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Abstract

The Postulate of General covariance, a last choice that Einstein
introduced in his General relativity theory of gravitation, endows the
theory with an excessive generality that needs to be restrained. Oth-
erwise it is easy to check that, beyond the first order of approximation,
several space-time models, all of them derived from the original Sch-
warzschild’s initial solution of Einstein’s field equations corresponding
to a static spherical source, would predict different results to two fun-
damental experiments: the measure of the force acting on a given
passive test mass at a distance R of the center of the source, or equiv-
alently, its initial acceleration when falling from rest, and the compar-
ison of two way transit times of light traveling into an optic fiber along
a vertical direction and along a meridian. The last section describes
how to find numeric, static and spherically symmetric, interior models
with pre-selected mass m and radius R with m/R < 1 or m/R > 1
solving the horizon problem.

1 Introduction

The line-element of any static spherically symmetric space-time vacuum so-
lution, can be written using a variety of systems of ”polar space coordinates”
as follows:

ds2 = −(Adt+ A−1fdr)2 + A−2ds̄2, ds̄2 = B2dr2 +BCr2dΩ2 (1)

with:
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dΩ2 = dθ2 + sin2 θdϕ2 (2)

where A,B,C, f are functions of r. I shall tell below why I used quota-
tion marks in mentioning the polar coordinates condition being used. Later
also we shall see why it make sense to distinguish the space metric ds̄2

from the quotient metric dŝ2 = A−2ds̄2. This was done for the first time
in [2] and has been used since then in many other papers, among them
[11],[12],[13],[16],[20], getting in the process a physical meaning to it as an
optical length metric.

The vector with components ξ0 = 1 and ξi = 0, i=1,2,3, is the Killing
vector defining the frame of reference of all the models that I consider can
be derived one from another by a coordinate transformation such as:

r′ = r′(r), t′ = t+ β(r) (3)

To be more specific, the models that I consider are : the Isotropic model
on one hand, and on the other hand the Fock model, the Droste-Hilbert
model, the Brillouin model, the Whitehead-Kerr-Schild model, the Eddington-
Finkelstein model, and the Gullstrand-Painlevé model that they are all re-
lated to one another by simple adapted coordinate transformation of type
(3):

r′ = r + µm, t′ = t+ β(r) (4)

m being the mass of the source and µ any constant.
Using temporarily suffixes as indices of the variable r these are the cor-

responding models:
Isotropic model

A2
i =

(2ri −m)2

(2ri +m)2
, fi = 0, ds̄2i =

(
1− m2

4r2i

)
(dr2i + r2i dΩ2) (5)

Fock model

A2
f =

rf −m
rf +m

, ff = 0, ds̄2f = dr2f +

(
1− m2

r2f

)
r2fdΩ2 (6)

Droste-Hilbert model

A2
d = 1− 2m

rd
, fd = 0, ds̄2d = dr2d +

(
1− 2m

rd

)
r2ddΩ2 (7)

Brillouin
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A2
b =

rb
rb + 2m

, fb = 0, ds̄2b = dr2b +
(

1 +
2m

rb

)
r2bdΩ2 (8)

Whitehead or Kerr-Schild

A2
w = 1− 2m

rw
, fw = ±2m

rw
, ds̄2w = dr2w +

(
1− 2m

rw

)
r2wdΩ2 (9)

Eddington-Finkelstein

A2
e = 1− 2m

re
, fe = ±1, ds̄2e = dr2e +

(
1− 2m

re

)
r2edΩ2 (10)

Gullstrand-Painlevé

A2
g = 1− 2m

rg
, fg =

√
2m

rg
, ds̄2g = dr2g +

(
1− 2m

rg

)
r2gdΩ2 (11)

Excluding the Isotropic model the data for A and C can be parameterized
as follows:

A =

(
r − λm

r + (2− λ)m

)1/2

, B = 1, C =
(r + (2− λ)m)(r − λm)

r2
(12)

λ = 0 corresponds to Brillouin’s model, λ = 1 corresponds to Fock’s model,
and λ = 2 corresponds to the Droste-Hilbert model.

