), equation (25) with α = 6.55 (dashed), and the
Kozeny-Carman equation K = (1−Φ)/10Φ3 (dash-dot). In (b) the data are
from the molecular dynamics simulations of Wu & Sadus [23] (circles) and
Rintoul & Torquato [24] (diamonds). The curves are from equation (27)
(solid), the Carnahan-Starling equation of state Z = (1+Φ+Φ2−Φ3)/(1−Φ)3

(dash-dot) and the Woodcock equation of state Z = 2.89/(1−Φ/Φp) (dash).
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where νp = 4
3πR

3
p is the volume of a colloidal particle of radius Rp and Z(Φ) is

the compressibility factor [9]. For hard spheres the following expression gives a
good fit to molecular dynamics simulations (figure 3b)

Z =
1 + a1Φ + a2Φ2 + a3Φ3 + a4Φ4

1− Φ/Φp
, (27)

where a1 = 2.44, a2 = 3.75, a3 = 6.25, a4 = −17 (Appendix B) and Φp = 0.64
is the maximum random close packing fraction [27]. Equation (27) agrees with
the Carnahan-Starling equation Z = (1 + Φ + Φ2−Φ3)/(1−Φ)3 for 0 < Φ < 0.5
and with Woodcock’s asymptotic equation of state Z = 2.89/(1 − Φ/Φp) as
Φ→ Φp [9].

3.2.2. Reflection coefficient and tortuosity

An expression for the dependence of the reflection coefficient σ on porosity for
hard-sphere tracer particles in cylindrical pores was derived by Anderson &
Quinn [28] in the form

σ = 1− (1− λ)2Kc, (28)

where Kc = (1 + 2λ − λ2)(1 − 2
3λ

2 − 0.163λ3) is a hydrodynamic factor and
λ = Rs/rp is the ratio of tracer particle radius Rs to the pore radius rp.

Equation (28) can be applied to colloidal suspensions by noting that the
effective pore size (hydraulic radius) rp in a suspension is related to the void
fraction n = 1 − Φ via the relation rp = n/sp(1 − n) where sp = 3/Rp is the
specific surface area [29] so that

λ = qr
3Φ

1− Φ
, (29)

where qr = Rs/Rp is the ratio of particle sizes.
The tortuosity factor τ can be obtained as a function of λ via the Renkin

equation [28]
τ = (1− λ)2Kd, (30)

where Kd = 1 − 2.1λ + 2.09λ3 − 0.95λ5. Note that equations (28) and (30)
apply when the tracer particles are smaller than the pore radius (λ < 1). When
λ ≥ 1, σ = 1 and τ = 0 since the particles are in this case larger than the pores.
The tortuosity τ(Φ) and reflection coefficient σ(Φ) are plotted on figure 4 along
with experimental data for τ . At low colloidal particle concentrations (Φ→ 0)
the effective pore size is large (rp � Rs) and the colloidal particles have little
effect on the tracer particles, so that σ ≈ 0 and τ ≈ 1. At higher concentrations,
however, the pore radius can become equal to or smaller than the tracer particle
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Figure 4: Plots of (a) the membrane reflection coefficient σ and (b) the diffusive
tortuosity τ as functions of the colloid volume fraction Φ for different values
of the size ratio qr = Rs/Rp (blue qr = 0.25, black qr = 0.18, and red
qr = 0.11). The data in (b) are from the Brownian dynamics simulations of
Kim & Torquato [30] for qr = 0.25 (squares) and qr = 0.11 (circles). The
inset to (b) shows τ versus qr for the case Φ = 0.6, along with experimental
data (circles) from Kluijtmans & Philipse [31].

radius, so that in this limit the colloidal particles significantly hinder the solute
particles, and τ → 0 while σ → 1.

