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Abstract: To be or not to be; that is the issue. Using (what we term) Bell’s definition of
true local realism—the union of true locality and true realism—we resolve Bell’s ‘action-
at-a-distance’ dilemma in favor of true locality: ie, no influence propagates superluminally
(after Einstein). As to Bell’s realism, we prefer—what we duly term—true realism: ie, some
beables change interactively (after Bell’s handy term for existents and Bohr’s ‘disturbance’
insight). Put simply: defining beables by properties and values, we allow interactions to
yield new beables. (Thus, since observables are clearly beables, existing or not existing prior
to an interaction, we reject the quantum/classical divide.) We then predict the probabilities
of interaction outcomes by simply distinguishing between classes of beables. In this way,
delivering results in full accord with quantum theory and experiment—in 3-space; and
contra Bell—we also advance QM’s reconstruction in spacetime with a new vector-product
for geometric algebra. True local realism thus resolves Bell’s dilemma, demystifies QM, etc.

Keywords: Bell’s theorem, causality, completeness, equivalence, GA, GHZ, true locality, true realism

NB: (i) To be or not to be a soliloquy, seeking dialogue. Either way: (ii) Paragraphs, equations, etc,
are numbered to aid discussion, improvement, correction. (iii) Key texts are freely available online (see
References); our suggestion to see a text generally refers to the free online version. (iv) We use particle

in accord with quantum conventions; so a pristine particle here is in its initial ex-source pretest state;
spin is intrinsic angular momentum. (v) It is often difficult to understand what is meant by the generic
term realism; see Norsen (2006) for examples. Our defined brand is true realism. (vi) Taking math
to be the best logic, it may flow for several lines before we comment. (vii) The resultant probabilities
predict the outcomes of experiments in full accord with quantum theory and experiment. (viii) In this
way we also advance Bell’s ideas (but not his conclusions), to demystify QM and claims like these:

Bell (1964:199), “In a theory in which parameters are added [to QM] to determine the re-
sults of individual measurements, without changing the statistical predictions, there must
be a mechanism whereby the setting of one measuring device can influence [via an in-
stantaneous signal] the reading of another instrument, however remote.” Aspect (2004:9),
‘Bell discovered that the search for [local-realistic] models is hopeless.’ Wiseman (2005:1),
‘Bell (1964) strengthened Einstein’s theorem (but showed the futility of [Einstein’s] quest)
by demonstrating that either reality or locality is a falsehood.’ Goldstein et al (2011:1),
“In light of Bell’s theorem, [many] experiments ... establish that our world is non-local.”
Maudlin (2014:25), “Non-locality is here to stay ... the world we live in is non-local.” Gisin
(2014:4), “For a realistic theory to predict the violation of some Bell inequalities, the theory
must incorporate some form of nonlocality.” Brunner et al (2014:1), “Bell’s 1964 theorem
[a profound development] ... states that the predictions of quantum theory cannot be ac-
counted for by any local theory.” Norsen (2015:1), “In 1964 Bell demonstrated the need
for non-locality in any theory able to reproduce the standard quantum predictions.” Bric-
mont (2016:112), ‘There are nonlocal physical effects in Nature.’ Annals of Physics Editors
(2016:67; unanimously), in the context of Bell’s theorem ‘it’s a proven scientific fact that a
violation of local realism has been demonstrated theoretically and experimentally.’

∗
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1 INTRODUCTION

1 Introduction

1.0. (i) ‘This action-at-a-distance business will pass. If we’re lucky it will be to some big
new development like the theory of relativity. Maybe someone will just point out that
we were being rather silly. But anyway, I believe the questions will be resolved,’ after
Bell (1990:9). (ii) ‘Nobody knows where the boundary between the classical and quantum
domain is situated. More plausible is that we’ll find that there is no boundary,’ after Bell
(2004:29-30). [Under the theory here, Wholistic Mechanics (WM), we agree and deliver.]

1.1. Studying EPR (1935) in the context of EPRB—the EPR-based experiment in Bohm & Aharonov
(1957)—Bell (1964:199) claims that EPR’s program requires a grossly non-local mechanism. However,
instead of correcting EPR’s error—as we do at ¶1.5—Bell creates a personal dilemma [see ¶1.6(i)]: not
seeing that a theory of the type that he (and we and EPR) favored could succeed. Thus, after

Bertlmann (2017:40): “Bell wondered, ‘Where does the quantum world stop and the classical

world begin? ’ He wanted to get rid of that division. [Agreeing, that’s what we do.] For him
it was true that hidden variable theories [HVTs], where quantum particles do have definite
properties governed by hidden variables, would be appropriate to reformulate quantum
theory: ‘Everything has definite properties,’ Bell said.” Thus (see ¶2.8) Bell (1980:7) en-
dorses d’Espagnat’s inferences to preexisting properties. So—contrary to QM orthodoxy,
Bohr’s insight at ¶2.9, and our theory—Bell’s HVT seems bound by Bertlmann’s (ibid)
generalization that “HVTs [not orthodox QM] postulate that the properties of individual
systems—[like the orientation of a particle’s spin]—do have preexisting values revealed by
the act of measurement”. Care is needed here, however: ‘Predetermined is Bell’s original
phrasing. If there is for Bell an identity between predetermined and preexisting I cannot
say ad hoc, but for a realist—as Bell was—there is clearly a close connection between both
phrasings,’ after R. Bertlmann (pers. comm., 14 June 2017). [See determinism at ¶2.13.]

1.1a. nb: for us, a revealed property (eg, charge) may preexist, others (eg, a revealed spin-orientation)
may not. So—under Bertlmann’s generalization (ibid)—ours in not an HVT. Instead, we allow an
observable to be made from beables whose (preexisting) pretest values may be forever hidden un-
der interactions/transitions/transformations. We then encode the consequent incomplete—but ade-
quate—information in conservation laws and probability relations to advance our understanding.

1.2. Thus, seeking unanimity, we begin by accepting d’Espagnat’s (1979:158) Bell-endorsed principles
of local realism: (i) realism (regularities in observed phenomena are caused by some physical reality
whose existence is independent of human observers); (ii) locality (no influence of any kind can propagate
superluminally); (iii) induction (legitimate conclusions can be drawn from consistent observations). So
this is not a dispute about differing principles. Rather—merging our hopes with those of EPR and Bell;
and given ¶1.0—we simply reject inferences that are false in quantum settings. We thus show that Bell
and d’Espagnat fail under (iii): ie, ignoring consistent observations re the validity of QM—and Bohr’s
insight—they draw conclusions that are false under both QM and experiment (eg, see Aspect 2004).
Indeed, for us—readily accepting the commonsense in d’Espagnat’s (i)-(iii) above; and succeeding with
it (as we’ll show)—QM seems to be better-founded than Bell imagined; eg, here’s Bertlmann (2017:54;
his emphasis) on Bell (with Bellian naivety, puzzlement and doubts that we do not share):

“John was totally convinced that realism is the right position of a scientist. He believed
that experimental results are predetermined and not just induced by the measurement
process. Even more, in John’s EPR analysis reality is not assumed but inferred! Otherwise
(without realism), he said, ‘It’s a mystery if looking at one sock makes the sock pink and the

other one not-pink at the same time.’ So he did hold on [to] the hidden variable program
continuously, and was not discouraged by the outcome of EPR-Bell experiments but rather
puzzled. For him: ‘The situation was very intriguing that at the foundation of all that

impressive success [of QM] there are these great doubts,’ as he once remarked.”
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1 INTRODUCTION

1.3. In this way identifying the source of Bell’s dilemma—¶1.6(i)—and seeking to be clear re our
own position: our core quantum-compatible principle is true local realism (TLR), the union of true
locality (no influence propagates superluminally, after Einstein) and true realism (some beables change
interactively, after Bohr). TLR is therefore consistent with most interpretations of QM—and with con-
textuality; thus bypassing the Kochen-Specker theorem—since interactions need not reveal preexisting
properties. We then advance EPR’s program by including every relevant beable in our EPRB analysis
(see ¶2.1)—validating EPR’s belief (see next)—but rejecting their famous criterion (see ¶¶1.4-1.5):

“In a complete theory there is an element corresponding to each element of reality,” EPR
(1935:777). “While we have thus shown that the wavefunction does not provide a complete
description of the physical reality, we left open the question of whether or not such a
description exists. We believe, however, that such a theory is possible,” EPR (1935:780).
[It is: as we show by introducing every relevant EPRB beable at ¶2.1. Further (¶3.7), we
show that hidden dynamics can be adequately treated by encoding incomplete information

in probabilistic relations; eg, via Bayes’ Law: P (XY |Z) = P (X |Z)P (Y |ZX). Given our
emphasis on truth, consequent expectations are validated by QM and experimental facts.]