The inferior values r can reach with A2 > 0 are rb = 0, ri = m/2, rf = m,
rd = 2m, ...rλ = λm They restrict the minimum values of the radius R that
a spherical source could have to be matched to the corresponding exterior
model.

The first order approximation of the line element corresponding to A,B,C
above is:

ds2 ' −
(

1− 2m

r

)
dt2 +

(
1 +

2m

r

)
(dr2 + r2(dθ2 + sin2 θdφ2) (13)

that it is as much as it is needed to derive the advance of the perihelium of
Mercury and the deviation of light by the Sun.

3



2 Force

In Newton’s theory of gravitation the basic and simple principle from which
derives the magnificent description of the heavens that we know it is as simple
as saying that a massive sphere of radius R and mass m exerts on a test mass
located at a distance r > R from its center a force F in the radial direction
equal to −m/r2 if units are used such that the gravitational constant is
G = 1. And one would expects that any acceptable theory of gravitation
should predict also a unique value to whatever correction it proposes.

In Einstein’s theory of gravitation, because of the principle of General
covariance and the concomitant principle according to which the coordinates
do not have any physical or geometric meaning, the whole theory becomes
meaningless beyond the first approximation. This can be seen very easily
below calculating the corresponding relativistic force on a unit mass for each
of the models that I have mentioned, up to the second order, according to
the formula:

F r
0 =

(
d2r

dt2

)
0

= −Γrtt = −A
4

B2
∂r lnA (14)

where Γrtt is the corresponding Christoffel connection symbol, and the subindex
0 means that the test particle is at rest with respect to the source of the grav-
itational field.

This is the result for the Isotropic model:

Fi = −64r4(m− 2r)m

(2r +m)7
(15)

that can be approximated as follows;

Fi = −m
r2i

+ 4
m2

r3i
, ri =

1

2
+

1

2

√
r2f −m2 ' rf −

1

4

m2

r2f
(16)

The results corresponding to the other models parameterized by λ are:

F = − (r − λm)m

(r + (2− λ)m)3
(17)

And can be approximated as follows:
Fock model

Ff ' −
m

r2f
+

4m2

r3f
(18)

Droste-Hilbert model
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Fd ' −
m

r2d
+

2m2

r3d
, rd = rf +m (19)

Brillouin model

Fb ' −
m

r2b
+

6m2

r3b
, rb = rf −m (20)

Eddington-Finkelstein model

Fe ' −
m

r2e
+

2m2

r3e
, re = rf +m (21)

Gullstrand-Painlevé model

Fg ' −
m

r2g
+

2m2

r3g
, rg = rf +m (22)

The force I am talking is supposed to be measured with gravimeters and
produce a single result at each point, not many.

The models in the list above, while having all of them the correct New-
tonian limit for m small enough, can be divided in three groups. A first
group, the Fock and the Isotropic model predict the same second order de-
viation. A second group, the Droste-Hilbert, the Eddington-Finkelstein, and
the Gullstrand-painlevéé models predict the same deviation although differ-
ent from that of the preceding group. Finally the Brillouin model predicts
a still different value for the deviation. Since only one or none of these pre-
dicted values can correspond to reality means that the Principle of general
covariance should be questioned and some means of predicting a single result
should be discovered a point of view that is already mentioned in the papers
by Painlevé, Gullstram and Brillouin.

3 The coordinates have a meaning

At the beginning of this paper I said that the line-element of each of the
models to be considered will be written using polar coordinates of space.
Would this mean that every one of the coordinates rs, ri, rd, rb, re, rg, rk, rl
have the same meaning or only one of them, or none, deserves to be called a
radial polar coordinate?

Polar coordinates r, θ, φ are defined precisely only in the context of Eu-
clidean geometry where using them the line-element is:

ds̃2 = dr2 + r2(dθ2 + sin2 θdφ2) (23)
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where the variable r is defined in the intervalr ≥ 0. Restricting this interval
to r ≥ r0 6= 0 would not change the metric properties but changes the
topology of the domain where the line-element it is defined. This is to keep
in mind.