3.2.3. Diffusion and cross diffusion coefficients

With these expressions the diffusiophoresis coefficient Ddp(Φ) can be obtained
from equation (22), with (28) for σ, (24) for k and (10) for πϕ = kBT/nνs. For
dilute tracer concentrations the viscosity µ of the pore fluid is equal to that
of the pure suspending fluid. Equation (14) then gives the colloid diffusion
coefficient Dp(Φ), with ΠΦ obtained by differentiating (26), while (4) combined
with (30) gives the solute diffusivity Ds(Φ). Finally, the osmotic diffusion
coefficient Dcd(Φ) is determined by the Onsager relation (23). The diffusion
and cross-diffusion coefficients are plotted on figure 5 as functions of Φ for the
case Rp = 1µm and Rs = 0.18µm.

The behaviour of Dp (figure 5a) is similar to that observed in previous works
on diffusion in hard-sphere suspensions [9, 32]. The slope of the diffusivity curve
is reduced at intermediate Φ owing to viscous drag but eventually diverges as
Φ → Φp owing to volume exclusion [9]. The tracer diffusivity Ds(Φ) (figure
5d) decreases monotonically with Φ owing to the effects of hindered diffusion,
and approaches zero as Φ → Φp [30]. The diffusiophoresis coefficient Ddp,
being proportional to σ, at first increases with Φ (figure 5c). Viscous drag,
represented by the permeability k(Φ), eventually reduces the value of Ddp as
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Figure 5: Plots of the diffusion and cross-diffusion coefficients (in units of µm2/s) of
the colloidal and tracer particles as functions of colloid volume fraction Φ
for the case ϕ = 10−5, Rp = 1µm and Rs = .18µm: (a) mutual diffusion
coefficient Dp(Φ) of the colloidal particles; (b) diffusiophoresis coefficient
Ddp(Φ); (c) osmotic diffusion coeffient Dcd(Φ) of the tracer particles; (d)
tracer diffusion coefficient Ds(Φ).
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Φ → Φp. The behaviour of the cross diffusion coefficient Dcd is remarkable,
in that it begins as a decreasing function of Φ, but eventually increases and,
similarly to Dp, diverges as close packing is approached. This behaviour is
owing to the competing terms in the Onsager relation (23). For the infinitely
dilute tracer limit (ϕ→ 0) and tracer osmotic pressure given by (10), equation
(23) takes the simpler form (using also equations (22) and (14))

nDcd = Ds −Dp(1− σ/Φ). (31)

In the limit of a perfect membrane (σ → 1 and Ds → 0) equation (31) gives
Dcd = Dp/Φ, while in the dilute colloid limit (Φ → 0 and σ → 0) equation
(31) gives Dcd = Ds − Dp. If in addition qr � 1 (tracer particles much
smaller than colloidal particles), Dcd = Ds. (With equation (56) this becomes
D21 = C1V̄1D22, in agreement with Annunziata [2] and Bruna & Chapman
[33].) Thus Dcd represents a competition between the tracer diffusivity Ds at
low Φ and the colloid diffusivity Dp at high Φ. As will be seen in the next
section, the rapid increase of Dcd as Φ→ Φp allows the colloidal suspension to
behave like a separation membrane that actively prohibits the tracer particles
from passing through.

4. Application to ultrafiltration

In ultrafiltration systems a colloidal suspension is advected toward a membrane
or porous support that is impermeable to the colloidal particles, but through
which the pore fluid and tracer particles can pass (figure 1). Ultrafiltration
is used extensively in industry to purify water, process pharmaceuticals and
concentrate milk and juices [34]. During the filtration process the colloidal
particles build up adjacent to the membrane forming a concentration polarization
layer. The large colloid osmotic pressure in this layer can lead to detrimental
effects such as membrane fouling and flux decline [35]. On the other hand if the
colloidal particles exhibit membrane properties, the concentration polarization
layer itself becomes a secondary dynamic filtration membrane that can be used
to remove tracer particles from the pore fluid. Recent experimental studies
demonstrate the excellent potential of dynamic colloidal membranes for water
purification applications [8]. The membranes form naturally, are relatively
inexpensive to produce and can be easily removed and regenerated, mitigating
the effects of membrane fouling. A significant advantage of such systems is
that expensive ultrafiltration membranes are not required, since the secondary
dynamic membrane performs the filtration. Recently, CO2 injection has been
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used in place of the porous support, creating the possibility of completely
membrane-free water purification [36].

