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Abstract

A system of equations of motion of point particles is considered within the frame-
work of the classical dynamics (the three Newton’s laws). Equations of the system
are similar to the equation by Wilhelm Eduard Weber from his theory of electrody-
namics. However, while deriving equations of the system, the Coulomb law as the
law for point particles which are motionless relatively one another (used by Weber
for formulation of his equation) is regarded as a hypothesis unverified experimen-
tally. An alternative hypothesis was proposed, presuming that the Coulomb law
describes the interaction of the two electrically charged point particles within a de-
termined range of their relative velocity magnitudes excluding a zero value – if the
relative velocity magnitude is equal to zero, particles with like charges attract one
another and those with unlike charges repulse. The results of mathematical analysis
of the system of equations of motion of point particles with Coulomb forces mod-
ified in accordance with the alternative hypothesis and acting between them were
used for modelling of the following physical phenomena and processes: formation
and evaporation of condensate consisting of bound pairs of point particles with like
charges; decay of a free neutron and a neutron in an atom’s nucleus; neutron emis-
sion; emission and absorption of energy quanta by particles; interaction of particles
with an atom; nuclear synthesis; formation of current sheets in the plasma; plasma
ejection during the magnetic reconnection; the Lorentz force; thermo-electric phe-
nomena; electrification; intermolecular interactions; superconductivity; solar flares;
atmosphere discharges; formation and dynamics of atmospheric whirlwinds; bow
shock waves created by the solar wind nearby celestial bodies of the Solar Sys-
tem; cometary nuclei and planetary cores; processes occurring during the passage of
comets through the Earth’s atmosphere. It is concluded that these phenomena and
processes can be qualitatively described by the system of equations of electrically
charged point particles motion within the framework of Newton’s laws as it was
considered in the present study.

Keywords : Newton’s laws, Coulomb law, Weber’s equation, Coulomb force, magnetic
force, nuclear force, intermolecular force, condensation, superconductivity, comet, me-
teor, atmospheric whirlwind, solar wind.
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1 Physical and mathematical objects in PPST (the

point particles states theory)

Physical objects:
1. particles, the point objects which are able to move relatively one another and

characterised by inert masses (m) and electrical charges (q);
2. dynamic system of particles, a limited number of particles with central forces

acting between them; those forces are determined by force functions, and each particle in
the system has its own ordinal number;

3. volume of particles, the dynamic system of particles in which the motion of
particles relatively one another is limited by some spatial volume.
Mathematical objects:

1. force function, a vector function which determines the force applied to a particle
by the other particle;

2. system of equations of particle motion, a system of vector differential equations
of the second order where the number of equations is equal to that of particles in the
dynamic system, and every equation determines the force applied to a single particle as a
sum of functions of forces applied to it from the rest of particles of the dynamic system;

3. r⃗n is a radius vector of the position of a particle with the ordinal number n in the
dynamic systemm;

4. rn is the magnitude of the radius vector of the position of a particle with the
ordinal number n;

5. rn ≥ 0 (n = 1, ..., N) is the range of determination of values of magnitude of the
radius vector of particle’s position (where N is the number of particles in the dynamic
system);

6. r̂n = r⃗n/rn is a unit vector of the radius vector of the position of a particle with
the ordinal number n, whereas rn ̸= 0;

7. v⃗n = dr⃗n/dt is the velocity of a particle with the ordinal number n;
8. vn is the magnitude of the velocity of a particle with the ordinal number n;
9. vn ≥ 0 (n = 1, ..., N) is the range of determination of values of magnitudes of

particle’s velocity;
10. v̂n = v⃗n/vn is a unit vector of the velocity of a particle with the ordinal number

n, whereas vn ̸= 0;
11. dv⃗n/dt = d2r⃗n/dt

2 is an acceleration of a particle with the ordinal number n;
12. r⃗nk = r⃗n − r⃗k is a radius vector of the position of a particle with the ordinal

number n relatively to a particle with the ordinal number k;
13. rnk is the distance between particles with ordinal numbers n and k (rnk = rkn);
14. rnk > 0 (n = 1, ..., N, k = 1, ..., N, n ̸= k) is the range of determination of

values of distances between particles in the dynamic system;
15. r̂nk = r⃗nk/rnk is a unit vector of the radius vector of the position of a particle with

the ordinal number n relatively to a particle with the ordinal number k; it determines a
unit vector of the function of force applied to the particle n by the particle k;

16. v⃗nk = dr⃗n/dt − dr⃗k/dt is a velocity of a particle with the ordinal number n
relatively to a particle with the ordinal number k.

17. drnk/dt is a radial relative velocity of the particles with ordinal numbers n and
k (drnk/dt = drkn/dt);
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18. vnk is a magnitude of the relative velocity of the particles with ordinal numbers
n and k (vnk = vkn);

19. vnk ≥ 0 (n = 1, ..., N, k = 1, ..., N, n ̸= k) is the range of determination of
values of magnitudes of particles’ relative velocities in the dynamic system;

20. dv⃗nk/dt = d2r⃗n/dt
2 − d2r⃗k/dt

2 is an acceleration of a particle with the ordinal
number n relatively to a particle with the ordinal number k;

21. d2rnk/dt
2 is a radial relative acceleration of the particles with ordinal numbers n

and k (d2rnk/dt
2 = d2rkn/dt

2);
22. µnk = mnmk/ (mn +mk) is an reduced mass of the particles with ordinal numbers

n and k;
23. Φnk is a scalar function of interaction between the particles, with ordinal

numbers n and k (Φnk = Φkn); it determines the following parameters:
1. the sign of forces between the particles:
- if the value of the scalar function of interaction between the particles is larger than

zero, the sign of forces between the particles is positive and the particles repel one another;
- if the value of the scalar function of interaction between the particles is less than

zero, the sign of forces between the particles is negative and the particles attract one
another;

2. the magnitude of forces between the particles:
- the magnitude of the scalar function of interaction between the particles is the

magnitude of forces between the particles;
- if the magnitude of the scalar function of interaction between the particles is equal

to zero, the magnitude of forces between the particles is also equal to zero.
24. Φnkr̂nk is the force function that determinates a force applied to the particle n

by the particle k as a product of the scalar function of interaction between the particles
and the unit vector of the function of force applied to the particle n by the particle k.

25. µ12dv⃗12/dt = Φ12r̂12 is the equation of particle No. 1 motion relatively to the
particle No. 2 if the number of particles in the dynamic system equals to 2.

All newly introduced terms which determinate various processes of interaction be-
tween the particles will be shown in bold when they are first used in the theory. The
introduction of any other symbols in indices of mathematical objects will also be ex-
plained when they are first used. The “volume of atoms” term will determine the
volume of particles the particles of which are bound into separate atoms.

2 Introduction

The point particles states theory (PPST) considers the system of equations similar
to the equation by Wilhelm Eduard Weber in the theory of electrodynamics which was
developed by Weber in the middle of 19th century and based on the three Newton’s laws
and a hypothesis of properties of modified Coulomb forces acting between electrically
charged particles [1, 2]. Like Weber’s theory, PPST is based on the three Newton’s laws
and a hypothesis of properties of modified Coulomb forces; however, the hypotheses in
these theories are different.

The point particles states theory was developed in order to describe the dynamics
of particles with modified Coulomb forces acting between them. PPST analyses the
dynamics of particles and makes conclusions about their states. The states possible
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for particles are named in PPST and determined according to particles’ interaction
conditions:

1. neutral state is the state when magnitudes of forces of interaction between the
particles are equal to zero;

2. free state is the state when distances between particles increase to infinity, with
non-zero magnitudes of forces of interaction between them;

3. unsteady state is the state when distances between particles decrease, with
non-zero magnitudes of forces of interaction between them;

4. bound state is the state when distances between particles either remain un-
changed or change to some finite values: the minimum distance is non-zero and the
maximum one is non-infinite;

5. bound steady state is the state when distances between particles remain un-
changed;

6. bound unsteady state is the state when distances between particles change to
some finite values: the minimum distance is non-zero and the maximum one is non-infinite;

7. equal states are the states when relative velocity of particles equals to zero:
magnitudes and unit vectors of particles’ velocities match in any coordinate system.

As it arises from the definition of particles’ states, there can be two types of bound
state in PPST, the bound steady and bound unsteady one. The bound unsteady state
includes the unsteady one when the distances between particles in bound unsteady state
decrease.

The presented version of PPST considers particles as electrons and protons. Along
with the dependence of forces, which act between the particles, on distances between the
particles, the dependence of forces on the magnitude of relative velocity of the particles
is introduced. Particles are considered as points, forces between them are regarded as
central, the spread of interaction is believed as instant, with no intermediates (action at
a distance).

Initially PPST has been developed as a theory of condensates of particles with like
charges. It has been planned to consider within its framework the possibility of existence
of dynamic systems formed by some volumes of condensates of particles with like charges.
But at some stage of its development it was found that it can qualitatively explain some
physical processes and phenomena known to science (qualitatively means that equations
of the theory contain some unknown constants which values can be determined in exper-
iments only). The frames of the theory gradually expanded and covered a wider range of
research than it has been initially expected. As a result, the theory of condensates of par-
ticles with like charges was transformed into PPST, the theory of dynamic systems formed
by volume of electrically charged point particles under the central forces between them
which depend on distances between particles and magnitudes of their relative velocities.