It is a careless decision, in a different context, to name three variables
r, θ, φ polar coordinates because we are using the same letters without men-
tioning the relationship with polar coordinates of Euclidean space.

We got above three different results evaluating the correction to the New-
tonian force value −m/r2. The Isotropic model and the Fock model predict
a correction of order 4m2/r3, while the Droste-Hilbert model predicts 2m/r3

and the Brillouin model predicts 6m2/rs. This is unacceptable because only
one or none of these estimations could be the result of a real experiment.

On the other hand this inconsistency comes as a natural consequence of
the Principle of general covariance on which General relativity is founded but
should not be oversimplified to the point of claiming that the coordinates do
not have any meaning. It is obvious that if the three values above of the
relativistic corrections are logical consequences of a correct theory then this
theory must be completed differentiating the meaning of the coordinate r.

So, the question is: what is the connection between the coordinates above
and the coordinates used in the line-elements ds̄2 used before? Considering
the Isotropic model the connection is very simple because ds̄2 is conformal
to ds̃2 and therefore in this case it legitimate to proceed assuming that the
coordinates r, θ, φ have the same meaning in both cases. Incidently this is
the case also with all cosmological Robertson-Walker models.

I have considered before in ([18]) and ([19]) this problem for the Fock
model proving the following relations:

(Γ̄ijk − Γ̃ijk)ḡ
jk = 0 (24)

where Γ̄ijk and Γ̃ijk are the Christoffel symbols of the two metrics ds̄2 and ds̃2.
Notice however that this is true only for r > m because this is the domain
where the Fock model is defined.

They can be generalized to the one parameter λ family of models (12),
where they become:

(Γ̄ijk − Γ̃ijk)ḡ
jk = −2(λ− 1)

d lnA

dr
(25)

Notice that(25) is a tensor relationship and therefore if they are verified
for polar coordinates it will be verified also for any other system of coordi-
nates of the Euclidean space. Whatever be the new meaning in Euclidean
space this will be the same meaning in the relativistic model.
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I think that it follows from this analysis that General covariance has to
be broken. Other possibilities would be to consider General relativity as
an envelope of several theories with a common linear approximation, wait
until a very high precision observation discriminates one among the infinity
of acceptable models. Or consider the diversity of acceptable predictions as
bearing different information about the source of the field, as for example its
radius or or its density layer structure.

If a choice has to be made, the harmonic condition (24) is the simplest
way to do it. This should suffice to deal with interior models with a radius
R > m but not otherwise. Unfortunately it leads to the horizon problem.

To deal with sources of given mass m and arbitrary small radius R it will
be necessary to deal with the M. Brillouin model. This is done in the last
section.

4 The time-length of an optic fiber

Another of the benefits of the analysis of the preceding section is to give
a meaning to the optical length of an arc of curve defined by parametric
equations:

r = r(s), θ = θ(s) φ = φ(s) (26)

by:

Lopt =
∫ s1

s0
ds̄ (27)

for any of the models corresponding to a parameter λ.
Let us consider an optic fiber of physical length Lphys. I consider here

only two situations: i) the fiber is stretched in the vertical direction upwards
from a particular position r. And ii) the fiber with the same origin follows a
meridian arc.

Since light propagates along the fiber so that ds2 = 0 using (34) I obtain
that the time that the light takes to reach maximum height r + Lphys where
it is reflected towards the starting point will be:

∆Tver = 2
∫ r+Lphy

r

dr

A2
(28)

While if light propagates in the fiber along a meridian angle ∆θ from the
origin the transit time would be:

∆Thor = 2
L

A2
(29)
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Using the expressions A,B,C we get:

∆Tver = L+ 2m ln
r + L− λm
r − λm

, ∆Thor =

(
r + (2− λ)m

r − λm

)2

L (30)

and neglecting smaller terms:

Tver =

(
1 +

2m

R
+

2m2

R2

)
L−

(
m

R2
− 2m2

R3

)
L2 (31)

Therefore:

∆Tver −∆Thor = −L
2m

R2

(
1 +

λm

R

)
(32)

Notice that the first order correction is again independent of the model con-
sidered and that this is not the case with the second order.