Figure 1 shows a schematic of the system to be studied. At x = 0 is a
porous support or mesh that is permeable to the fluid and tracer particles,
but impermeable to the colloidal particles. Above the support is a colloidal
suspension of initial volume fraction Φ0 containing tracer particles at ϕ0. At
t = 0 a volume flow v = −V x̂ is imposed and the colloidal particles are advected
toward the porous support, forming a concentration polarization layer.

4.1. Governing equations

For the one-dimensional system in figure 1, conservation of mass can be written
as (appendix C)

∂Φ

∂t
− V ∂Φ

∂x
= −∂Jp

∂x
(x > 0), (32)

∂ϕ

∂t
− V ∂ϕ

∂x
= −∂Js

∂x
(x > 0), (33)

where the fluxes are

Jp = −Dp
∂Φ

∂x
− ΦDdp

∂ϕ

∂x
, (34)

and

Js = −ϕDcd
∂Φ

∂x
−Ds

∂ϕ

∂x
. (35)

4.1.1. Initial and boundary conditions

Initially there is a semi-infinite layer of colloidal suspension above the porous
support, of uniform concentration so that

Φ = Φ0 and ϕ = ϕ0 (0 ≤ x <∞). (36)

The boundary conditions are that the membrane support at x = 0 is imper-
meable to the colloidal particles: (vp = 0) and permeable to the tracer particles:
(vs = v). With these conditions the fluxes at x = 0 become Jp = −Φv = ΦV x̂
and Js = 0, and equations (34) and (35) then give the boundary conditions at
the porous support as

ΦV = −Dp
∂Φ

∂x
− ΦDdp

∂ϕ

∂x
(x = 0), (37)

0 = −ϕDcd
∂Φ

∂x
−Ds

∂ϕ

∂x
(x = 0). (38)

The far field boundary conditions are that

Φ→ Φ0 and ϕ→ ϕ0 (x→∞). (39)
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Figure 6: (a) Colloid volume fraction Φ(x, t) and (b) tracer concentration ϕ(x, t)
profiles obtained by solving equations (32)–(39). The inset to (b) shows the
time evolution of the tracer particle concentration entering the filtrate at
x = 0.

4.2. Results

Equations (32)–(39) were solved using the MATLAB partial differential equation
solver pdepe for the case {Φ0 = 0.1, ϕ0 = 10−5, Rp = 1µm, Rs = 0.18µm and
V = 0.1µm/s}. The results for Φ(x, t) and ϕ(x, t) are shown in figure 6. At
early times (t = 10 s and t = 50 s), the colloid volume fraction increases rapidly
against the support at x = 0 (figure 6a), but the tracer particle concentration
is relatively unchanged from it’s initial value ϕ0 (figure 6b). The colloidal
suspension is still fairly porous at this stage and the tracer particles are able
to pass through into the filtrate relatively unhindered. However, as the colloid
is further consolidated (t = 150 s), the volume fraction at x = 0 approaches
close packing and the tracer particles can no longer easily fit through. The
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reflection coefficient σ approaches 1, causing the tracer particles to become
trapped. At longer times (t = 250 s and t = 400 s) the colloidal particles almost
completely block the tracer particles, and a large tracer polarization layer forms
within the colloidal membrane. The inset to figure 6b shows the time evolution
of the tracer concentration entering the filtrate at x = 0. Once the dynamic
membrane has formed (t > 150 s), the tracer concentration entering the filtrate
drops rapidly, approaching zero at longer times.

The membrane effect is caused by the osmotic diffusion Dcd term in the tracer
flux equation (35). In the ultrafiltration system in figure 6, ∂Φ/∂x < 0 while
∂ϕ/∂x > 0 at x = 0, and therefore the two terms on the right hand side of
(35) are of opposite sign. The main Ds diffusion term acts to relax the tracer
concentration gradient and move the particles through the membrane in the
−x direction, while the osmotic diffusion term is driving them in the positive
x direction. When the colloid volume fraction Φ is large, hindered diffusion
causes the tracer diffusion coefficient Ds to reduce to near zero (figure 5d). The
osmotic diffusion coefficient Dcd, however, becomes large in this limit (figure
5c) and prohibits the tracer particles from passing through the membrane.