Conclusions about particles’ states in the theory are made on the basis of mathe-
matical analysis of the system of equations of particle motion. The system of equations
formulates using modified Coulomb forces which properties are the hypothesis of the the-
ory. The system of equations contains only modified Coulomb forces. It doesn’t mean
that PPST rejects the possibility of existence of other forces acting between particles
along with Coulomb’s (e.g., magnetic, gravitational, nuclear, etc.). It is presumed that
forces considered in the theory either supplement those that are already known or they
are them. It is related to unknown constants contained in the equations of PPST, and
the theory’s conclusions should be considered unambiguous only after determination of

6



their values.
The idea of development of a theory where forces depend on velocities isn’t new.

It has been used within the classical dynamics for explanation of common properties
of electricity, magnetism and gravity over the whole 19th century. In 1800s, physicists
operated with much less amount of experimental data than it is available today. Therefore,
re-thinking of interaction of Coulomb charges from the point of the three Newton’s laws
and using the experimental data obtained in the 20th and at the beginning of the 21st
century provides an opportunity of a new glance at the role of the classical dynamics in
modern physical theories.

The Coulomb law as the law of interaction of motionless charges was formulated in
the end of 18th century after the research of interaction of two electrically charged balls
but not after the research of interaction of two ultimate particles with electrical charges.
In Newton’s and Coulomb’s time, the immobility of both gravitational and electrical
charges was interpreted as nulling of the magnitude of relative velocity of bodies which
interaction has been studied, whereas the velocity of charged particles inside these bodies
was ignored. But at the present time there are enough experimental facts providing
to conclude that all bodies observable in the nature consist of particles which dynamic
systems form these bodies, that all particles in atoms and molecules, including atoms
and molecules themselves, as well as free electrons and protons, in these dynamic systems
have various kinetic energies and, thus, various magnitudes of velocities relatively one
another, even if the temperature of these system approaches to absolute zero. Experiments
confirming the validity of Coulomb law for two electrically charged ultimate particles
motionless relatively one another haven’t been performed. Therefore, the Coulomb law
in its contemporary formulation is the hypothesis unproven experimentally.

After Ampere had formulated his Ampere’s force law, it became clear that the in-
teraction of electrical charges depends on their velocities, and Coulomb forces started to
undergo modifications. In the second half of the 19th century the most popular was the
theory of interaction of electrically charged particles developed by Wilhelm Eduard Weber
on the basis of modified Coulomb forces depending on distances between particles and
on their first and second derivatives with respect to time [1, 2]; besides Weber presumed
that the Coulomb law is valid for charged particles which are motionless relatively one
another. After this theory has been criticised [3, 4, 5], there were another attempts of
explanation of interactions between moving electrical charges using modified Coulomb
forces; however, in the 20th century the split of forces acting between charged ultimate
particles into two types, Coulomb and magnetic, yet became universally recognised. As
Weber’s theory, all theories which used Coulomb forces for modelling dynamic systems
of ultimate particles presumed that the Coulomb law is valid for motionless particles;
therefore, no alternative hypotheses have been proposed. Thus, the theoretical research
of forces acting between electrically charged particles within the framework of the three
Newtonian laws hasn’t been completed. For meeting this gap, the alternative hypothesis
was provided within the point particles states theory. Its essence is as follows:

Particles with like charges motionless relatively one another attract, par-
ticles with unlike charges motionless relatively one another repel, whereas the
Coulomb law describes the interaction of two electrically charged particles in
the definite range of magnitude values of their relative velocities, excluding
zero value.

The first person to suggest that particles with like charges can attract was Gustav

7



Theodor Fechner in 1845. Investigating the interaction between current elements, he made
two assumptions [4], [6]:
”1) All actions of a current-element may be considered as composed by the actions of
a positive and a negative particle, of equal strength, which simultaneously traverse the
same element of space in opposite directions;
2) Accepting this combination, one may represent the mutual action of two current-
elements based on the assumption that like electric charges attract one another if they
move in the same direction or to the same angular point, whereas unlike electric charges
behave in the same way if they move in the opposite directions or when one of them
approaches the angular point while the other one moves away from it”.

Fechner hasn’t developed the theory of electrodynamics based on these hypotheses.
While working on his theory, Weber accepted only the first Fechner’s assumption.

In PPST modified Coulomb forces are used for modelling of dynamic systems where
changing of magnitudes of particles’ relative velocities results to turning of attracting
forces to repelling ones – and vice versa, repelling forces to attracting. Consideration
of dynamic systems of electrons or protons interacting at these conditions demonstrates
that isolated volume of electrons, as well as protons, under the temperature decrease can
transform to gaseous and liquid state. Once the magnitude of relative velocity of two
particles with like charges becomes less than some certain value, particles begin to attract
with the possibility of formation of bound pairs. When the magnitude of their relative
velocity becomes greater than this certain value, particles begin to repel one another, and
if the magnitude of relative velocity of particles with like charges becomes significantly
greater than this certain value, particles repel in accordance with the Coulomb law. If the
magnitude of relative velocity of an electron and a proton is less than a certain value, the
electron and the proton repel each other. When the magnitude of their relative velocity
becomes greater than this certain value, they begin to attract. Once the magnitude of the
relative velocity of the electron and the proton becomes much greater than this certain
value, the electron and the proton begin to attract according to the Coulomb law.

Conditions of existence of dynamic systems in which electrons attract electrons, pro-
tons attract protons, and protons attract electrons, are determined in PPST. In other
words, one can determine conditions under which a nuclear fluid is formed from attract-
ing charged particles. In this case a neutron is represented as a bound pair of electron
and proton interacting with one another in a definite range of magnitudes of their relative
velocities and distances between the electron and the proton in the neutron. At that, one
can determine dynamic conditions under which the following processes occur: the decay
of a single neutron, the decay of a neutron in the nucleus of the atom, and the neutron
emission (i.e., the escape of a single neutron from the nucleus of the atom). It is also
possible to model the interaction between neutral atoms and ions, from one side, and
electrons or protons from the other side, with determination of conditions under which
neutral atoms or ions either attract or repel charged particles. There are also conditions
of attraction and repelling between neutral atoms. In these cases, new glances arise at
superconductivity, chemical bounds of atoms and molecules, interaction between Rydberg
atoms, and many other phenomena from the point of the classical dynamics.

In PPST, it is possible to model conditions under which charged particles emit and
absorb the quanta of energy interacting with one another at large distances; such mod-
elling requires only the three Newton’s laws, without introduction of additional particles
into the theory – particles transmitters of the energy of interaction. These conditions
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are applied for modelling of interaction between the charged particle beam and the vol-
ume of neutral atoms (the process of particles’ bremsstrahlung, the process of particles’
dispersion by neutral atoms, ionisation of atoms by the particle beam, the Bragg peak
of ionisation of atoms by heavy charged particle beam, explosive rupture of conductors
by electric current) and processes of various types of radiation emitted by particles and
atoms. PPST includes conditions of interaction of charged particles under which the cor-
relation between gamma radiation, radio radiation and neutron beam during atmospheric
and artificial electric discharges may occur. Within the PPST framework one can deter-
mine the cause of existence of the so-called ”terahertz gap” (the problem of emitters and
receivers of the terahertz-frequency radiation [7]).

Consideration of processes of evaporation of nuclear, electron and proton fluids in
PPST provides explanation of the presence of particles with abnormally high kinetic
energy in cosmic rays and particle beams appearing after flares and plasma ejections on
the Sun.

Within the PPST framework, one can model processes occurring in the plasma, such
as formation of current sheets, plasma ejection during the magnetic reconnection, the
pinch effect, or the compression of an electrically conducting filament in the plasma by
magnetic forces induced by the current itself, and self-focusing of beams of particles with
like charges. In PPST, the group motion of particles with like charges along a circular
trajectory creates an analogue of the Lorentz force applied to charged particles in the
permanent magnetic field.

Using PPST, one can describe the process of electrification of volumes of neutral
atoms and thermo-electrical phenomena such as the Seebeck effect, the Peltier effect, the
Thomson effect and the thermo-current inversion in accordance with the Avenarius’s law.
PPST is also applicable for consideration of thermo-electrical phenomena in superconduc-
tors.

Atmospheric discharges, causes of deep-laid earthquakes and high-current discharges
during explosive volcanic eruption, formation and dynamics of atmospheric whirlwind,
processes on the Sun and in the solar atmosphere, interaction of protons in the solar wind
with the Sun and celestial bodies of the Solar System – these are the phenomena to be
considered in this study within the PPST framework.

PPST provides the opportunity of modelling of main evolution processes of dynamic
systems formed with the proton and electron condensations which may be the cometary
nuclei and cores of planets and stars. A separate chapter of this work focuses on the
application of PPST and a theory of the dynamic system of bound condensates
developed within its framework for the phenomenon of “Chelyabinsk meteor”.