1.4. So (using vector-products and physical operators in 3-space; not wavefunctions, etc, in Hilbert
space), we study the interaction of beables (particles) with other beables (polarizers). That is, tak-
ing particles and polarizers to be sensitive contributors to the veiled reality (d’Espagnat 1983:94) of
our world, we allow: (i) any interactant may be transformed under TLR; (ii) any transformation
may be subject to an uncertainty induced by Planck’s action-constant; (iii) every less-than-certain
probability distribution represents a veiled reality. (iv) Then, identifying every relevant beable under
EPRB—¶¶2.1-2.7—we provide a complete description of what can be inferred from incomplete infor-
mation. (v) We also address Bell’s dilemma—¶1.6(i)—by endorsing EPR’s next two sentences: but
amending—at ¶1.5—the famous EPR criterion that follows those sentences here:

“The elements of physical reality ... must be found by an appeal to the results of experiments
and measurements. A comprehensive definition of reality is, however, unnecessary for our
purpose. We [EPR] shall be satisfied with the following criterion, which we regard as
reasonable. If, without any way disturbing a system, we can predict with certainty [P = 1]

the value of a physical quantity, then there exists an element of physical reality corresponding

to this physical quantity,” EPR (1935:777). [nb: not satisfied, we amend it as follows:]

1.5. Departing subtly from EPR—but wholly compatible with EPRB, QM, the Bell/d’Espagnat ‘local-
realism’ of ¶1.2, and TLR at ¶1.3—here’s our sufficient condition for an element of physical reality
(a beable), presented in the context of (8)-(9) below to be clear: ‘If, without in any way disturbing a
system q(µ

i

), we can predict with adequate accuracy the result B
i

= �1 of the interaction �

±
a

q(µ
i

)—ie,
an interaction that may disturb q(µ

i

)—then local beables q(µ
i

), �±
a

[and the consequent interaction-
output q(a�)] will mediate this result; ie, B

i

will be a local function of q(a�) and [a · ⇤],’ after Watson
(1998:417). [As to sufficiency : this condition delivers Bell’s hope (2004:167) for ‘a simple constructive
model’ of EPRB; see ¶2.15. As to our view of adequacy : here’s Aspect’s (2004:24) example against our
predictions (when we too depart from idealization): S

WM

= S

QM

= 2.70±0.05; S

Exp

= 2.697±0.015.]

1.6. We thus arrive at: (i) Bell’s unresolved dilemma re action-at-a-distance (AAD hereafter); (ii) an
expansion of our shared motivation with Bell (and with EPR) from ¶1.0:

(i) ‘I cannot say that AAD is required in physics. I can say that you cannot get away with

no AAD. You cannot separate off what happens in one place and what happens in another.
Somehow they have to be described and explained jointly. That’s the fact of the situation;
Einstein’s program fails ... Maybe we have to learn to accept not so much AAD, but the

inadequacy of no AAD. ... That’s the dilemma. We are led by analyzing this situation
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1 INTRODUCTION

to admit that, somehow, distant things are connected, or at least not disconnected. ...
I don’t know any conception of locality that works with QM. So I think we’re stuck with

nonlocality ... I step back from asserting that there is AAD and I say only that you cannot

get away with locality. You cannot explain things by events in their neighbourhood. But,
I am careful not to assert that there is AAD,’ after Bell (1990:5-13); emphasis added.
(ii) “Now nobody knows just where the boundary between the classical and quantum domain
is situated. ... More plausible to me is that we will find that there is no boundary. It is
hard for me to envisage intelligible discourse about a world with no classical part—no base
of given events, be they only mental events in a single consciousness, to be correlated. On
the other hand, it is easy to imagine that the classical domain could be extended to cover
the whole. The wavefunctions—[not beables in our terms; per Bell (2004:53)]—would prove
to be a provisional or incomplete description of the quantum-mechanical part, of which an
objective account would become possible. It is this possibility, of a homogeneous account
of the world, which is for me the chief motivation of the study of the so-called ‘hidden
variable’ possibility,” Bell (2004:29-30). Sharing this motivation, we deliver differently ...

1.7. ... for we depart from Bell’s analyses by safely using Bayes’ Law (¶1.3), per (i)-(iii) below.
[NB: we also prefer short-form Bayes-based expectations—like LHS (67) at ¶5.7—for they at-once
bypass the limitations in Bell’s analyses. However, to match the style of typical Bellian essays, we
defer our use of short-forms for now.] Thus, using our notation per ¶2.1, we allow that A and B

may be correlated, via our (6), under the conservation of angular momentum. The safety in our
approach is then this: (i) all our probability relations are equivalent to Bell’s; (ii) all our relations are
experimentally validated and/or consistent with QM; (iii) wrt any probability function, the inclusion
of an irrelevant conditional is irrelevant: for irrelevant conditionals are best eliminated by experimental

facts—not by hypotheses—agreeing with EPR’s first two sentences at ¶1.4; (iv) some Bell-relations are
not equivalent to ours; (v) Bell did not review his relations in the light of experimental repudiations
[see Bertlmann (2017:54) at ¶1.2 above]. (vi) This brings us to what we term (for convenience; it
matters not), Bell’s definition of true local realism: Bell’s (2004:243) ‘locally explicable’ correlations,
where (in Bell’s view), factorizability is not taken to be the starting point of the analysis, nor the
‘formulation’ of ‘local causality’, but a consequence thereof. Thus, with past causes included in �:

P (AB |�, ab�) = P (A |�, a�)P (B |�, b�) after Bell [2004:243,(10)]; though we prefer (1)

P (AB |�, abq(�)q(µ)) = P (A |�, aq(�))P (B |�, abq(�)q(µ)A) = (1) amended prudently: (2)

(vii) because (for us, under TLR) it’s clearer to allow particle-variables � and µ to be different—see
¶2.1—correlated via (6); (viii) we do not confuse the consequent logical implication in our (2) with
remote (nonlocal) causation; (ix) we employ the principle that (2) at the macro-level may lead to a
factorization like (1) at the micro-level; and vice-versa. (x) We then use TLR-compatible (2) to deliver
(1): for (2) is consistent with special relativity via (6); never false if (1) is true; logically warranted by
EPRB correlations; experimentally confirmed (eg, Aspect 2004); theoretically validated by the likes of
LHS (67) at ¶5.7; etc. For we bring properties due to past causes out of � into q(�) and q(µ); ie,
under macro (2)—with � and µ pairwise representing each twin’s angular momentum—micro-property
equivalence relations yield a micro-version of the factorization in (1). In this way—at ¶¶3.5-3.7; via
adequate and relevant classes of local beables—we show that our world is truly local and truly realistic.

1.8. So, under the principles in ¶¶1.2-1.5, eliminating false inferences and non-facts and resolving Bell’s
dilemma—via Analysis, Conclusions, Acknowledgment, Appendix, References—we move to defend the
Abstract in line with our continuing respect for Oliver Heaviside and connected facts.

“Facts are of not much use, considered as facts. They bewilder by their number and their
apparent incoherency. Let them be digested into theory, however, and brought into mutual
harmony, and it is another matter. Theory is of the essence of facts. Without theory
scientific knowledge would be only worthy of the madhouse,” Heaviside (1893:12).
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2 ANALYSIS

1.9. In short: TLR harmonizes many facts associated with the core principles spelt out by d’Espagnat
in ¶1.2. Such facts include (i) EPR-style correlations (as in EPRB-style experiments); (ii) repeated
experimental validation of QM, Bohr’s insight and special relativity; (iii) the validation of (2) in theory
and in practice (eg, Aspect 2004): all of which leads to ¶3.6 and TLR’s realistic factoring of that famous
Bellian hypothesis—(1) above—after we’ve established TLR’s credentials beyond dispute. Here goes.

2 Analysis

2.0. Einstein “argued that the EPR correlations can be made intelligible only by completing
the quantum mechanical account in a classical way,” Bell (2004:86). EPR suggest that a
state, ‘richer in content than the quantum state, would provide a commonsense explanation
of certain perfect correlations predicted by QM, which are otherwise baffling,’ after GHSZ
(1990:1131): though Bell (2004:242)—discussing EPR—writes contrarily, “Commonsense
does not work here.” However, certain that it does work here—agreeing with Einstein
and GHSZ; using Aspect (2004); and working through EPRB to CHSH and GHZ/Mermin,
etc—we deliver commonsense TLR-based explanations that are true via Bohr’s insight,
local via Einstein locality, realistic via Bell beables. Therefore, seeking to provide a helpful
prelude to this analysis, we suggest that the key to the commonsense here is this (contra
Bell): under TLR, we focus on an adequate specification of beables in 3-space, and not at
all on QM formalisms. For we are of the same opinion as Einstein, and Bell (2004:246):
‘the new cookery of QM ... contains all the same a certain unpalatability.’