Let us assume that the first order formula could be tested at the surface
of the Earth, L being of the order of 100 km. The expected result would
be ∆Tver − ∆Thor = −3.636532447 10−15 s. Of course it is not necessary to
imagine that the optic fibers had been stretched to maximum length. Using a
convenient approximation of (28) they could be folded any convenient number
of times. Or be shorter and light has been reflected a number of times at
their ends.

Question. Can in some cases optic fibers be a substitute to Fabry-Perot’s
interferometers?

5 Spherically symmetric, static, interior so-

lutions with m < R or m > R

What it was known before as the the ”The Schwarzschild singularity” and it is
now known as its ”Horizon” originates from the fact that each of the vacuum
line-elements, but one, listed in the Introduction of this paper require that
m be less than R. The Brillouin line-element (8) instead does not require
this condition and this opens the possibility of considering ultra relativistic
objects with densities never heard of. This is the subject of this section.

I consider the problem of matching, in the sense of Lichnerowicz, The
Brillouin exterior model with mass m:

ds2 = −A2
bdt

2 + A−2b ds̄2, ds̄2 = dr2 + Cbr
2dΩ2 (33)
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to an interior static, spherically symmetric model with line-element:

ds2 = −A2dt2 + A−2ds̄2, ds̄2 = B2dr2 +BCr2dΩ2 (34)

across a surface of radius R in both cases m < R and m > R so that:

A = Ab, C = Cb, A
′ = A′b, C

′ = C ′b, across r = R. (35)

Considering only perfect fluids only as sources, the equations to be solved
with ”G=c=1” are:

S0
0 = 16πρ S1

1 = S2
2 = S3

3 = P (36)

Sαβ being the components of the Einstein tensor,% a positive density, andP a
positive pressure, from where it follows , using the conservation the equation
of hydrostatic equilibrium:

P ′ = −A
′

A
(ρ+ P ) (37)

The preceeding equations lead to the following system of differential equa-
tions:

2AA′′−3A′
2
+

2C ′AA′

C
−A

2C ′′

C
+

1

4

C′2A2

C2
+

4AA′

r
−3C ′A2

rC
−A

2

r2
+

A2

C2r2
= 16πρ

(38)

−2A′
2 − 1

2

A2C ′′
C

+
1

2

A2C ′2

C2
+
A2

r2
− A2

Cr2
= 0. (39)

I consider two cases: i) the density ρ is constant and ii) dP (ρ)/dρ = 1
meaning that the speed of sound be the speed of light. It follows then from
(37) that:

ρ =
1

2
(2kA−2 − ρ(R)) and P =

1

2
(2kA−2 − 3ρ(R)) (40)

k and ρ(R) being two arbitrary constants.
Values of the parameters in case i) for which the numeric integration

proceeds smoothly and yields plausible graphs includes the two cases:

m = 0.01, R = 1, ρ = 0.001 and m = 1, R = 0.01, ρ = 0.3 (41)

Values that can be tested in case ii) yielding smooth graphs include:
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m = 0.01, R = 1, k = 0.001 and m = 1, R = 0.01, k = 0.001, ρ(R) = 0
(42)

so that:

ρ = P = kA−2 (43)

The graphs below correspond to the latest choice considered above. The
blue graphics Ab, Bb and Cb are the graphics corresponding to the vacuum
Brillouin model.

6 Concluding remarks

It is my opinion that summarizing the Principle of general covariance saying
that ”the coordinates mean nothing” is a very bad assertion. I believe, on
the contrary that the meaning of the coordinates has to be made precise and
this requires a Restricted principle of covariance.

It is possible to avoid the horizon problem matching the Brilloin model of
Schwarzschild exterior solution to interior solutions with physically accept-
able equations of state. The matching being made in the sense of Lichnerow-
icz, which is the most restrictive of those that have been proposed.
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