Based on the unified system of equations of charged point particles motion, PPST
allows for explaining of many known phenomena and predicting of the new ones. Within
the framework of this theory it is possible to model virtual dynamic systems where inter-
action of ultimate particles creates processes and objects similar to those which exist in
the real world but are subjects of other laws.

Generally, the point particles states theory is the mathematical theory of functions
with certain properties. The properties of functions are determined by the hypothesis of
properties of modified Coulomb forces. At the present stage of development of PPST, the
number of functions satisfying the hypothesis considered within the theory and allowing
for modelling real physical processes is not defined. This work provides the mathemat-
ical analysis of the three functions of the same form with various values of constants,
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determining the three types of modified Coulomb forces, such as forces between
electrons, forces between the electron and the proton, and forces between
protons. Therefore, PPST is the open theory applicable for consideration of both other
hypotheses and other functions.

3 Modified Coulomb forces in PPST

Based on the analysis of dynamics of charged particles in the processes occurring:
1. under the low temperatures:

- formation and condensation of bound pairs of electrons in superconductors and move-
ment of electrons through the superconductor with no resistance [8];
– formation of so-called “electron bubbles” in liquid helium [9, 10] and in liquid hydrogen
[11] when electrons accumulate in a certain volume and form around themselves an empty
space, a “bubble”;
- formation of so-called “snowballs” by positively charged particles in liquid helium [9]
when positively charged particles accumulate in a certain volume and form around them-
selves a crystalline-like structure, a “snowball”,

2. in nuclei of atoms:
- formation of bound pairs of protons which is confirmed by the kinematics of double-
proton decay [12];
- evaporation of nuclear fluid in the liquid drop model of nucleus [13], the similarity to
liquid-gas phase transition in nuclear and classical fluid,
we make five assumptions:

1. in the substance under the low temperatures, and thus, at the low values of
magnitudes of relative velocities, negatively charged particles may attract, form bound
pairs and stay in gaseous and liquid state. With the increase of temperature of the
substance, and thus, with the increase of magnitudes of relative velocities of negatively
charged particles, those negatively charged particles begin to repel one another;

2. in nuclei of atoms, positively charged particles may attract, form bound pairs and
stay in gaseous and liquid state. With the increase of temperature of the nucleus, and
thus, with the increase of magnitudes of relative velocities of positively charged particles,
those positively charged particles begin to repel one another;

3. in the substance under the low temperatures, and thus, at the low values of
magnitudes of relative velocities, positively charged particles may attract each other;

4. in the substance under the low temperatures, and thus, at the low values of
magnitudes of velocities of negatively charged particles relatively neutral atoms, those
negatively charged particles and neutral atoms may repel;

5. in the substance under the low temperatures, and thus, at the low values of
magnitudes of velocities of positively charged particles relatively neutral atoms, those
positively charged particles and neutral atoms may attract.

In other words:
1. with certain, small values of magnitudes of relative velocities:
- electrons attract each other;
- protons attract each other;
- neutral atoms repel electrons;
- neutral atoms attract protons;

10



2. with certain, large values of magnitudes of relative velocities:
- the dynamics of electrons and protons is described by the Coulomb law.

Based on assumptions hereinabove, we determine as a hypothesis eight prop-
erties to be possessed by modified Coulomb forces in PPST:

1. if the magnitude of relative velocity of two likely charged particles is
less than a certain value, particles attract;

2. if the magnitude of relative velocity of two likely charged particles is
equal to a certain value, the magnitude of forces between particles is equal to
zero;

3. if the magnitude of relative velocity of two likely charged particles is
greater than a certain value, particles repel;

4. if the magnitude of relative velocity of two likely charged particles is
essentially greater than a certain value, the interaction of particles is described
by the Coulomb law;

5. if the magnitude of relative velocity of two unlikely charged particles
is less than a certain value, particles repel;

6. if the magnitude of relative velocity of two unlikely charged particles
is equal to a certain value, the magnitude of forces between particles is equal
to zero;

7. if the magnitude of relative velocity of two unlikely charged particles
is greater than a certain value, particles attract;

8. if the magnitude of relative velocity of two unlikely charged particles is
essentially greater than a certain value, the interaction of particles is described
by the Coulomb law.

As is demonstrated later, these eight properties of modified Coulomb forces provide
necessary and sufficient conditions for developing the system of equations which describes
the dynamics of charged particles in accordance with five assumptions stated at the be-
ginning of this chapter.

We take a proton and an electron as charged particles, considering them as points.
We assume the charge of electron as negative and the charge of proton as positive. In
this case, the force applied to a particle by other particles should be in general a sum of
two types of forces: the electron is affected by the sum of forces between electrons and
forces between the electron and the proton; the proton is affected by the sum of forces
between protons and forces between the electron and the proton. There are three types of
Coulomb forces to be found: forces between electrons, forces between the electron
and the proton, and forces between protons.

For all three types of forces we will consider one type of force function but with
different constants determining each of these types of forces. The system of equations of
motion of two particles with massesm1 andm2, with electric charges q1 and q2, with radius
vectors of their positions in the arbitrary coordinate system r⃗1 and r⃗2 correspondingly;
and with modified Coulomb forces acting between them, is represented as follows:

m1
d2r⃗1
dt2

=
q1q2
r212

Υ12r̂12, m2
d2r⃗2
dt2

=
q2q1
r221

Υ21r̂21, (1)

where:

Υ12 = Υ21, Φ12 =
q1q2
r212

Υ12, Φ21 =
q2q1
r221

Υ21, Φ12 = Φ21,
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Φ12 is the scalar function of interaction of particles with ordinal numbers 1 and 2;
Υ12 is the function that modifies the Coulomb forces acting between the particles No. 1
and 2 (the modifying function).

On the basis of eight properties of modified Coulomb forces introduced as the hy-
pothesis hereinabove, considering the form of the system of equations (1), we determine
five properties to be possessed by modifying functions:

first:

0 ≤ v12 < a12, Υ12 < 0;

second:

v12 = a12, Υ12 = 0;

third:

v12 > a12, Υ12 > 0;

fourth:

v12 >> a12, Υ12 → 1,

fifth:

Υ12 ̸= ±∞,

with a12 = Const.
The number of forms of modifying functions possessing these five properties hasn’t

been determined at this stage of development of the theory. The selection of the form of
modifying function in the actual version of PPST has been performed using the following
principles:
1. correspondence of processes of particles’ interaction in the theory to really observable
physical processes;
2. existence of analytical solution of the two-particles problem;
3. possibility to determine the signs of forces acting between mass centres of two volumes
of particles, depending on particles’ relative velocities;
4. minimising of the number of unknown constants which are contained in equations of
the theory.

The form of modifying function determined on the basis of these four principles and
possessing five properties stated hereinabove will be used in the considered version of
PPST:

Υ12 = 1− b
(1−v212/a

2
12)

12 , (2)

where:

a12 = Const, b12 = Const, a12 > 0, b12 > 1.

Taking into account the form of modifying function (2), we rewrite the system of equations
for two particles motion (1) as follows:

m1
dv⃗1
dt

=
q1q2
r212

(
1− b

(1−v212/a
2
12)

12

)
r̂12, m2

dv⃗2
dt

=
q2q1
r221

(
1− b

(1−v221/a
2
21)

21

)
r̂21, (3)

b12 = b21, a12 = a21.
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From the system (3), the equation of motion of the first particle relatively the second one
to be derived:

µ12
dv⃗12
dt

=
q1q2
r212

(
1− b

(1−v212/a
2
12)

12

)
r̂12. (4)

Therefore, in the present version of the point particles states theory three modifying
functions of the same form (2) will exist, with various values of constants (a12, b12), each
of those to determine one of types of modified Coulomb forces.

4 Weber’s theory of electrodynamics and PPST

The up-to-date formulation of Weber’s equation [1] which describes the motion of the first
particle with inert mass m1 and electric charge q1 relatively to the second with inert mass
m2 and electric charge q2 is as following:

µ12
dv⃗12
dt

=
q1q2
r212

(
1− 1

a2

(
dr12
dt

)2

+
2r12
a2

d2r12
dt2

)
r̂12, a = Const, a > 0. (5)

This is the equation of motion of two electrically charged point particles relatively one
another, with modified Coulomb forces acting between them. The modifying function in
Weber’s equation look like that:

Υ12 = 1− 1

a2

(
dr12
dt

)2

+
2r12
a2

d2r12
dt2

. (6)

As follows from (6), for modification of Coulomb forces in his theory of electrodynam-
ics Weber used one modifying function that depends on the distance between particles,
first and second derivatives of this distance with respect to time and a constant a with
dimension of velocity.

Weber defined the properties of modified Coulomb forces on the basis of two, accord-
ing to his own terminology, “fundamental principles” – “electrostatics” and “electrody-
namics” [2].

“The principle of electrostatics” is the Coulomb law for forces interacting between
two electric charges motionless relatively one another (q1 and q2):

F⃗12 =
q1q2
r212

r̂12.