5. Conclusions

A phenomenological theory of tracer diffusion and membrane effects in colloidal
suspensions has been derived. The coupled diffusion equations have been trans-
formed into Kedem-Katchalsky equations, yielding relations between the cross
diffusion coefficients and the reflection coefficient of the colloidal membrane.
As an example application the equations have been solved for an ultrafiltration
system. The colloidal particles form a dynamic membrane that filters the tracer
particles from the pore fluid.

A. Non-equilibrium thermodynamics of cross-diffusion

The following derivation is given in detail as it differs in some respects for
colloidal suspensions from previous works on discontinuous systems [18, 37],
particularly in the treatment of chemical potentials and pressures in section
A.3. From irreversible thermodynamics the rate of entropy production Σ in a
three-component system at constant temperature T and pressure P is given by
the equation [37, 18]

−TΣ = J0 ·∇T,Pµ0 + J1 ·∇T,Pµ1 + J2 ·∇T,Pµ2 (40)
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where Jk = Ckvk is the molar flux of component k moving at velocity vk and
µk and Ck are the molar chemical potential and the molar concentration (moles
per unit volume of mixture), respectively, of k. Here, component ‘0’ is taken to
be the fluid, ‘1’ the colloidal particles and ‘2’ the tracer particles. The subscript
T, P denotes the gradient taken with T and P held constant [37],

Equation (40) can be written in terms of independent fluxes and forces using
the Gibbs-Duhem equation [37, 18] which states that at constant T and P

C0∇T,Pµ0 + C1∇T,Pµ1 + C2∇T,Pµ2 = 0. (41)

Inserting (41) into (40) to eliminate ∇T,Pµ0 leads to

−TΣ = J0
1 ·∇T,Pµ1 + J0

2 ·∇T,Pµ2, (42)

where J0
k = Ck(vk − v0) is the flux of k relative to the fluid component 0. It is

a postulate of linear irreversible thermodynamics [37] that when the entropy
production Σ is written as the sum of products of independent fluxes and
independent forces, the fluxes can be written as linear functions of the forces
such that

J0
1 = −L0

11∇T,Pµ1 − L0
12∇T,Pµ2, (43)

J0
2 = −L0

21∇T,Pµ1 − L0
22∇T,Pµ2, (44)

and the matrix of coefficients Lik obeys the Onsager reciprocal relations

L0
12 = L0

21.

Furthermore, one is free to choose more experimentally convenient forces (such
as gradients in concentration) and, so long as the fluxes and forces making up
Σ are independent, the coefficient matrix of the flux equations will continue to
be symmetric [37]. This result is used below to derive more convenient forms of
the flux equations.

For example in experimental systems it is often convenient to define the fluxes
relative to the volume-average velocity v rather than the solvent velocity v0

since v = 0 or ∇ · v = 0 in many systems [37]. The volume average velocity is

v = Φ0v0 + Φ1v1 + Φ2v2, (45)

where Φk = CkV̄k is the volume fraction of k, with V̄k the partial molar volume.
A thermodynamic Euler relation gives C0V̄0 + C1V̄1 + C2V̄2 = 1 [37, 38] or in
terms of volume fractions

Φ0 + Φ1 + Φ2 = 1. (46)
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With this definition of v one can write J0
k = Jvk − (Ck/C0)Jv0 where Jvk =

Ck(vk − v) is the flux of k relative to v, so that (42) can be written in the
equivalent form

−TΣ = Jv1 ·∇T,P µ̃1 + Jv2 ·∇T,P µ̃2, (47)

where µ̃k = µk − (V̄k/V̄0)µ0. In obtaining (47) the Gibbs-Duhem equation (41)
has been used along with the fact that V̄0J

v
0 + V̄1J

v
1 + V̄2J

v
2 = 0 (which can be

verified using the definition of Jvk and (46)).
Equation (47) is also a sum of independent fluxes and forces and therefore

linear flux equations can be postulated as

Jv1 = −Lv11∇T,P µ̃1 − Lv12∇T,P µ̃2, (48)

Jv2 = −Lv21∇T,P µ̃1 − Lv22∇T,P µ̃2, (49)

and the Onsager relation is Lv12 = Lv21.