2.1. Under TLR-completeness, every relevant beable of the subject reality [per Bell (1964)] follows:
including 3-space (since time and gravity are not essential to the analysis here). We let the beable �
in Bell’s 1964:(1)—with its spin s implicit—denote a pristine particle’s total angular momentum; and
we allow that in the ith pair, �

i

+ µ
i

= 0 via the pairwise conservation of total angular momentum.
Thus, under this relation, knowledge about a property of one beable reveals knowledge of the other:

.A

i

⌘+1��

±
a

(q(�
i

) /�. q(µ
i

))�

±
b

�+1⌘B

i

. (3)

.A

i

⌘+1= a·a+� [a·⇤](q(a

+
)��

±
a

(q(�
i

) /�. q(µ
i

))�

±
b

�q(b

+
)) [b·⇤]�b·b+=+1⌘B

i

. (4)

T Alice’s locale U TSourceU T Bob’s locale U (5)

�
i

+ µ
i

=0; i=1, 2, ..., n. A

i

(a,�
i

) = �B

i

(a,µ
i

); etc. P (�
i

= �
j

| i 6= j) << 1. (6)

.A

i

⌘+1= a·a+� [a·⇤](q(a

+
)��

±
a

(q(�
i

) /�. q(µ
i

))�

±
a

�q(a

�
)) [a·⇤]�a·a�=�1⌘B

i

. (7)

2.2. (3) shows experiment � (EPRB, with � honoring Bohm) and a test on (a decoherent interaction
with) each member of the ith particle-pair: thick arrows ()) denote movement toward an interaction,
thin arrows (!) point to the subsequent output (here, a transformation). With spin s implicit, and
properties �

i

and µ
i

, our pristine (pretest) spin-12 particles q(�
i

) and q(µ
i

) emerge from /� . (a decay
conserving angular momentum) such that (6) holds. Each particle interacts with a dichotomic linear-
polarizer-analyzer �

±
x

—freely and independently operated by Alice (with result A) and Bob (result
B)—where x denotes any relevant orientation of its principal-axis. Under EPRB: x+ = +x; x

�
= �x.

2.2a. Given that A and B are discrete (±1), and seeking generality, we employ variables like �
i

, µ
i

(ordinary vectors with lengths in units of ~
2) so that our EPRB results are associated with ~

2 . In this way
linking to vector-magnitudes—eg, �

i

= |�
i

|ˆ�
i

, with |�
i

| in units of ~
2 , and ˆ�

i

the direction-vector—our
variables may be continuous or discrete. This choice accords with the generality of our approach:
and with Bell’s (1964:195) indifference to whether such variables are discrete or continuous. [Then, in
that we are initially searching for equivalence relations under orientations—taking Bell’s (1964) a and
b to be principal-axis direction-vectors—~

2 is suppressed in (3)-(7). The more complete story under
EPRB—eg, �±

a

q(�
i

) ! q(

~
2a

±
), with allied relations under magnitudes—is developed at ¶5.3.]

5



2 ANALYSIS

2.3. Identifier i is used generically: but each particle may be tested once only in (what we term) its
pristine state, and thereafter until absorbed in an analyzer; nb, under TLR, we generally favor the
term test over the term measurement . Then, since the tests are locally-causal and spacelike-separated,
we hold fast to Einstein’s principle of local causality: the real factual situation of q(µ

i

) is independent
of what is done with q(�

i

) which is spatially separated from q(µ
i

)—and vice-versa—per Bell (1964:
endnote 2; citing Einstein). Consistent with this principle, paired test outcomes are correlated via (6).

2.4. (4) expands on (3) to show that each polarizer-analyzer �

±
x

is built from a polarizer �

±
x

and a
removable analyzer [x · ⇤] that responds to the polarization-vector (⇤) of each post-polarizer particle
q(⇤) upon receipt. We thus assign the correct polarization x

± to q(⇤) by observing the ±1 output of the
related analyzer; or by understanding the nature of particle/polarizer interactions. So experiment � is
EPRB—per Bell (1964)—with this benign finesse: to facilitate additional analysis and experimental
confirmations, we can employ additional polarizers (�

±
y

) to test q(x

±
), etc; and y may equal x.

nb: as in (3)-(4), with q(�
i

) ) �

±
a

leading to �

±
a

q(�
i

) ! q(a

±
)—never requiring that

q(�
i

) = q(a

±
) prior to the interaction �

±
a

q(�
i

)—we take interaction and transformation to
be concepts more fundamental than measurement : “Doesn’t any analysis of measurement
require concepts more fundamental than measurement? And should not the fundamental
theory be about these more fundamental concepts?” Bell (2004:118). We agree and deliver.

2.5. (5), with no symmetry requirements, shows the locales in (3)-(4) and (7) arbitrarily spacelike-
separated from each other and from the source. Given that (3)-(7) hold over any spacelike separation, it
follows that the relevant (pretest) particle properties are stable between emission and interaction with
a polarizer. Further, our theory is locally-causal and Lorentz-invariant because A

i

and B

i

are locally-
caused by precedent local events �

±
a

q(�
i

) and �

±
b

q(µ
i

) respectively, which are spacelike-separated.

2.6. (6) shows �
i

and µ
i

pairwise correlated via the conservation of total angular momentum; our
use of ordinary vectors being prompted by Dirac (1982: eqn (48), p.149) and geometric algebra as
we seek a realistic replacement for Pauli’s vector-of-matrices. (Note: via Fröhner (1998), we reject no
tools of the quantum trade.) Motivated by Bell, these TLR-based variables provide a more complete
specification of particle-pairs under �. Thus, for now, we allow these pristine spin-related variables to
be ordinary vectors for which all magnitudes and orientations are equally probable. (New conventions
begin when we integrate our approach with geometric algebra at ¶5.2-5.4.) Then, under our doctrine
of cautious conservatism—and though particle responses to interactions may be similar—(6) allows it
to be far less than certain that two pristine particle-pairs are physically the same.

2.7. (7) shows experiment � with Alice and Bob having the same polarizer setting a. (Per ¶2.2a, ~
2

is suppressed here.) Thus, as an idealized example—ie, by observing one result, we may predict the
other (spacelike-separated) result with certainty—here’s how Alice predicts Bob’s result after observing
A

i

= +1; and vice-versa, with Bob observing B

i

= �1 here:

A

i

= +1 * q(�
i

))�

±
a

!q(a

+
)) [a·⇤] ! [a·a+] = +1. ⇧ � using (6) � (8)

q(µ
i

) = q(��
i

))�

±
a

! q(a

�
) ) [a·⇤] ! [a·a�] = �1 = B

i

. QED.⌅ And vice-versa. (9)

2.8. This is consistent with our sufficient condition for a beable [¶1.5]. For, without in any way
disturbing q(µ

i

), Alice can predict with certainty that Bob’s result will be B

i

= �1 when he tests
q(µ

i

) with �

±
a

(which may be a disturber). So beables q(µ
i

), �

±
a

and q(a

�
) mediate Bob’s result; ie,

the interaction �

±
a

q(µ
i

) will yield q(a

�
) and the interaction [a · a�] will yield B

i

= �1. Thus the
particle corresponding to Bob’s B

i

= �1 result will be q(a

�
); a TLR outcome acceptable to EPR, but

an important departure from Bell’s position. For Bell endorses d’Espagnat’s (1979:166) inference that
the input to the polarizer equals the output from the polarizer—ie, q(µ

i

) = q(a

�
)—but we do not.
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2 ANALYSIS

We thus come to the issue of Bell’s likely adoption of preexisting properties and the possibil-
ity of clarifying ¶1.1. Now the use of induction—drawing legitimate conclusions from con-
sistent observations—was foreshadowed at ¶1.2. But we will next see that d’Espagnat (and
thus, seemingly, Bell) ignore a long history of consistent observations (ie, facts) that support
the validity of QM and Bohr’s insight. This failing would be OK if Bell and d’Espagnat were
merely out to rebut EPR—and thus (maybe) endorse our amendment at ¶1.5—but here,
as in science generally: facts and subtle distinctions matter more than differing theorems
based on different assumptions. And one fact is this: with Bell’s (1980:7) endorsement,
d’Espagnat (1979:166) uses the phrase ‘definite spin components at all times’—‘definite at
all times’—ie, preexisting. See related absurdities at (28), (32).
Here’s Bell’s (1980:7): “To explain this dénouement [of his (1964) theorem, say] without
mathematics I cannot do better than follow d’Espagnat (1979; 1979a).”
Here’s d’Espagnat (1979:166), recast for EPRB (and our �) in our notation, with added

emphasis: ‘A physicist can infer that in every pair, one particle has the property a

+ [a
positive spin-component along axis a] and the other has the property a

�. Similarly, he
can conclude that in every pair one particle has the property b

+ and one b

�, and one has
property c

+ and one c

�. These conclusions require a subtle but important extension of

the meaning assigned to our notation a

+. Whereas previously a

+ was merely one possible
outcome of a measurement made on a particle, it is converted by this argument into an
attribute of the particle itself. To be explicit, if some unmeasured particle has the property
that a measurement along the axis a would give the definite result a

+, then that particle
is said to have the property a

+. In other words, the physicist has been led to the conclusion

that both particles in each pair have definite spin components at all times. ... This view is
contrary to the conventional interpretation of QM, but it is not contradicted by any fact
that has yet been introduced.’ [nb: definite spin components at all times = preexisting.]