“The principle of electrodynamics” is the Ampere’s law for the forces of interaction
between two linear elements (ds1 and ds2) of electric currents (i1 and i2):

F⃗12 = −k
i1i2
r212

(
2
(
d⃗s1 · d⃗s2

)
− 3

r212

(
d⃗s1 · r⃗12

)(
d⃗s2 · r⃗12

))
r̂12,

where k is the positive constant, and r⃗12 is the radius vector of position of the mass centre
of the first current element relatively to the mass centre of the second.

While determining the properties of modified Coulomb forces, Weber also proceeded
from the first assumption by Gustav Theodor Fechner [4], [6]:
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“All actions of a current-element may be considered as composed by the actions of
a positive and a negative particle, of equal strength, which simultaneously traverse the
same element of space in opposite directions”.

Weber’s theory could qualitatively explain all electrodynamic effects known by that
time. But for the practical use of the theory the numerical value of the a constant with
dimension of velocity incorporated in the modifying function had to be determined.

Comparing the point particles states theory with Weber’s theory of electrodynamics,
we can conclude that both theories:

1. are based on the three Newton’s laws;
2. consider dynamic systems of point particles;
3. consider central forces which depend on distances between particles and relative

velocities of motion of particles;
4. determine resulting forces acting between the volumes of particles at distances

much longer than the maximum dimensions of volumes as forces acting between the mass
centres of volumes of particles;

5. use modified Coulomb forces;
6. apply functions modifying Coulomb forces;
7. determine the properties of modifying functions proceeding from the hypothesis

of properties of modified Coulomb forces;
8. formulate the hypothesis of properties of modified Coulomb forces on the basis of

known physical phenomena;
9. incorporate some unknown constants into modifying functions; the numeric values

of these constants can be determined experimentally only.
The main difference between the theories is that in Weber’s electrodynamics the

hypothesis of properties of modifying Coulomb forces is based on physical phenomena
known by the middle of the 19th century, whereas in the point particles states theory it
is based on physical phenomena known in the beginning of the 21st century.

Therefore, the point particles states theory is the logical continuation of Weber’s the-
ory of electrodynamics, taking into account the modern knowledge of physical processes.

5 The system of equations of motion of N particles

Using the form of modifying function determined hereinabove (2), we will derive functions
which modify the Coulomb forces acting between particles in the dynamic system with
the number of particles equal to N :

Υln = 1− b
(1−v2ln/a

2
ln)

ln , l ̸= n, l = 1, 2, . . . , N, k = 1, 2, . . . , N,

and the system of equations of motion of N particles in this dynamic system:

ml
dv⃗l
dt

=
N∑

n=1; n ̸=l

qlqn
r2ln

(
1− b

(1−v2ln/a
2
ln)

ln

)
r̂ln, l = 1, 2, . . . , N, (7)

in which:

v⃗l =
dr⃗l
dt

, v⃗ln =
dr⃗ln
dt

, r⃗ln = r⃗l − r⃗n, vln ≥ 0,

bln = Const, bln = bnl, aln = Const, aln = anl, aln > 0, bln > 1,
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ml is the inert mass of the particle No. l,
ql is the electric charge of the particle No. l,
r⃗l is the radius vector of the position of the particle No. l in the coordinate system where
all radius vectors of positions of all N particles are determined,
r⃗ln is the radius vector of the position of the particle No. l relatively to the particle No.
n,
v⃗ln is the velocity of the particle No. l relatively to the particle No. n.

The constants bln are dimensionless. The constants aln have the dimension of velocity.
Besides the masses and charges of electron and proton, the system of equations (7) also
includes six constants. Each pair of constants (aln , bln) determines one of the three types
of modified Coulomb forces: forces between electrons, forces between the electron and the
proton, and forces between protons.

If vln = aln, the magnitude of forces acting between particles No. l and n is equal to
zero. If vln >> aln, forces acting between particles No. l and n in the system of equations
(7) can be approximately described by the Coulomb law. The sign of forces of acting
between particles No. l and n depends on the sign of the product of their charges (qlqn)
and the sign of the modifying function which in turn depends on the value of magnitude
of relative velocity of the particles:

If vln > aln, then: (
1− b

(1−v2ln/a
2
ln)

ln

)
> 0.

If vln < aln, then: (
1− b

(1−v2ln/a
2
ln)

ln

)
< 0.

Therefore:
1. if qlqnΥln > 0, the particles repel;
2. if qlqnΥln < 0, the particles attract.
The motion of particles determined by the system of equations (7) is subject to two

laws of classical dynamics, the conservation of the sum of momenta and the conservation
of the sum of moments of momenta of particles:

N∑
l=1

mlv⃗l = p⃗0,
N∑
l=1

mlv⃗l × r⃗l = j⃗0, p⃗0 = Const, j⃗0 = Const. (8)

With the form of modifying function Υln introduced into the theory, the system of equa-
tions (7) at N ≥ 3 doesn’t have the third analytical integral in the form of the principle
of conservation of energy. The requirement of subjecting of the system of equations to the
principle of conservation of energy in the form of the third analytical integral at N ≥ 3
results to the changes of properties of modified Coulomb forces introduced into the theory
as the hypothesis after which the theory either stops working (due to the absence of the
possibility of mathematical analysis of derived equations) or contradicts to the reality
(i.e., physical processes qualitatively described by the theory don’t fit experimental ob-
servations). Therefore, in the considered version of PPST this requirement isn’t made to
the system of equations of motion of the particles.

For the constants bln and aln which determine the types of forces (between electrons,
between the electron and the proton, and between protons) in the system of equations
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(7) we introduce the following indications and definitions:
bp is a constant of interaction of protons;
bep is a constant of interaction of the electron and the proton;
be is a constant of interaction of electrons;
ap is a neutral relative velocity of protons;
aep is a neutral relative velocity of the electron and the proton;
ae is a neutral relative velocity of electrons.

After that the system of equations (7) can be represented in more detailed form:

me
dv⃗el
dt

= −
K∑
k=1

e2

r2elpk

(
1− b

(1−v2elpk
/a2ep)

ep

)
r̂elpk +

L∑
n=1; n ̸=l

e2

r2elen

(
1− b

(1−v2elen
/a2e)

e

)
r̂elen ,

(9)

mp
dv⃗pk
dt

= −
L∑
l=1

e2

r2pkel

(
1− b

(1−v2pkel
/a2ep)

ep

)
r̂pkel +

K∑
n=1; n ̸=k

e2

r2pkpn

(
1− b

(1−v2pkpn
/a2p)

p

)
r̂pkpn ,

l = 1, 2, . . . , L, k = 1, 2, . . . , K,

be > 1, bep > 1, bp > 1, ae > 0, aep > 0, ap > 0,

where:
me is an inert mass of the electron,
mp is an inert mass of the proton,
e is an elementary charge in the CGS system of units,
L is the number of electrons in the dynamic system (1, 2, . . . , L is the numeration of
electrons),
K is the number of protons in the dynamic system (1, 2, . . . , K is the numeration of
protons),
L+K = N is the number of particles in the dynamic system,
r⃗el and r⃗en are the radius vectors of position of electrons No. l and n correspondingly,
r⃗pk and r⃗pn are the radius vectors of position of protons No. k and n correspondingly.

The modified Coulomb forces in the system of equations (9) are determined by the
three modifying functions depending on the magnitudes of relative velocities of particles:
1. the function modifying the Coulomb forces acting between protons with numbers k
and n:

Υpkpn = 1− b

(
1−(v⃗pk−v⃗pn)

2
/a2p

)
p ;

2. the function modifying the Coulomb forces acting between the electron with number l
and the proton with number k:

Υelpk = 1− b

(
1−(v⃗el−v⃗pk)

2
/a2ep

)
ep ;

3. the function modifying the Coulomb forces acting between electrons with numbers l
and n:

Υelen = 1− b

(
1−(v⃗el−v⃗en)

2
/a2e

)
e .

Analytical solution of the system of equations (7) at N ≥ 3 faces the same problem
as that in the classical three-body problem: the lack in number of integrals of the system
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of equations enough for its solution (the Bruns’s theorem [14]). Nevertheless, using def-
initions of the particles’ states in PPST and the method of reduction of interactions of
two volumes of particles to the interaction of their mass centres, the presented version of
PPST enables unambiguous conclusions for certain states of two particles and conclusions
on attraction or repelling of two volumes of particles at the distance which is much greater
than the maximum dimension of the volumes with regard to all forces in the considered
dynamic system.

6 Integrals of the system of equations of motion of

two particles

We represent the system of equations (7) at N = 2:

m1
dv⃗1
dt

=
q1q2
r212

(
1− b(1−v212/a

2)
)
r̂12, (10)

m2
dv⃗2
dt

=
q2q1
r221

(
1− b(1−v221/a

2)
)
r̂21, (11)

where:
m1 and m2 are the masses of interacting particles, either electrons or protons or the
electron and the proton,
q1 and q2 are the electric charges of interacting particles, correspondingly to masses of
particles, either electrons or protons or the electron and the proton,
b is the constant of interaction, correspondingly to masses of particles, either electrons or
protons or the electron and the proton,
a is the neutral relative velocity, correspondingly to masses of particles, either electrons
or protons or the electron and the proton.