A.1. Concentration formalism

As it is not often possible to measure chemical potentials directly (though
recently this has been achieved via confocal microscopy [39]) the flux equations
can be written in terms of gradients in the concentrations Ck [18, 2]. At constant
temperature T and mixture pressure P the chemical potentials depend only on
C1 and C2 and the gradients can be written as ∇T,P µ̃k = µ̃k1∇C1 + µ̃k2∇C2

where µ̃kj = (∂µ̃k/∂Cj)T,P,Ci,i 6=j . The flux equations (48) and (49) become

Jv1 = −D11∇C1 −D12∇C2, (50)

Jv2 = −D21∇C1 −D22∇C2, (51)

where the diffusivities Dij are

Dij =
2∑

k=1

Lvikµ̃kj . (52)

A.2. Volume fraction formalism

Alternatively, and more conveniently for the present work, the equations can be
written in terms of the gradients of volume fraction Φk = CkV̄k of the colloidal
particles and the tracer particles. In hard-sphere suspensions the colloidal
and tracer partial molar volumes are constants (1/V̄k = Naνk, where Na is
Avogadro’s number and νk = 4

3πR
3
k is the particle volume), in which case the

flux equations (50) and (51) can be written in terms of Φ1 and Φ2 to give
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Jp = −Dp∇Φ1 − Φ1Ddp∇Φ2, (53)

Js = −Φ2Dcd∇Φ1 −Ds∇Φ2, (54)

where Jp = Φ1(v1 − v) = Jv1V̄1, Js = Φ2(v2 − v) = Jv2V̄2 and the diffusion
coefficients are

Dp = D11, Ddp = D12/C1V̄2, (55)

Dcd = D21/C2V̄1, Ds = D22. (56)

Equations (53) and (54) are equivalent to (1) and (2), in which for convenience
the symbols Φ, ϕ, vp and vs are used in place of Φ1, Φ2, v1 and v2.

A.3. Pore pressure formalism (Kedem-Katchalsky equations)

The entropy production Σ can alternatively be written in terms of the pore
pressure P ∗ (denoted p in figure 2) and osmotic pressure π of the tracer particles
in the pore fluid [18]. Starting from equation (40) and using the Gibbs-Duhem
equation (41) to eliminate ∇T,Pµ1 leads to

−TΣ = J1
0 ·∇T,Pµ0 + J1

2 ·∇T,Pµ2, (57)

where J1
k = Ck(vk−v1) is the flux of k relative to the colloidal particles. In order

to replace the chemical potentials µ0 and µ2 with the measureable quantities
p and π we consider a Darcy permeameter or reservoir that is separated from
the suspension by a membrane or partition that is impermeable to the colloidal
particles but permeable to the pore fluid and tracer particles (figure 2). Placing
permeameters at different locations in the suspension gives profiles of pore
pressure [10]. Local equilibrium between the colloidal suspension and the tracer
suspension in the permeameter implies equality of the fluid and tracer chemical
potentials on each side of the partition so that µ0(T, P,C1, C2) = µ∗0(T, P ∗, C∗2 )
and µ2(T, P,C1, C2) = µ∗2(T, P ∗, C∗2), where µ∗k is the chemical potential of k
in the permeameter. Assuming there is no adsorption of the tracer particles by
the colloidal particles and ignoring depletion effects [16], the tracer and fluid
concentrations in the permeameter are

C∗0 = C0/n C∗2 = C2/n, (58)

where n = 1−Φ1 is the porosity [16]. Taking gradients of the chemical potentials
gives, at constant temperature T and mixture pressure P (the pore pressure
P ∗ is variable),