2.9. However, to the contrary under TLR as we’ll show: (i) d’Espagnat’s inferences are false; (ii)
weaker, more-general, inferences are available; (iii) there’s no need to contravene known facts re QM;
(iv) and no need to negate Bohr’s insight: which—supported by Bell hereunder—bolsters our case
against d’Espagnat’s ‘Bell-endorsed’ inferences. [See also Kochen (2015:5): in QM, physicists ‘do not
believe that the value of the spin component (S

z

) exists’ prior to the (polarizer) interaction.]

Here’s Bell (2004: xi-xii): It’s “Bohr’s insight that the result of a ‘measurement’ does not in
general reveal some preexisting property of the ‘system’, but is a product of both ‘system’
and ‘apparatus’. It seems [to Bell] that full appreciation of [Bohr’s insight] would have
aborted most of the ‘impossibility proofs’ [like Bell’s impossibility theorem, as we’ll see],
and most of ‘quantum logic’.” We agree, for in this way we reject the quantum/classical
divide. Under true realism [¶1.3]—some beables change interactively—we do not assume
that all ‘measured’ properties already exist prior to ‘measurement’ interactions. Thus,
under TLR—and given our view that Malus’ experiments involve disturbing interactions
between polarizers and light-beams—we negate and reject the following assumption: “In
classical physics, we assume that the measured properties of the system already exist prior
to the measurement. ... The basic [classical] assumption is that systems have intrinsic
properties and the experiment measures the value of them,” Kochen (2015:5); see ¶2.19a.

2.10. Thus, to be consistent with Bohr’s insight and clear, TLR goes beyond the Bell-d’Espagnat
inferences wherein the ‘measured’ property is equated to a pristine property. That is—going beyond
d’Espagnat’s subtle extension cited in ¶2.8—we instead infer here to equivalence under a ‘polarizing’

operator . For equivalence—a relation without which science would hardly be possible; a weaker, more
general relation than equality—is here compatible with QM, Bohr’s view, and the consequent need to
recognize the effect of ‘the means of observation’ under EPRB:

7



2 ANALYSIS

“... the unavoidable interaction between the objects and the measuring instruments sets
an absolute limit to the possibility of speaking of a behaviour of atomic objects which is
independent of the means of observation,” Bohr (1958:25).

2.11. So now, under TLR—via the known effect of linear-polarizer �±
x

on polarized particles q(x+)—we
can match interactions like �

±
x

q(�
i

)� q(x

+
) with ancillary interactions like �

±
x

q(x

+
)� q(x

+
). Then,

since �

±
x

is a dichotomic operator that dyadically partitions its binary domain, we let ⇠ here denote
the equivalence relation has the same output under the same operator. Thus, in the context of EPRB:

If �±
a

q(�
i

)�q(a

+
) then q(�

i

)⇠q(a

+
) * �

±
a

q(a

+
)�q(a

+
) only. ⇧ q(µ

i

)⇠q(a

�
) via q(��

i

)⇠q(a

�
). (10)

If �±
b

q(µ
i

)�q(b

+
) then q(µ

i

)⇠q(b

+
) * �

±
b

q(b

+
)�q(b

+
) only. ⇧ q(�

i

)⇠q(b

�
) via q(�µ

i

)⇠q(b

�
). (11)

2.12. That is, in (10)—consistent with Alice’s frame of reference wherein Alice observes A

i

= +1, per
q(a

+
)—we confirm ⇠ under �

±
a

as follows: (i) polarizing-operators �

±
a

deliver q(�
i

) and q(a

+
) to the

same output; (ii) it is impossible (under idealization) that an interaction with a �

±
a

might to deliver
q(�

i

) and q(a

+
) to two different outputs; (iii) an equivalence relation ⇠ therefore holds between q(�

i

)

and q(a

+
) under �

±
a

. (11) similarly, via Bob’s frame of reference, wherein Bob observes B

i

= +1:
the equivalence relation ⇠ now holding between q(µ

i

) and q(b

+
) under �

±
b

. [NB: further, at (20)-(21)
and ¶¶2.17-2.19 below, we find that particles equivalent under �

±
a

are also equivalent under �

±
b

in
probability functions; an important result because it licenses Malus’ Law under TLR.]

2.13. Re our equivalence relations ⇠ (using the format �

±
x⇠ when clarity requires):

Q ⌘ {q(�
i

), q(µ
i

); q(a

±
) |�, �±

a

,�
i

+ µ
i

=0, i = 1, 2, ..., n}; (12)

[q(a

+
)] ⌘ {q(·) 2 Q | q(·) �

±
a⇠ q(a

+
)}; [q(a�)] ⌘ {q(·) 2 Q | q(·) �

±
a⇠ q(a

�
)}; (13)

Q/⇠ = {[q(a+)], [q(a�)]} ; (14)
where Q is the set of n particle-pairs under � and �

±
a

: ie, 2n input particles q(·); 2n output particles
q(a

±
). In (13), equivalence classes [q(a+)] and [q(a

�
)] show Q partitioned dyadically under the mapping

�

±
a

q(·) ! q(a

±
). So, on the elements of �±

a

’s domain, ⇠ denotes: has the same output under �

±
a

. (With
�

±
b

similarly.) Thus the quotient set Q/⇠ in (14)—the set of all equivalence classes under ⇠—is a set of
two diametrically-opposed extremes: a maximal antipodean discrimination; a powerful deterministic

push-pull dynamic; a sound basis for determinism; see ¶¶2.16, 5.3.

2.13a. Consequently, in our terms: under �, the deterministic classes [q(a

+
)] and [q(a

�
)] in (13)-

(14) are adequately concrete—ie, adequately informative—to adequately fulfill ‘the more complete
specification’ that Bell (1964:195) wanted: ‘to be effected by means of �. It is a matter of indifference
in the following whether � denotes a single variable or a set ... .’ And testing new pairs of particles
(say j = n+ i) under � and �

±
b

yields a similar deterministic dichotomy; eg, see ¶2.25 and ...

2.14. ... this. We now combine (3), (4), (10), (11) into a single test on the ith particle-pair from two
perspectives: (15), which Alice reads from left-to-right; (16), which Bob reads from right-to-left:

A

i

⌘+1··· q(a+)��

±
a

(q(�
i

) /�. q(µ
i

)=q(��
i

)⇠q(a

�
) )�

±
b

)q(b

+
)� [b·⇤]�b·b+=+1⌘B

i

; (15)

A

i

⌘+1= a·a+� [a·⇤](q(a

+
)��

±
a

(q(b

�
)⇠q(�µ

i

)=q(�
i

) /�. q(µ
i

))�

±
b

�q(b

+
) ···+1⌘B

i

: (16)

Thus, in line with Bell’s (1964:196) specification for his �: (i) seeking a physical theory
of the type envisioned by Einstein/EPR, our variables have dynamical significance and
laws of motion; (ii) our pristine � and µ—correlated under (6)—are the initial pretest
values of such variables at some suitable instant; (iii) since different tests produce different
disturbances, different properties may be pairwise revealed under ⇠ without contradiction:
ie, finding q(�

i

⇠a

+
) experimentally, we learn q(µ

i

⇠a

�
) relationally via (6); etc. QED.⌅
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2.15. So, from (6) and (10)-(16), with A

± (B±
) denoting Alice’s (Bob’s) results (±1), we can now

provide (under � per Bell 1964): (i) the relationships missing from Bell 1964:(1); (ii) relevant correlated

EPRB probabilities and expectations; (iii) our rejection of the generality of Bell’s theorem; (iv) the
whole followed by explanatory comments:

�

±
a

q(�)!A(a,�)=cos(a,� |q(�)⇠q(a

±
))= ±1⌘A

±
; hA |�i=0 * P (A

+ |�)�P (A

� |�)=0. (17)

�

±
b

q(µ)!B(b,µ)=cos(b,µ |q(µ)⇠q(b

±
))= ±1⌘B

±
; hB |�i=0 * P (B

+ |�)�P (B

� |�)=0. (18)

P (A

+ |�) = P (A

� |�) = P (B

+ |�) = P (B

� |�) = 1
2 * � and µ are random variables here: (19)

P (A

+ |�B+
)=P (q(�⇠a

+
) |�, q(µ⇠b

+
))=P (�

±
a

q(b

�
)�q(a

+
) |�)=cos

2
s (a

+
, b

�
)=sin

2 1
2(a, b). (20)

P (B

+ |�A+
)=P (q(µ⇠b

+
) |�, q(�⇠a

+
))=P (�

±
b

q(a

�
)�q(b

+
) |�)=cos

2
s (a

�
, b

+
)=sin

2 1
2(a, b). (21)

⇧ P (A

+
B

+ |�) = P (A

+ |�)P (B

+ |�A+
) = P (B

+ |�)P (A

+ |�B+
) =

1
2 sin

2 1
2(a, b). QED.⌅ (22)

⇧
⌦
A

+
B

+ |�
↵
=

⌦
A

�
B

� |�
↵
=

1
2 sin

2 1
2(a, b);

⌦
A

+
B

� |�
↵
=

⌦
A

�
B

+ |�
↵
= �1

2 cos
2 1
2(a, b). (23)

⇧ hAB |�i ⌘
⌦
A

+
B

+ |�
↵
+

⌦
A

+
B

� |�
↵
+

⌦
A

�
B

+ |�
↵
+

⌦
A

�
B

� |�
↵
= �a·b. QED.⌅ (24)

2.16. That is. Given (15), the cosine function in (17) reads: with q(�) equivalent to q(a

+
) under ⇠,

cos(a,� | q(�)⇠ q(a

+
)) denotes the cosine of the angle (a, a

+
): ie—under the deterministic push-pull

dynamic identified in ¶2.13; with q(�) ⇠ q(a

+
)—the outcome is +1 = A

+ here. (18) similarly, given
(16); etc. Thus, under ⇠, we could embrace Bell-d’Espagnat inferences [¶2.8] to equality, but: (i) the
probability that such inferences are valid is negligible; (ii) their theory does not embrace ours; (iii)
under our safe conservatism—allowing P (�

i

= �
j

|�, i 6= j) << 1, per (6)—we get the right results.

2.17. Next, (19) is self-explicit. Then, re (20)—and (21) similarly—via standard probability theory
and Bayes’ Law [¶1.3]: (i) the correlation of A± and B

± via (6) induces the probability relation at
LHS (20); (ii) such correlation is recognized by Bell (in our favor) under EPRB (as follows):

Recasting Bell (2004:208) in line with EPRB: “There are no ‘messages’ in one system from
the other. The inexplicable [sic] correlations of quantum mechanics do not give rise to
signalling between noninteracting systems. Of course, however, there may be correlations
(eg, those of EPRB) and if something about the second system is given (eg, that it is the
other side of an EPRB setup) and something about the overall state (eg, that it is the
EPRB singlet state) then inferences from events in one system [eg, from Alice’s A

+] to
events in the other [eg, to Bob’s B

+] are possible.” [Thus, under TLR, there are many
valid messages: from Bayes’ Law to Malus’ experiments, Malus’ Law and our (24); etc.]

2.18. Notably: in (20) under ⇠, the LHS probability relation is—from the middle term in (20)—equiv-
alent to a test on spin-12 particles of known polarization. So we derive RHS (20) by extending Malus’
cos

2
s (a

+
, b

�
) Law (c.1808)—re the relative intensity of beams of polarized photons (s = 1)—to spin-12

particles (s = 1
2). (21) similarly. Then, since our equivalence relations hold under probability functions

P , P is well-defined under ⇠ and is that same law—Malus’ Law—now TLR-compatible by extension:
validated under s =

1
2 in (20)-(21), under s = 1 in Aspect (2004).

Thus: re Aspect’s (2004:5-7) ‘concerned’ discussion of Malus’ Law, our trigonometric argu-
ments represent clear law-based dynamical processes under (10)-(11) and ¶¶2.3, 2.13: eg,
(q(�

i

) ⇠ q(a

+
)) ⌘ (�

±
a

q(�
i

) ! q(a

+
)); the a in �

±
a

denoting the orientation of a non-uniform
field with which q(�

i

) interacts. A wire-grid microwave-polarizer provides a macroscopic
analogy. With its conducting wires represented by a direction-vector in 3-space, an imping-
ing unpolarized beam of microwaves drives electrons within the wires, thereby generating
an alternating current (Hecht 1975:104). So the wires become polarizing-operators (in our
terms), for the transmitted beam is strongly linearly polarized [orthogonal to the wires].

9
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(Polaroidr-sheet is a molecular equivalent for photons.) This suggests (see ¶5.3), that the
micro-dynamics of particle/polarizer interactions may be represented by a suitable vector-
product with two boundary-conditions: (i) the remnant angular momentum finally aligned
(±) with the field is typically the spin s~; (ii) each pairwise EPRB correlation arises from
the pairwise-dynamics associated with the conservation of total angular momentum in (6).

2.19. Thus, from (21), P (B

+ | �A+
) under ⇠ is given by Malus’ Law under TLR. And Malus’ Law

applies to the properties of beables—ie, the polarization of a Malus’ light-beam or an equivalence
relation related to the angular momentum of an EPRB particle—defined to the point of adequacy, as
at ¶3.6. So, using (10), (21) expands to:

P (B

+ |�A+
) ⌘ P (�

±
b

q(µ) � q(b

+
) |�, �±

a

q(�) � q(a

+
)) = P (�

±
b

q(µ) � q(b

+
) | �, q(�)⇠q(a

+
))

=P (�

±
b

q(µ)�q(b

+
) |�, q(�µ)⇠ q(a

+
))=P (�

±
b

q(µ⇠a

�
)�q(b

+
) |�)=cos

2
s (a

�
, b

+
)=sin

2 1
2(a, b). (25)

⇧ [using LHS (65)]: hAB |�i = 2P (B

+ |�A+
)� 1 = 2 sin

2 1
2(a, b)� 1 = �a·b. QED.⌅ (26)

2.19a. Given (25)-(26), we’re in good company: “Nobody knows just where the boundary between the
classical and quantum domain is situated. ... More plausible to me is that we will find that there is no
boundary,” Bell (2004:29-30). QM ‘can be understood as a powerful extension of ordinary probability
theory,’ Fröhner (1998:652). “The major transformation from classical to quantum physics lies not in
modifying the basic classical concepts ... but rather in the shift from intrinsic to extrinsic properties,”
Kochen (2015:26). But our strategy differs. Under TLR, to adequately predict the probabilities of
interaction outcomes (including internal interactions in composite systems), we use relevant classes
of beables; some of which may be disturbed by interactions. Thus, for us, beables may be defined
by properties that are subject to change under interactions. This includes properties associated with
equivalence relations; eg, from (25): �

±
b

q(µ⇠a

�
)�q(b

+
) probabilistically under �.

2.20. That is—allowing that every relevant beable here can be distinguished under an equivalence
relation—Malus’ Law applies generally. To put it another way, in Malus’ 19th-century context, consider

two photons: (i) under the format in (4), (�±
x

q(�
j

)�q(x

+
)) ⌘ q(�

j

�

±
x⇠ x

+
) is a defining relation in our

terms; (ii) (�

±
x

q(�
k

= x

+
)� q(x

+
)) is our notation for �

±
x

interacting with an x

+-polarized photon in
an x

+-polarized beam that Malus worked with. We then say that (x+) is a defining property under ⇠.
For—with P well-defined under ⇠ from ¶2.17—they yield identical/valid results; ie, with s = 1 here:

P (�

±
a

q(�
j

�

±
x⇠ x

+
) ! q(a

+
)) = P (�

±
a

q(�
k

= x

+
) ! q(a

+
)) = cos

2
s(a

+
, x

+
) = cos

2
(a, x). (27)

“It is not easy [maybe] to identify precisely which physical processes are to be given the
status of ‘observations’ and which are to be relegated to the limbo between one observation
and another. So it could be hoped that some increase in precision [as is our aim here] might
be possible by concentration on the beables, which can be described ‘in classical terms’,
because they are there [like our q(�

j

), with q(�
j

⇠ x

+
) under �

±
x

; and q(�
k

= x

+
)]. ...