From the equations (10) and (11), we derive the equation of motion of the first
particle relatively to the second:

µ12
dv⃗12
dt

=
q1q2
r212

(
1− b(1−v212/a

2)
)
r̂12. (12)

The first integral of the equation (12) determines the moment of momentum of two par-
ticles:

µ12
d (v⃗12 × r⃗12)

dt
= 0, µ12v⃗12 × r⃗12 = j⃗0, j⃗0 = Const. (13)

We form the scalar product of (12) and v⃗12:

µ12

2

dv212
dt

=
q1q2
r212

(
1− b(1−v212/a

2)
) dr12

dt
, (14)

or:
µ12

2

bv
2
12/a

2(
bv

2
12/a

2 − b
)dv212 = q1q2

r212
dr12, v12 ̸= a. (15)

Integration of (15) results to:

µ12a
2

2
logb

(
bv

2
12/a

2 − b

bv
2
0/a

2 − b

)
= q1q2

(
1

r0
− 1

r12

)
, v0 ̸= a. (16)
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r0 is the initial distance between particles;
v0 is the magnitude of the initial relative velocity of particles.

7 Conditions of neutral, free, unsteady and bound

states of two particles

We transform (16) to the following form:

(
1− b(1−v212/a

2)
)
b

2
µ12a

2

(
µ12v

2
12

2
+

q1q2
r12

)
=
(
1− b(1−v20/a

2)
)
b

2
µ12a

2

(
µ12v

2
0

2
+

q1q2
r0

)
. (17)

From (17) we derive two systems of inequalities:

v0 > a, 1− b(1−v20/a
2) > 0, 1− b(1−v212/a

2) > 0, v12 > a, (18)

v0 < a, 1− b(1−v20/a
2) < 0, 1− b(1−v212/a

2) < 0, v12 < a. (19)

The scalar function of interaction of two particles is determined by the equality:

Φ12 =
q1q2
r212

(
1− b(1−v212/a

2)
)
. (20)

Using (18) - (20), we make five conclusions:
It follows from the equality (20) that:
1. If v12 = a, then Φ12 = 0 - the magnitude of forces acting between the particles

equals to zero. This is a neutral state of the particles when each of them moves with
permanent velocity and the magnitude of their relative velocity equals to a.

It follows from the system of inequalities (18) and equality (20) that:
2. If v0 > a and q1q2 > 0, then Φ12 > 0 - the particles always repel. If dr12/dt < 0,

then the distance between the particles decreases and they are in the unsteady state. If
dr12/dt ≥ 0, then the distance between the particles increases ad infinitum and they are
in the free state.

3. If v0 > a, and q1q2 < 0, then Φ12 < 0 - the particles always attract. If dr12/dt < 0,
then the particles are in the unsteady state. If dr12/dt ≥ 0, then the particles can be both
in bound and free states.

It follows from the system of inequalities (19) and equality (20) that:
4. If v0 < a, and q1q2 > 0, then Φ12 < 0 - the particles always attract. If dr12/dt < 0,

then the particles are in the unsteady state. If dr12/dt ≥ 0, then the particles can be both
in bound and free states.

5. If v0 < a and q1q2 < 0, then Φ12 > 0 - the particles always repel. If dr12/dt < 0,
then the particles are in the unsteady state. If dr12/dt ≥ 0, then the particles are in the
free state.

We can make one more conclusion from this chapter:
If the magnitude of relative velocity of two particles equals to some value at which

the value of the magnitude of interaction forces between the particles equals to zero, then
the velocities of the particles remain unchanged. Therefore, the particles are unable to
overcome the zero-value threshold of magnitude of forces by themselves, without some
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external action. Thus, the two charged particles can’t change repelling to attraction
or vice versa, attraction to repelling without interaction with other particles, and can’t
neither to enter nor to exit the state at which the magnitude of interaction forces between
the particles is equal to zero.

Therefore, for the case of interaction between the particles at v0 < a, it follows from
(16):

µ12a
2

2
logb

(
b− bv

2
12/a

2
)
+

q1q2
r12

= C̀, (21)

C̀ =
µ12a

2

2
logb

(
b− bv

2
0/a

2
)
+

q1q2
r0

, v0 < a,

and for the case of v0 > a, the equation (16) results to:

µ12a
2

2
logb

(
bv

2
12/a

2 − b
)
+

q1q2
r12

= Ć, (22)

Ć =
µ12a

2

2
logb

(
bv

2
0/a

2 − b
)
+

q1q2
r0

, v0 > a.

8 Dimensionless functions of dimensionless variables

and constants for determination of the states of

two particles

We introduce dimensionless functions of dimensionless variables and constants in PPST
because the PPST equations contain unknown constants, ap, aep, ae, with dimension of
velocity, and values of magnitudes of relative velocities of particles while analysing their
states can be determined only with regard to those constants.

For the values of constants of interaction of particles in the considered version of
PPST and in order to simplify the mathematical analysis of functions discussed in the
theory, we define the equality:

bp = bep = be = b, (23)

and proceeding from the first principle of selecting of the form of modifying function,
namely, the correspondence of theoretical processes of interaction between particles to
really observable physical processes (see Chapter 3), we also define the inequality:

b ≥ 2. (24)

We consider (23) and (24) as one of the possible options of PPST and further on we will
use only (23) and (24).

We introduce the values of five characteristic constants of interaction between
the particles:

1. a characteristic distance:

rh =
e2

µa2
, (25)

2. a characteristic kinetic energy:

Eh =
µa2

2
, (26)
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3. a characteristic magnitude of moment of momentum:

jh = µarh =
e2

a
, (27)

4. a characteristic magnitude of force:

Φh =
e2

r2h
=

µ2a4

e2
, (28)

5. a characteristic rotation frequency:

γh =
a

2πrh
=

µa3

2πe2
, (29)

where:
e is the elementary electric charge in the CGS system of units.

If a = ap for the values of characteristic constants in (25-29), they will be the char-
acteristic constants of interaction between protons, with µ = mp/2.

If a = aep for the values of characteristic constants in (25-29), they will be the
characteristic constants of interaction between the electron and the proton, with µ =
memp/ (me +mp).

If a = ae for the values of characteristic constants in (25-29), they will be the char-
acteristic constants of interaction between electrons, with µ = me/2.

The scalar multiplication of equation (12) by r⃗12 results to:

µ12

2

d2r212
dt2

− µ12v
2
12 =

q1q2
r12

(
1− b(1−v212/a

2)
)
. (30)

Omitting the indices for the reduced mass of the particles (µ12), for the distance
between the particles and for the magnitude of relative velocity of the particles, taking
into account that the bound steady state of two particles is determined by nulling of the
first and second derivatives of the function of distance between them with respect to time,
from (30) and (13) we get conditions of the bound steady state of the particles:

µv2s = −q1q2
rs

(
1− b(1−v2s/a

2)
)
, µvsrs = js, (31)

where:
vs - is the magnitude of relative velocity of the particles in the bound steady state,
rs - is the distance between the particles in the bound steady state,
js - is the magnitude of the moment of momentum of the particles j⃗0 (13) in the bound
steady state.

We determine the scalar function of interaction of particles in the bound steady state.
For doing it, we make the scalar product of (12) and the unit vector of the radius vector
of position of the first particle relatively to the second; in the resulting expression we
substitute v12 with vs and r12 with rs:

Φs =
q1q2
r2s

(
1− b(1−v2s/a

2)
)
. (32)
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Using characteristic distances (25) and neutral relative velocities of particles, we
introduce a dimensionless function of the distance between the particles - R, and a di-
mensionless function of the relative velocity of particles - V :

R =
r

rh
, V =

v

a
, (33)

where:
r is the distance between the particles,
rh is the characteristic distance either between protons or between electrons or between
the electron and the proton,
v is the magnitude of relative velocity of the particles,
a is the neutral relative velocity of either protons or electrons or the electron and the
proton.

Proceeding from (33), we derive the values of R and V for the bound steady state:

Rs =
rs
rh
, Vs =

vs
a
. (34)

Using (28) and (32), we determine the value of dimensionless scalar function of interaction
of the particles in the bound steady state:

Fs =
Φs

Φh

. (35)

Proceeding from (13) and (27), we determine the value of dimensionless function of mag-
nitude of the moment of momentum of the particles:

J =
j0
jh
. (36)

Correspondingly, from (36) we determine the value of dimensionless function of magnitude
of the moment of momentum of the particles in the bound steady state:

Js =
js
jh
. (37)

Using the characteristic kinetic energy (26), from (21) and (22) we determine dimension-
less functions of integration constants C̀ and Ć:

È =
C̀

Eh

, É =
Ć

Eh

. (38)

From (38) we determine the values of dimensionless functions of integration constants C̀
and Ć in the bound steady states:

Ès =
C̀s

Eh

, És =
Ćs

Eh

, (39)

where:

C̀s =
µ12a

2

2
logb

(
b− bv

2
s/a

2
)
+

q1q2
rs

, vs < a.
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Ćs =
µ12a

2

2
logb

(
bv

2
s/a

2 − b
)
+

q1q2
rs

, vs > a.