∇T,Pµ0(T, P,C1, C2) = ∇Tµ
∗
0(P ∗, C∗2 ) = ∇T,P ∗µ∗0(C∗2 ) + V̄ ∗0 ∇P ∗, (59)
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∇T,Pµ2(T, P,C1, C2) = ∇Tµ
D
2 (P ∗, C∗2 ) = ∇T,P ∗µ∗2(C∗2 ) + V̄ ∗2 ∇P ∗, (60)

where V̄ ∗k = (∂µ∗k/∂P
∗)T,C∗

2
is the partial molar volume of k in the permeameter

[38]. For hard-sphere tracer particles V̄ ∗2 = V̄2 = Naν2, where Na is Avogadro’s
number and ν2 is the volume of a particle. The Gibbs-Duhem equation applied
to the tracer suspension in the permeameter is

C∗0∇T,P ∗µ∗0 + C∗2∇T,P ∗µ∗2 = 0. (61)

Inserting (59)–(61) into (57) gives

−TΣ =

(
J1

0 −
C∗0
C∗2

J1
2

)
·∇T,P ∗µ∗0 + (V̄ ∗0 J

1
0 + V̄ ∗2 J

1
2) ·∇P ∗. (62)

The chemical potential gradient of the fluid component in the reservoir is

∇T,P ∗µ∗0 = −Vw∇π, (63)

where Vw is the molar volume of the pure fluid [38]. For inert hard-sphere
suspensions V̄0 = V̄ ∗0 = Vw = Mw/ρw, where Mw and ρw are the molar mass
and density of the pure fluid. With (63) and (58) the entropy production (62)
takes the Kedem-Katchalsky form

−TΣ = JD ·∇π + q ·∇P ∗, (64)

where JD = V̄ ∗0
(
C∗0J

1
2/C

∗
2 − J1

0

)
= nΦ∗0(v2 − v0) = n(v2 − vf ) and q =

V̄ ∗0 J
1
0 + V̄ ∗2 J

1
2 = n(vf −v1). The volume-average velocity of the fluid and tracer

particles is vf = Φ∗0v0 + Φ∗2v2, where Φ∗0 = C∗0 V̄
∗

0 and Φ∗2 = C∗2 V̄
∗

2 are the
volume fraction of the pore space occupied by the fluid and tracer particles,
respectively. The colloidal particles cannot enter the permeameter, so that
Φ∗1 = 0 and Φ∗0 + Φ∗2 = 1.

Since the fluxes and forces in (64) are independent we can postulate linear
relations between them giving the Kedem-Katchalsky equations

q = −LP∇P ∗ − LPD∇π, (65)

JD = −LDP∇P ∗ − LD∇π, (66)

and Onsager reciprocity gives LPD = LDP . Equations (65) and (66) are
equivalent to (18) and (19), where for convenience the symbol p is used for the
pore pressure in place of P ∗.
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B. Parameter estimation for the hard-sphere EOS

The coefficients a1 and a2 in equation (27) were determined by requiring that
Z → 1 + 4Φ + 10Φ2 as Φ → 0 giving a1 = 4 − 1/Φp = 2.44 and a2 =
10 − 4/Φp = 3.75. a3 was treated as an adjustable parameter to achieve a
best fit to the molecular dynamics data for Z(Φ), yielding a3 = 6.25, and a4

was determined by requiring that Z → 2.89/(1 − Φ/Φp) as Φ → Φp giving
a4 = (1.89− a1Φp − a2Φ2

p − a3Φ3
p)/Φ

4
p = −17.0.

C. Conservation of mass

For a multicomponent system conservation of mass of each species is [29, 37]

∂ρk
∂t

+ ∇ · ρkvk = 0, (67)

where ρk is the mass of component k per unit volume of the mixture. For
hard-sphere suspensions ρk = Φkmk/νk, where mk and νk are the mass and
volume per particle, and (67) becomes

∂Φk

∂t
+ ∇ · Φkvk = 0. (68)

For relatively slow transport (such that an assumption of local equilibrium
applies) it is often the case that volumes are conserved and the volume-average
velocity is divergence free, ∇ · v = 0 [37]. Using the vector identity ∇ · Φkv =
v ·∇Φk + Φk∇ · v equation (68) becomes

∂Φk

∂t
+ v ·∇Φk = −∇ · Jk, (69)

where Jk = Φk(vk − v).
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