‘Observables’ [like A

j

and A

k

in our notation] must be made, somehow, out of beables [as
our results are; eg, in (27)]. The theory of local beables should contain, and give precise
physical meaning to, the algebra of local observables [as TLR does],” Bell (2004:52).

2.21. Returning to the logic stream in (17)-(24): (22) follows from (19)-(21) via Bayes’ Law; which is
applicable here—and thus applicable to EPR studies generally—since A

± and B

± are correlated via
(6). The expectations in (23) follow from (22) via the definition of an expectation. Then, with (24)
from (23) via the definition of the overall expectation, we have the expectation hAB |�i. Thus—despite
Bell’s claim in the line below his 1964:(3) that (24) is impossible—the generality of Bell’s theorem is

constrained by the limited generality of his inferences . With N denoting absurdity, the source of Bell’s
‘impossibility theorem’—ie, the mathematical consequence of Bell’s false inference [¶¶2.8-2.9]—follows:
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2.22. Under ‘Contradiction: The main result will now be proved’, Bell (1964:197) takes us via his
1964:(14), direction-vector c, and three unnumbered equations—say, (14a)-(14c)—to his 1964:(15); ie:

|hAB |�i � hAC |�i | 1 + hBC |�i ; ie, using our (24): |(a·c)� (a·b) | 1� (b·c); N (28)

ie, Bell 1964:(15) is absurd under TLR, mathematics and QM * |(a·c)� (a·b) | 3
2 � (b·c). (29)

2.23. To pinpoint the source of this absurdity (and avoid any defective intermediaries), we now link
LHS Bell 1964:(14a) directly to LHS Bell 1964:(15). Using illustrative angles, Bell’s 1964:(15) allows:

0  hAB |�i � hAC |�i  1 + hBC |�i ; (30)

ie, using our (24), 0  (a·c)� (a·b)  1� (b·c); (31)

so, if (a, b) = ⇡

4 and (a, c) = (c, b) =

⇡

8 , then 0  0.217  0.076 (conservatively); N (32)

ie, Bell 1964:(14a) 6= Bell 1964:(14b) = Bell 1964:(14c) = Bell 1964:(15). QED.⌅ (33)

2.24. Thus, under EPRB and TLR: Bell’s theorem (and related inequalities) stem from the 6= in (33);
ie, they begin with Bell’s move from his valid (14a) to his invalid (14b). Now, via Bell’s note at
1964:(14b), we find that Bell moves from (14a) to (14b) via the generalization (A(b,�))2 = 1. But if
i 6= j, A(b,�

i

)A(b,�
j

) = ±1; ie, the product of uncorrelated scalars—[each of which may take the value
±1]—is ±1. So, as we’ll show, Bell’s generalization—ie, his set here of � that allows (A(b,�))2 = 1

to go through—is invalid under EPRB, with the following consequences: (i) absurdities—like (28) and
(32)—flow from Bell’s limiting generalization (A(b,�))2 = 1 under EPRB; (ii) Bell’s theorem is limited
to systems for which his limited generalization holds; (iii) EPRB-based settings are not such systems;
(iv) Bell’s generalization has nothing to do with local causality; (v) based on such a constrained
‘realism’, Bell’s ambit claims are misleading. Let’s see, for we now come to the reason for this:

2.25. Under TLR we distinguish between relevant classes of beables . Using our (3)-(7) and a particle-
by-particle analysis of �: let 3n random particle-pairs be equally distributed over three randomized
polarizer-pairings (a, b), (b, c), (c, a). We allow each particle-pair to be unique, and thus uniquely
indexed [i = 1, 2, ..., 3n] for identification purposes. [This conservative unrestricted generalization
under TLR is consistent with our incomplete knowledge in (6).] Let n be such that (for convenience
in presentation and to an adequate accuracy hereafter):

Bell 1964:(14a) = hAB |�i � hAC |�i = � 1

n

nX

i=1

[A(a,�
i

)A(b,�
i

)�A(a,�
n+i

)A(c,�
n+i

)] (34)

=

1

n

nX

i=1

A(a,�
i

)A(b,�
i

)[A(a,�
i

)A(b,�
i

)A(a,�
n+i

)A(c,�
n+i

)� 1] (35)

=

1

n

nX

i=1

A(a,�
i

)A(b,�
i

)[A(b,�
i

)A(c,�
i

)�1] (after using �
i

= �
n+i

[sic])=Bell 1964:(14b) : N (36)

for, under �, and TLR per (6) : P (�
i

=�
n+i

|�) << 1. So (36) joins (28) & (32) under N. (37)

2.26. Thus, under his generalization (A(b,�))2 = 1 at ¶2.24, Bell has a quantum-incompatible gen-
eralization akin to an ordered sample of n objects subject to repetitive non-destructive testing, with
�
i

⌘ �
n+i

per (36). Allowing that adequate concreteness will eliminate such absurdities, we now derive
the valid consequences. Since the average of |A(a,�

i

)A(b,�
i

) | is  1, valid (35) reduces to valid (38);

Bell 1964:(14a) = |hAB |�i � hAC |�i| 1� 1

n

nX

i=1

A(a,�
i

)A(b,�
i

)A(a,�
n+i

)A(c,�
n+i

). (38)
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2.27. Now, under TLR: (i) the independent and uncorrelated random variables �
i

and �
n+i

generate
independent and uncorrelated random variables (ie, the binary outputs ± 1), per (6); (ii) the expec-
tation over the product of two independent and uncorrelated random variables is the product of their
individual expectations; (iii) so (38) reduces to:

Bell 1964:(14a) = |hAB |�i � hAC |�i | 1� hAB |�ihAC |�i 6= Bell 1964:(14b); (39)

ie, |(a · b)� (a · c) | 1� (a · b)(a · c) 6= RHS Bell 1964:(15) unless a = b_ c, which is absurd.N (40)

2.28. In short: Since LHS (40) is a mathematical fact, Bell’s 1964:(15) under EPRB is absurd and
false. In passing, the CHSH (1969) inequality—eg, Peres (1995:164)—falls to similar factual analysis:

|(a·b) + (b·c) + (c·d)� (d·a) | 2

p
2. ⇧ |(a·b) + (b·c) + (c·d)� (d·a) | 2 is absurd. N (41)

2.29. Finally, to complete our analysis, we consider experiment �, Mermin’s (1990) 3-particle variant
of GHZ (1989); often regarded as the best variant of Bell’s theorem. Respectively, hereafter : three
spin-12 particles with properties �,µ,⌫ emerge from an angular momentum conserving decay such that

�+ µ+ ⌫ = ⇡. ⇧ ⌫ = ⇡ � �� µ (for convenience; the choice matters not). (42)

2.30. The particles separate in the y-z plane and interact with spin-12 polarizers that are orthogonal to
the related line of flight. Let a, b, c here [nb: elsewhere, they are direction-vectors] be the angle of each
polarizer’s principal-axis relative to the positive x-axis; and let the equivalence relations for �,µ,⌫ be
expressed in similar terms. Finally, let the test results be A,B,C. Then, based on LHS (17)-(18) in
short-form—ie, A+

= cos(a,� |q(�)⇠q(a

+
)) = cos(a�� |�⇠a

+
) = 1; etc—let

A

+
= cos(a�� |�⇠a) = 1; B

+
= cos(b�µ |µ⇠b) = 1; C

+
= cos(c�⌫ |⌫⇠c) = 1. (43)

2.31. Via the principles in (3)-(24)—and nothing more—we now derive hABC |�i, the expectation for
the Mermin/GHZ experiment �. (Explanatory notes follow the derivation.)

⌦
A

+
B

+
C

+ |�
↵
⌘

P (�⇠a |�) cos(a�� |�⇠a)·P (µ⇠b |�) cos(b�µ |µ⇠b)·P (⌫⇠c |�,�⇠a,µ⇠b) cos(c�⌫ |⌫⇠c) (44)

=

1
2 · 1

2 · P (⌫⇠c |�,�⇠a,µ⇠b) =

1
4P ((⇡ � �� µ)⇠c |�,�⇠a,µ⇠b) (45)

=

1
4P ((⇡ �a� b)⇠c |�) = 1

4 cos
2 1
2(⇡ �a� b�c) =

1
4 sin

2 1
2(a+ b+ c). (46)

Similarly:
⌦
A

+
B

�
C

� |�
↵
=

⌦
A

�
B

+
C

� |�
↵
=

⌦
A

�
B

�
C

+ |�
↵
=

1
4 sin

2 1
2(a+ b+ c), and (47)

⌦
A

+
B

+
C

� |�
↵
=

⌦
A

+
B

�
C

+ |�
↵
=

⌦
A

�
B

+
C

+ |�
↵
=

⌦
A

�
B

�
C

� |�
↵
= �1

4 cos
2 1
2(a+ b+ c). (48)

⇧ hABC |�i ⌘ ⌃

⌦
A

±
B

±
C

± |�
↵
= sin

2 1
2(a+b+c)�cos

2 1
2(a+b+c) = � cos(a+b+c). QED.⌅ (49)

2.32. (44) defines the required expectation. (45) follows (44) by reduction using (17)-(19). (46) follows
from (45) by allocating the equivalence relations in the conditioning space to the related variables.
Thus, in words, LHS (46) is one-quarter the probability that ⌫ — ie, ⌫ ⇠ (⇡ � a

+ � b

+
) — will be

equivalent to c

+ under �±
c

. In other words: LHS (46) = 1
4P (�

±
c

q(⌫ ⇠ ⇡�a

+ � b

+
) ! q(c

+
) |�) = RHS

(46) via Malus’ Law. So (46) is the three-particle variant of (23) in the two-particle EPRB experiment
sketched in (3)-(6). (47)-(49) then follow naturally.