Considering determinations of characteristic constants (25-28), we transform (31)
and (32):

rs
rh

= −q1q2
e2

a2

v2s

(
1− b(1−v2s/a

2)
)
,

js
jh

= −q1q2
e2

a

vs

(
1− b(1−v2s/a

2)
)
,

Φs

Φh

=
q1q2
e2

r2h
r2s

(
1− b(1−v2s/a

2)
)
. (40)

Using (34), (35) and (37), from (40) we derive expressions of Rs, Fs and Js functions
via the Vs variable:

Rs = −q1q2
e2

(
1− b(1−V 2

s )
)

V 2
s

, (41)

Fs =
q1q2
e2

V 4
s

(1− b(1−V 2
s ))

, (42)

Js = −q1q2
e2

(
1− b(1−V 2

s )
)

Vs

. (43)

We transform (21) and (22) into È and É functions (38) of V and R:

È = logb

(
b− bV

2
)
+

q1q2
e2

2

R
, 0 ≤ V < 1, (44)

É = logb

(
bV

2 − b
)
+

q1q2
e2

2

R
, V > 1. (45)

Considering conclusions of the Chapter 7 that the particles at 0 ≤ V < 1 can only be
bound at q1q2 > 0, whereas at V > 1 they bind only at q1q2 < 0, using (41), from (44)
and (45) we find the values of Ès and És functions (39) for bound steady states of the
particles which depend on the range of values of q1q2 and Vs:

q1q2 > 0, 0 ≤ Vs < 1, Ès = logb

(
b− bV

2
s

)
+

2V 2
s

(b(1−V 2
s ) − 1)

, (46)

q1q2 < 0, Vs > 1, És = logb

(
bV

2
s − b

)
− 2V 2

s

(1− b(1−V 2
s ))

. (47)

Based on (33) and (36), we express the value of V 2 via dr/dt, R and J :

V 2 =
1

a2

(
dr

dt

)2

+
J2

R2
. (48)

From (44) and (45) we find V 2 via R, È and É:

V 2 = logb

(
b− b(È− q1q2

e2
2
R)
)
, 0 ≤ V < 1, (49)

V 2 = logb

(
b+ b(É− q1q2

e2
2
R)
)
, V > 1, (50)
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Using (48), (49) and (50), we write down the equations which determine the squared
radial relative velocity of the particles for various ranges of values of V :

1

a2

(
dr

dt

)2

= logb

(
b− b(È− q1q2

e2
2
R)
)
− J2

R2
, 0 ≤ V < 1, (51)

1

a2

(
dr

dt

)2

= logb

(
b+ b(É− q1q2

e2
2
R)
)
− J2

R2
, V > 1. (52)

9 States of two particles which magnitude of their

relative velocity is less than their neutral relative

velocity

In order to determine the state of particles at v0 < a, we will use functions determined in
the previous chapter, where 0 ≤ V < 1. As follows from the conclusion 4 of the Chapter 7,
at the value of Vs (34) less than 1, only likely charged particles (either two protons or two
electrons) can be in the bound steady state. For this case, from (41) and with q1q2 > 0
we get the dimensionless function of the distance between likely charged particles which
depends on the relative velocity of particles in the bound steady states at 0 < Vs < 1:

Rs =

(
b(1−V 2

s ) − 1
)

V 2
s

. (53)

For the function (53) we get the first limiting value:

Vs → 0, Rs → +∞,

and the second:

Vs → 1, Rs > 0.

Next:
∂Rs

∂Vs

= − 2

V 3
s

(
V 2
s b

(1−V 2
s ) ln b+ b(1−V 2

s ) − 1
)
,

where ln is the natural logarithm. At Vs < 1:

V 2
s b

(1−V 2
s ) ln b+ b(1−V 2

s ) − 1 > 0.

Thus, the function Rs (53) is decreasing in the range of positive values and doesn’t have
neither nulls nor stationary points. The graphs of dependence of Rs on Vs are shown at
Figure 1 at b = 2 and at Figure 2 at b = 200.

From (43) we get the dimensionless function of the magnitude of the moment of
momentum of likely charged particles which depends on the relative velocity of particles
in the bound steady states at 0 < Vs < 1:

Js =

(
b(1−V 2

s ) − 1
)

Vs

. (54)
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Figure 1: The graph of the function Rs (53) at b = 2 and with 0 < Vs < 1.

0.0 0.2 0.4 0.6 0.8 1.0
Vs

10

20

30

40

50
Rs

Figure 2: The graph of the function Rs (53) at b = 200 and with 0 < Vs < 1.
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For the function (54) we get the first limiting value:

Vs → 0, Js → +∞,

and the second:

Vs → 1, Js > 0.

Next:
∂Js
∂Vs

= − 1

V 2
s

(
2V 2

s b
(1−V 2

s ) ln b+ b(1−V 2
s ) − 1

)
.

At Vs < 1:

2V 2
s b

(1−V 2
s ) ln b+ b(1−V 2

s ) − 1 > 0.

Thus, the function Js (54) is decreasing in the range of positive values and doesn’t have
neither nulls nor stationary points. The graphs of dependence of Js on Vs are shown at
Figure 3 at b = 2 and at Figure 4 at b = 200.
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Figure 3: The graph of the function Js (54) at b = 2 and with 0 < Vs < 1.
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Figure 4: The graph of the function Js (54) at b = 200 and with 0 < Vs < 1.
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From (46) we get the dimensionless function of the integration constant C̀, which
depends on the relative velocity of particles in the bound steady states at 0 ≤ Vs < 1:

Ès = logb

(
b− bV

2
s

)
+

2V 2
s

(b(1−V 2
s ) − 1)

. (55)

For the function (55) we get the limiting value:

Vs = 0, Ès = logb (b− 1) , b ≥ 2, Ès ≥ 0. (56)

Next:
∂Ès

∂Vs

=
2Vs

(b(1−V 2
s ) − 1)

2

(
2V 2

s b
(1−V 2

s ) ln b+ b(1−V 2
s ) − 1

)
.

At Vs < 1:

2V 2
s b

(1−V 2
s ) ln b+ b(1−V 2

s ) − 1 > 0.

Thus, the function Ès (55) is increasing in the range of positive values, it doesn’t have
stationary points and has a null point at Vs = 0 and b = 2. Therefore, as follows from
(56), the following condition must be satisfied at 0 < Vs < 1:

Ès > logb (b− 1) . (57)

The graphs of dependence of Ès on Vs are shown at Figure 5 at b = 2 and at Figure 6 at
b = 200.
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Figure 5: The graph of the function Ès (55) at b = 2 and with 0 < Vs < 1.

From (42) we get the dimensionless scalar function of the interaction of particles
which depends on the relative velocity of likely charged particles in the bound steady
states at 0 < Vs < 1:

Fs = − V 4
s

(b(1−V 2
s ) − 1)

. (58)

For the function (58) we get the first limiting value:

Vs → 0, Fs < 0,
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Figure 6: The graph of the function Ès (55) at b = 200 and with 0 < Vs < 1.

and the second:
Vs → 1, Fs → −∞.

Next:
∂Fs

∂Vs

= − 2V 3
s

(b(1−V 2
s ) − 1)

2

(
V 2
s b

(1−V 2
s ) ln b+ 2b(1−V 2

s ) − 2
)
.

At Vs < 1:

V 2
s b

(1−V 2
s ) ln b+ 2b(1−V 2

s ) − 2 > 0.

Thus, the function Fs (58) at 0 < Vs < 1 is always decreasing and negative and doesn’t
have neither nulls nor stationary points. The graphs of dependence of Fs on Vs are shown
at Figure 7 at b = 2 and at Figure 8 at b = 200.
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Figure 7: The graph of the function Fs (58) at b = 2 and with 0 < Vs < 1.

Let us write down the function (51) of the R variable which determines the ratio of
the squared value of the radial relative velocity of two particles to the squared value of
their neutral relative velocity at 0 ≤ V < 1:

1

a2

(
dr

dt

)2

= logb

(
b− b(È− q1q2

e2
2
R)
)
− J2

R2
, 0 ≤ V < 1. (59)
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Figure 8: The graph of the function Fs (58) at b = 200 and with 0 < Vs < 1.

From (59) we derive the not strict inequality for determination of values of R at which
the squared value of the radial relative velocity of two particles equals to zero, and for
determination of values of R at which the function (59) is positive:

logb

(
b− b(È− q1q2

e2
2
R)
)
− J2

R2
≥ 0, (60)

those will be the values and ranges of values of distances at which particles can be from
one another during the interaction according to (59). We convert the (60):

b− b(È− q1q2
e2

2
R) − b

J2

R2 ≥ 0. (61)

Based on (61), we determine and consider the function:

f(R) = b− b(È− q1q2
e2

2
R) − b

J2

R2 . (62)

From (62) we derive:

logb

(
b− b(È− q1q2

e2
2
R)
)
− J2

R2
= logb

(
1 + f(R)b

− J2

R2

)
. (63)

Therefore, if f(R) ≥ 0, then the (60) is satisfied. We determine the function of the ratio
of the squared value of the radial relative velocity of two particles to the squared value of
their neutral relative velocity (59) as the function Vr, which can have both positive and
negative values:

Vr = logb

(
b− b(È− q1q2

e2
2
R)
)
− J2

R2
, 0 ≤ R ≤ ∞. (64)

Then the (63) may be considered as:

Vr = logb

(
1 + f(R)b

− J2

R2

)
. (65)

We write down the f(R) function (62) for the interaction of the proton and the electron
at q1q2 < 0:

f(R) = b− b(È+ 2
R) − b

J2

R2 , 0 ≤ R ≤ ∞. (66)
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For the f(R) (66) function we get the first limiting value:

R = 0, f(R) < 0, (67)

and the second:
R = ∞, f(R) = b− 1− bÈ. (68)

For (68) we get the three variants of the limiting value.
First:

R = ∞, È < logb (b− 1) , f(R) > 0. (69)

Second:
R = ∞, È = logb (b− 1) , f(R) = 0. (70)

Third:
R = ∞, È > logb (b− 1) , f(R) < 0. (71)

We rewrite the È function (44) for interaction of the proton and the electron:

È = logb

(
b− bV

2
)
− 2

R
, 0 ≤ V < 1, (72)

We find the minimum possible value of the function (72):

R → 0, V → 1, È → −∞. (73)

We find the maximum possible value of the function (72):

R → ∞, V = 0, È < logb (b− 1) . (74)

As follows from (74), for the f(R) function (66) the first variant (69) of the second limiting
value (68) must be used. Thus, the limiting values of the f(R) function (66) will be the
following:
First:

R = 0, f(R) < 0. (75)

Second:
R = ∞, f(R) > 0. (76)

From (66) we obtain the equation for determination of real positive nulls of the f(R)

function (66):

b− b(È+ 2
R) = b

J2

R2 . (77)

In the left part of the equation (77) there is a strictly monotonically increasing function:

∂

∂R

(
b− b(È+ 2

R)
)
=

2 ln b

R2
b(È+ 2

R), (78)

whereas in the right part of it there is a strictly monotonically decreasing function:

∂

∂R

(
b

J2

R2

)
= −2J2 ln b

R3
b

J2

R2 . (79)
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It means that the equation (77) has only one real positive root. This shows that the f(R)

function (66) has the only real positive null. The first derivative of the f(R) function (66)
with respect to R is greater than zero:

∂f(R)

∂R
=

2 ln b

R2

(
b(È+ 2

R) +
J2

R
b

J2

R2

)
. (80)

Therefore, the f(R) function (66) increases from the range of negative values (75) to
the range of positive values (76). Let us make conclusions about behaviour of the f(R)

function (66):
1. With the values of R changing from zero ad infinitum, the function has only one real
positive null, R10, which is the real positive root of the equation (77).
2. For the range of values R < R10 the function is negative.
3. For the range of values R > R10 the function is positive.

Based on these conclusions, considering the Vr function (65):

Vr = logb

(
1 + f(R)b

− J2

R2

)
, (81)

provided that Vr ≥ 0, let us make conclusions about the states of the proton and electron
at 0 ≤ V < 1:
1. The radial relative velocity of the proton and the electron will equal to zero at the one
value of the distance between them, R10. With the radial relative velocity equal to zero,
the proton and the electron will not stay in the bound steady state since at 0 ≤ V < 1
the proton and the electron repel and thus, at dr/dt = 0 the radial relative acceleration
of the particles d2r/dt2 is greater than zero.
2. If dr/dt > 0 then the distance between particles increases and can’t be equal to R10 at
which dr/dt = 0. Therefore, at dr/dt > 0 the particles are in the free state.
3. If dr/dt = 0 then R = R10, d

2r/dt2 > 0, and the distance between particles increases.
Therefore, at dr/dt = 0 the particles are in the free state.
4. If dr/dt < 0 then the distance between particles decreases and the particles are in the
unsteady state. After dr/dt goes above the zero value at R = R10 and dr/dt becomes
greater than zero, the R value begins to increase. Thus, the particles’ state turns from
unsteady to free.

Let us take the inequality (61):

b− b(È− q1q2
e2

2
R) − b

J2

R2 ≥ 0,

and convert it as follows:

b
q1q2
e2

2
R

(
b− b

J2

R2

)
− bÈ ≥ 0. (82)

Based on (82), we determine and consider the function:

f(R) = b
q1q2
e2

2
R

(
b− b

J2

R2

)
− bÈ. (83)

We obtain from (83):

logb

(
b− b(È− q1q2

e2
2
R)
)
− J2

R2
= logb

(
1 + f(R)b

− J2

R2−
q1q2
e2

2
R

)
. (84)
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Therefore, if f(R) ≥ 0 then the (60) is satisfied. Based on (84), we can express the Vr

function (64) via the f(R) function (83) as:

Vr = logb

(
1 + f(R)b

− J2

R2−
q1q2
e2

2
R

)
. (85)

We write down the f(R) function (83) for interaction between either two protons or two
electrons, thus, at q1q2 > 0:

f(R) = b
2
R

(
b− b

J2

R2

)
− bÈ, 0 ≤ R ≤ ∞. (86)

For the f(R) function (86) we find the first limiting value:

R = 0, f(R) < 0, (87)

and the second:
R = ∞, f(R) = b− 1− bÈ. (88)

For (88) we get the three variants of the limiting value.
First:

R = ∞, È < logb (b− 1) , f(R) > 0. (89)

Second:
R = ∞, È = logb (b− 1) , f(R) = 0. (90)

Third:
R = ∞, È > logb (b− 1) , f(R) < 0. (91)

We rewrite the È function (44) for interaction between either two protons or two electrons:

È = logb

(
b− bV

2
)
+

2

R
, 0 ≤ V < 1, (92)

We find the minimum possible value of the function (92):

R → ∞, V → 1, È → −∞. (93)

We find the maximum possible value of the function (92):

R → 0, V = 0, È → +∞. (94)

It follows from (93) and (94) that the f(R) function (86) is to be considered for the three
variants of the second limiting value (89, 90, 91). We find the partial derivative of the
f(R) function (86) with respect to R:

∂f(R)

∂R
=

2 ln b

R2
b

2
R

(
b

J2

R2

(
1 +

J2

R

)
− b

)
. (95)

The (95) provides the equation which real positive roots are the stationary points of the
f(R) function:

1 +
J2

R
= b

(
1− J2

R2

)
. (96)
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In the left part of the equation (96) there is a strictly monotonically decreasing function:

∂

∂R

(
1 +

J2

R

)
= −J2

R2
, (97)

whereas in the right part of it there is a strictly monotonically increasing function:

∂

∂R

(
b

(
1− J2

R2

))
=

2J2 ln b

R3
b

(
1− J2

R2

)
. (98)

It means that the equation (96) has only one real positive root which value will determine
the one stationary value of the f(R) function. If we determine in (96):

J =

(
b(1−x2) − 1

)
x

, 0 < x < 1, (99)

then the real positive root of the equation (96) will be the following:

Rx =

(
b(1−x2) − 1

)
x2

, 0 < x < 1. (100)

Functions (100) and (99) are similar to those of (53) and (54) correspondingly which
behaviour was considered hereinabove for the bound steady states of the likely charged
particles at 0 < Vs < 1. The values of J (99) and Rx (100) are unambiguously determined
by the x variable within the whole positive number line excluding the values at which
x = 0. Therefore, Rx will be the only stationary point of the f(R) function (86). We
determine the value of the second derivative of the f(R) function (86) in the stationary
point of Rx:

∂2f(R)

∂R2 (R=Rx)
= −2J2 ln b

R6
x

b

(
2

Rx
+ J2

R2
x

) (
R2

x + 2Rx ln b+ 2J2 ln b
)
. (101)

Thus, the second derivative of the f(R) function (86) in the point of Rx (100) is less than
zero. Therefore, the stationary point of the f(R) function (86) is its maximum point.

Let us consider the f(R) function (86) for the first variant (89) of the second limiting
value (88):

R = 0, f(R) < 0, (102)

R = ∞, È < logb (b− 1) , f(R) > 0. (103)

Based on (102) and (103), we conclude:
The f(R) function (86) at È < logb (b− 1) will increase from the range of negative values
to the range of positive values, the maximum of the function will lay within the range of
positive values, and as the maximum point is passed, the function will decrease within
the range of positive values.

Therefore, the f(R) function (86) at È < logb (b− 1) will have the one real positive
null.