2.33. Thus, delivering Mermin’s (1990:11) crucial minus sign, (49) is the correct result for �; ie,
when (a+ b+ c) = 0, hABC |�i = �1. So, consistent with QM—using TLR and our rules for physical
operators and EPRB-based interactions in 3-space—we again deliver intelligible EPR correlations. [nb:
this ends our use here of a, b, c as the angle of a polarizer’s principal-axis relative to the positive x-axis.]
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2.34. Via TLR’s valid results for EPRB at (24), CHSH at (41), Mermin/GHZ at (49), Aspect (2004)
at (68)—and such results so clearly in conflict with Bellian conclusions—we rest our case. With TLR’s
credentials established—contra Bell—ours is a valid general theory; eg, see how we factor (1) at ¶3.6.

3 Conclusions

3.0. We conclude: TLR resolves Bell’s dilemma re AAD and fulfills this hope: ‘Let us hope
that these analyses [local-causality impossibility proofs] also may one day be illuminated,
perhaps harshly, by a simple constructive model. However long that may be, long may
Louis de Broglie continue to inspire those who suspect that what is proved by impossibility
proofs is lack of imagination,’ Bell (2004:167). For Bellian difficulties arise from incorrectly
imagining the nature of micro-reality; not from locality: our p.1, NB:(viii), notwithstanding!

3.1. To be clear: accepting the Bell-endorsed principles at ¶1.2—deriving the correct results for EPRB
at (24), CHSH at (41), Mermin (1990) at (49), Aspect (2004) at (68); GHSZ and GHZ similarly—TLR
resolves Bell’s AAD/locality dilemma in line with his hope for a simple constructive model of EPRB.
And though we amend EPR’s ‘realism’ at ¶1.5, we justify EPR’s belief that additional variables
would bring locality and causality to QM. We conclude that we rightly reject ‘nonlocal’ claims—like
those at p.1, NB:(viii)—for, as demonstrated via simple constructive models: our world (with no
quantum/classical divide) is governed by true local realism, etc.

3.2. Further, under true realism: against false Bell/d’Espagnat inferences to equality—¶¶2.8-2.10—our
weaker more-general equivalence relations (⇠) in (10)-(11) correctly relate beables like q(�) to more
familiar beables like q(a

±
); etc. So Bellian absurdities arise under equality relations while (as in TLR),

science is hardly possible without equivalence relations under operators. Nevertheless, in and from
Bellian studies—and honoring Bohr—we conclude that Bohr’s oft-neglected insight into true realism
should henceforth rank equally with Einstein’s well-known insight into true locality.

3.3. Thus—while many Bellians agree with Bell’s Einstein-based locality hypothesis (1); but do not
progress it—we use Bohr’s insight, ¶2.9: (i) to amend EPR’s sufficient condition for a beable; (ii) to
correct Bell/d’Espagnat inferences; (ii) to abandon the quantum/classical divide; (iv) to be a differen-
tiating factor in our approach to realism; (v) to reveal a surprising Bellian oversight wrt realism.

3.4. This leads to Bell’s (1980:13-15) claim—under local explicability ; his (11), our (1)—that the macro-
factoring [our term, since Bell’s � is an undifferentiated set of unknown (and possibly unknowable)
beables] of joint EPRB probabilities should accord with logical independence. In that case, given the
outputs A and B in (1), we should find hAB |�i= hA |�ihB |�i = 0. However,

from (17)-(18), hA |�i= hB |�i= 0; but from (24), hAB |�i 6= 0: (50)

so, with A and B independent but correlated, we conclude that this difference makes all the difference.

3.5. For—(i) replacing Bell’s (2004:240) “full specification of local [EPRB] beables in a given space-
time region” (our emphasis) with TLR’s adequate specification of local micro-beables, foreshadowed at
¶1.7; (ii) given Bell (2004:243) referring to logically independent correlations which permit symmetric
factorizations as locally explicable; (iii) taking such factorizations to be a consequence of local causality
and not a formulation thereof; (iv) and using (6) and (19)—we conclude that TLR’s adequacy goes
beyond Bell to deliver a rudimentary factorization of (1); like this [but also see what follows at ¶3.6]:

P (A

+
B

+ |�, a, q(�⇠a

+
), b, q(µ⇠b

+
))=P (A

+ |�, a, q(�⇠a

+
))P (B

+ |�, b, q(µ⇠b

+
))=1. (51)
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3.6. We therefore conclude that Bell’s focus on (an improbable) full specification—in typical HVT
fashion—prevents him from deriving the result that follows via TLR’s (perhaps more probable) adequate

specification. For, more prudently—with � denoting xor; using (19)-(22) at the end, TLR allows us
to factor (1)—which is often called Bell’s locality hypothesis—like this:

P (A

+
B

+ |�, a, q(�), b, q(µ)) = P (A

+ |�, a, q(�))P (B

+ |�, b, q(µ)) (52)

= P (q(�)
�

±
a⇠ q(a

+
) |�)P (q(��)

�

±
b⇠ q(b

+
) |�) = 1

2P (q(a

�
)

�

±
b⇠ q(b

+
) |�)� 1

2P (q(b

�
)

�

±
a⇠ q(a

+
) |�) (53)

=

1
2 sin

2 1
2(a, b) = P (A

+|�)P (B

+|�A+
)� P (B

+|�)P (A

+|�B+
) = P (A

+
B

+ |�). QED.⌅ (54)

3.7. (51)-(54) shows that logical independence at the micro-level—in (51), with 1x1 = 1; or in (52)-
(53)—may lead to Bayes’ Law at the macro-level, per (54); and vice-versa. Moreover, against Aspect
(2004:9 with that hopeless search) and Bell generally, our alternative (TLR) factorizations under Bayes’
Law are licensed by the experimentally-verified generality of Malus’ Law: note the link between (53)
and (54) under our equivalence relations. (Moreover, contra Bell and his dilemma at ¶1.6(i), TLR can
of course explain things by events in their neighbourhood.) In passing, the symmetry associated with
� in (53)-(54) shows that Alice’s factoring is—of course—the same as Bob’s. Importantly, wrt Bayes’
Law at ¶1.3: valid equivalence relations allow us the encode better information about random beables

and their hidden dynamics in our probability relations; thus (52) leads to (54), and vice-versa.

3.8. Many agree with du Sautoy (2016:170), “Bell’s theorem is as mathematically robust as they come.”
However, Bell’s use of [A(b,�)]2 = 1 (see ¶2.24), renders Bell’s theorem unphysical under EPRB,
mathematically false at (24), absurd at (28), (32), etc. For, per ¶2.25, Bell’s use of [A(b,�)]2 = 1

is invalid under EPRB due to multiple pairing/matching problems; ie, under i 6= j, the product of
uncorrelated scalars is: A(b,�

i

)A(b,�
j

) = ±1. We conclude: Bayes’ Law is never false here (neither
mathematically nor experimentally). We thus confirm Bell’s (2004:239) utmost suspicion: he did throw
the baby—baby Bayes—out with the bathwater. For, since A and B are independent but correlated per
¶3.4: Bayes’ Law—and thus Malus’ Law—is central to a commonsense understanding of macro-EPRB.

3.9. Re ¶¶2.19 -20, we conclude that opportunities for a wholesale reinterpretation of QM remain:
‘collapse’ as the Bayesian updating of an equivalence class via prior correlations; ‘states’ as states
of information about multivectors; ‘measurements’ as the outcomes of interactions involving physical
operators; more physically-significant TLR-style approaches, like that at (56) re Pauli’s vector-of-
matrices. For: (i) our Lorentz-invariant analysis resolves Bell’s AAD/locality dilemma; (ii) we’ve
dispensed with AAD; (iii) we’ve validated Einstein’s program; (iv) we do get away with locality; (v)
we’ve thus justified Bell’s motivation and validated our common enterprise, based on ¶¶1.0, 1.6(ii).

3.10. Finally, re our opening position at ¶1.2—taking QM to be better-founded than Bell imagined;

based on doubts, puzzlements and mysteries that we do not share—we have justified our concern (under
TLR) re almost every sentence in Bertlmann’s (2017:54) remarks there.

3.11. In sum; consistent with Einstein’s locally-causal Lorentz-invariant worldview: (i) Bell’s theorem
is bypassed; (ii) its unphysical restriction—via (36)—leads to its consequent lack of generality; (iii)
Bell’s dilemma at ¶1.6(i) is resolved; (v) Bell’s chief motivation via ¶1.6(ii) is justified; (vi) his locality
hypothesis at ¶1.7 is developed; (vii) his questions answered via (22), (24), (33), (49), (51)-(54), etc. We
thus conclude that—at peace with QM and relativity—a truly realistic account of the world beckons:
TLR—true local realism—via interactions/transitions/transformations per (51)-(54), etc.

TLR: true via Bohr’s insight, local via Einstein locality, realistic via Bell beables.
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5 Appendix

5.1. The TLR analysis above—via equivalence relations under orientations; and consistent with EPRB,
QM and experiment—is decisive in resolving the Bellian dilemma defined at ¶1.6(i). So, per ¶2.2a
and ¶2.6, we now show TLR’s accord with QM via direct relations under magnitudes. To this end: (i)
from Bell 1964:(1) and ¶2.1, we let the beable � denote a pristine particle’s total angular momentum;
(ii) from ¶2.15 we get the relationships missing from Bell 1964:(1); (iii) from ¶2.4, such relationships
are experimentally-validated; (iv) new relationships may be validated similarly.

5.2. The link between TLR and geometric algebra (GA) follows: (i) let a1, a2, a3 be a right-handed set of
orthonormal basis vectors; (ii) let our a ⌘ a3; (iii) let a be our preferred term. As the original identifier
of the principal axis of Alice’s polarizer (from ¶2.1), a is the unit-vector denoting the key variable
of polarizing-operator �

±
a

with respect to spin-12 particles q(�) under EPRB. Then, in conventional
short-form notation under GA—eg, Chappell et al (2011:3)—with ✏

ijk

the Levi-Civita symbol:

a

i

a

j

= a

i

·a
j

+ a

i

^ a

j

= �

ij

+ ı✏

ijk

a

k

; ı ⌘ a

i

a

j

a

k

; ı

2
= (a

i

a

j

a

k

)

2
= �1; a1a2 = a1 ^ a2 = ıa3. (55)

So our real vectors satisfy the defining relation of the Pauli matrices: �
i

�

j

= �

ij

+ ı✏

ijk

�

k.

(56)

The equiprobable spin-bivectors under the interaction �

±
a

q(�) are then: ±|s |a1a2 = ±|s | ıa3; (57)

where the spin-vector is: s = ±~
2a3 = ±~

2a; + denoting spin-up wrt a; etc. (58)

5.3. Based on ¶2.18, we now represent particle/polarizer interactions by a new vector-product. Sym-
metrically, under the deterministic push-pull dynamics of ¶2.13, let a� be appropriately orthogonal to
a

+ as determined by the relevant spin; see (59). Then—with h denoting equiprobability; � ⌘ xor; a�
antiparallel to a

+
; a

? perpendicular to a

+—we define the spin-product a{s~}�, a fair-coin:

a{s~}� h s~a+�: if s = 1
2 , a

+
� h a

+� a

�
; if s = 1, a

+
� h a

+� a

?
. (59)

5.4. For digital outputs, eg Bell 1964:(1), here’s the reduced spin-product a{s}�, another fair-coin:

a{s}� h cos 2s(a, a

+
�) = ±1 = A

±
; with a

+
� defined in (59). (60)

5.5. Thus, using (4) to create two examples, we have for Alice under � (where s =

1
2):

(�

±
a

q(�
i

)!A(a,�
i

) |�)=+1 ⌘ A

+
= cos 2s(a,�

i

|q(�
i

)⇠q(a

+
)) ⌘ a{s}�

i

= a·a+ = +1; (61)

(�

±
a

q(�
j

)!A(a,�
j

) |�)= �1 ⌘ A

�
= cos 2s(a,�

j

|q(�
j

)⇠q(a

�
)) ⌘ a{s}�

j

= a·a� = �1. (62)

5.6. Then, given (60), Bob’s corresponding results B± are correlated with Alice’s A± via (6). So, using
the most basic (ie, a probability-based) definition of an expectation—eg, Whittle (1976:20)—we take
the expectation hX |�i to be the conventional arithmetic mean of X under the conditional �:

⇧ hX |�i ⌘
nX

i=1

P

i

x

i

: given P

i

⌘ P (X = x

i

|�);
nX

i=1

P

i

= 1. (63)

⇧ hAB |�i = P (AB = +1 |�)� P (AB = �1 |�) = 2P (AB = 1 |�)� 1 = 4P (A

+
B

+ |�)� 1 (64)
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= 2P (B

+ |�A+
)� 1 = 2P (b{s}µ = 1 |�, a{s}� = 1)� 1, using Bayes’ Law and (60), (65)

= 2 sin

2 1
2(a, b)� 1 = �a·b, using Malus’ Law as in (20). QED. ⌅ (66)

5.7. Note that the short-form representation of the expectation on LHS (65) is our preferred format.
[Earlier (per ¶1.7), to be more in line with typical Bell essays, we refrained from using it.] By way of
experimental confirmation—using ↵—the experiment in Aspect (2004) with photons (s = 1):

hAB |↵i = 2P (B

+ |↵A+
)� 1 = 2P (b{s}µ = 1 |↵, a{s}� = 1)� 1, using (65), (67)

= 2 cos

2
(a, b)� 1 = cos 2(a, b), using Malus’ Law as in (27). QED. ⌅ (68)

5.8. Thus, with Bayes’ Law and Malus’ Law to the fore here in our short-form expressions, and in
the light of TLR, we now analyze Fröhner 1998:(75). There we see the inner products of the polarizer
direction-vectors a and b with ‘the spin �1 = ��2 taken to be an ordinary vector for which all
orientations are equally probable’. Fröhner is thus able to ‘equal the QM result’ (in his terms):

Fröhner 1998:(75): h(a·�1)(�2 · b)i = �h(a·�1)(�1 · b)i = �h�2
1i
3 (a·b). (69)

5.9. Thus, in our terms, and to match Bell 1964:(1), (69) needs to be solved for:

(a·�1) = ±1; (�2 · b) = ±1;

h�2
1i
3 = 1. (70)

5.10. Fröhner (1998:647) does this—see his (70)-(73)—by describing the spin-coordinates via Pauli
matrices and in the terms of EPR’s criterion at ¶1.4 [that we amend at ¶1.5]. In that our method
is coordinate-free, we now show our TLR resolution of (69)-(70). Under TLR—using the statistical
terms variance (var), covariance (cov) and statistical-correlation (cor); with hA |�i = hB |�i = 0 from
(17)-(18)—we have:

cov (A,B |�) ⌘ h(A� hAi)(B � hBi) |�i = (AB |�) = �a·b : from (24) or (66); (71)

var (A |�) ⌘
⌦
(A� hAi)2 |�

↵
=

⌦
A

2 |�
↵
= 1; (72)

var (B |�) ⌘
⌦
(B � hBi)2 |�

↵
=

⌦
B

2 |�
↵
= 1. (73)

⇧ cor (A,B |�) ⌘ cov (A,B |�)p
var (A |�)

p
var (B |�)

= hAB |�i = �a·b. QED.⌅ (74)

5.11. Thus, independent of (71)-(74): our spin-products in (59)-(60), with their fair-coin outputs,
deliver the correct (ie, QM/TLR-compatible) results.

5.12. In relation to EPRB and Bell (1964)—and more particularly to EPR-completeness at ¶1.3
and our EPR-amendment at ¶1.5—TLR leads us to conclude that � represents the total angular
momentum of a particle in units of s~; ie, in units of spin (the intrinsic angular momentum). It follows
that our spin-product [¶5.3] represents the reduction of � and the collateral rotation of the remnant
angular momentum—ie, per ¶2.18, the rotation of the irreducible spin s~—onto a relevant axis via
each particle/polarizer interaction. With µ similarly, under its pairwise correlation with � at (6): ie,
via the EPRB centrality—and the Aspect (2004) validated generality—of Bayes’ Law and Malus’ Law.
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