Let us consider the f(R) function (86) for the second variant (90) of the second
limiting value (88):

R = 0, f(R) < 0, (104)
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R = ∞, È = logb (b− 1) , f(R) = 0. (105)

The f(R) function (86) has the global maximum, thus, its value in the maximum point
will be greater than the values of its limits. Therefore, based on (105), we can determine:

f(Rx) > 0. (106)

It follows from the (106) that the maximum value of the f(R) function (86) at È =
logb (b− 1) and at J and Rx, determined in (99) and (100) correspondingly will be greater
than zero. Based on it, we conclude:
The f(R) function (86) at È = logb (b− 1) will increase from the range of negative values
to the range of positive values, the maximum of the function will lay within the range of
positive values, and as the maximum point is passed, the function will decrease within
the range of positive values down to zero. It means that the f(R) function (86) at È =
logb (b− 1) and at R ̸= ∞ will have the one real positive null.

Let us consider the f(R) function (86) for the third variant (91) of the second limiting
value (88):

R = 0, f(R) < 0, (107)

R = ∞, È > logb (b− 1) , f(R) < 0. (108)

We write down the value of the f(R) function (86) in the maximum point of Rx as follows:

f(Rx) = b
logb

b−b
J2

R2
x

+ 2
Rx

− bÈ, Rx > J. (109)

The power of the positive term in the right part of (109) is expressed by the function:

f(Rx) = logb

(
b− b

J2

R2
x

)
+

2

Rx

. (110)

The power of the negative term in the right part of (109) can be expressed by the function
(44) which value is constant as follows:

È = logb

(
b− b

1
a2
( dr0

dt )
2
+ J2

R2
0

)
+

2

R0

,
1

a2

(
dr0
dt

)2

+
J2

R2
0

< 1, R0 > J. (111)

It follows from (109), (110) and (111) that the f(R) function (86) at È > logb (b− 1) will
always have the point R0 = Rx at which its value either is equal to zero at dr0/dt = 0 or
is greater than zero at dr0/dt ̸= 0. In other words, if the following conditions are satisfied:

È > logb (b− 1) , J =
b1−x2 − 1

x
, 0 < x < 1, (112)

then the following condition is satisfied too:

È ≤ logb

(
b− bx

2
)
+

2x2

b1−x2 − 1
. (113)

Based on the analysis of the behaviour of the f(R) function (86) and taking into account
(107) and (108), we make the following conclusions:
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The f(R) function (86) at È > logb (b− 1) increases within the range of negative values
the maximum of the function either equals to zero or lays within the range of positive
values, and as the maximum point is passed, the function decreases within the range of
negative values.

Therefore, the f(R) function (86) at È > logb (b− 1) either has the one null in the
maximum point at which dr/dt = 0 or two nulls if its maximum value is greater than
zero.

Let us make some conclusions about the behaviour of the f(R) function (86):

1. At È ≤ logb (b− 1) and at 0 ≤ R < ∞ the function has the one real positive null R20;
besides, within the range of values R < R20 the function is negative whereas within the
range of values R > R20 the function is positive.
2. At È > logb (b− 1) and with the values of R changing from zero ad infinitum the
function either has the one real positive null Rx (100) or two real positive nulls R01 and
R02; besides, R01 < Rx < R02.
3. If at È > logb (b− 1) the value of the function in the maximum point is equal to
zero, the function has the one real positive null Rx; besides, the function is negative both
within the range of values R < Rx and R > Rx.
4. If at È > logb (b− 1) the value of the function in the maximum point is greater
than zero, the function has two real positive nulls R01 and R02; besides, the condition
R01 < Rx < R02 is satisfied. The function is negative within the range of values R < R01.
The function is positive within the range of values R01 < R < R02. The function is
negative within the range of values R > R02.

Based on these conclusions and considering the Vr function (85) at q1q2 > 0:

Vr = logb

(
1 + f(R)b

− J2

R2−
2
R

)
, (114)

with Vr ≥ 0, we conclude about the state of two likely charged particles, either two protons
or two electrons, at 0 ≤ V < 1:
1. With È ≤ logb (b− 1)), the radial relative velocity of particles equals to zero at the
one value of the distance between them, R20; besides, at the moment when the value of
the radial relative velocity equals to zero, the particles will not be in the bound steady
state since, as it was demonstrated above (57), the value of the Ès function (55) for the
bound steady states at Js ̸= 0 will be greater than logb (b− 1).
2. If at È ≤ logb (b− 1) the radial relative velocity of particles is greater than zero
(dr/dt > 0) then the distance between the particles is not equal to R20 and increases,
thus, it can’t have the value of R20 at which dr/dt = 0. Therefore, at dr/dt > 0 the
particles are in the free state.
3. If at È ≤ logb (b− 1) the radial relative velocity of particles equals to zero (dr/dt = 0)
then the distance between the particles is equal to R20 but since the particles at that will
not be in the bound steady state and will not be at the distance between one another in
the range of values R < R20, the radial relative acceleration of particles will be greater
than zero (dr2/dt2 > 0), and thus, the distance between particles will increase. Therefore,
the particles will be in the free state.
4. If at È ≤ logb (b− 1) the radial relative velocity of particles is less than zero (dr/dt < 0)
then the distance between the particles isn’t equal to R20 and decreases, thus, the particles
are in the unsteady state. As dr/dt passes the zero value at R = R20, dr/dt becomes
greater than zero and the value of R begins to increase and the unsteady state of particles
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turns into the free.
5. If at È > logb (b− 1) the radial relative velocity of particles is equal to zero at the
same distance between them if the values of È and J are as follows:

È = logb

(
b− bx

2
)
+

2x2

b1−x2 − 1
, 0 < x < 1, (115)

J =
b1−x2 − 1

x
, 0 < x < 1. (116)

In this case the value of the distance between the particles can be equal to Rx only. Thus,
the particles will be in the bound steady state with the following values of parameters of
interaction:

Ès = logb

(
b− bV

2
s

)
+

2V 2
s

b1−V 2
s − 1

, 0 < Vs < 1, (117)

Js =
b1−V 2

s − 1

Vs

, 0 < Vs < 1. (118)

Rs =
b1−V 2

s − 1

V 2
s

, 0 < Vs < 1. (119)

6. If the following conditions are satisfied:

J =
b1−x2 − 1

x
, logb (b− 1) < È < logb

(
b− bx

2
)
+

2x2

b1−x2 − 1
, 0 < x < 1, (120)

then the radial relative velocity of particles is equal to zero at the two values of distance
between them, R01 and R02. Thus, the particles under the conditions of (120) will be in
the bound unsteady state while the distance between them will change in the range of
R01 ≤ R ≤ R02; at that, the following condition will be satisfied:

R01 <
b1−x2 − 1

x2
< R02, 0 < x < 1.

Based on conclusions about the states of two likely charged particles, either two protons
or two electrons at 0 ≤ V < 1, we may conclude the following:
1. With:

0 < V < 1, J ̸= 0, È ≤ logb (b− 1) ,
dr

dt
≥ 0, (121)

the two likely charged particles are in the free state.
2. With:

0 < V < 1, J ̸= 0, È > logb (b− 1) , (122)

the two likely charged particles are in the bound state.
Proceeding from (122), we substitute the C̀ value in the È value with its determi-

nation via the initial conditions of the motion of particles (21), with q1q2 > 0 we obtain
the conditions of the bound state of two likely charged particles depending either on the
initial conditions of the motion:

logb

(
b− bV

2
0

b− 1

)
+

2

R0

> 0, J ̸= 0, V0 =
v0
a
, 0 < V0 < 1, R0 =

r0
rh
, (123)
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or on V and R variables:

logb

(
b− bV

2

b− 1

)
+

2

R
> 0, J ̸= 0, 0 < V < 1. (124)

Proceeding from (121), we substitute the C̀ value in the È value with its determination
via the initial conditions of the motion of particles (21), with q1q2 > 0 we obtain the
conditions of the free state of two likely charged particles depending either on the initial
conditions of the motion:

logb

(
b− bV

2
0

b− 1

)
+

2

R0

≤ 0, J ̸= 0, 0 < V0 < 1,
dr0
dt

≥ 0, (125)

or on V and R variables:

logb

(
b− bV

2

b− 1

)
+

2

R
≤ 0, J ̸= 0, 0 < V < 1,

dr

dt
≥ 0. (126)

Proceeding from (123), we substitute the dimensionless functions of variables and con-
stants with their values and obtain the conditions of the bound state of two electrons:

mea
2
e

4
logb

(
b− bv

2
0/a

2
e

b− 1

)
+

e2

r0
> 0, j0 ̸= 0, 0 < v0 < ae, (127)

and the conditions of the bound state of two protons:

mpa
2
p

4
logb

(
b− bv

2
0/a

2
p

b− 1

)
+

e2

r0
> 0, j0 ̸= 0, 0 < v0 < ap, (128)

depending on the initial conditions of the motion.
The boundary values of the initial conditions of the motion of the free

state with the bound state will be determined from the equality:

logb

(
b− bV

2
0

b− 1

)
= − 2

R0

, J ̸= 0, 0 < V0 < 1, (129)

for the interaction between two electrons:

mea
2
e

4
logb

(
b− bv

2
0/a

2
e

b− 1

)
= −e2

r0
, j0 ̸= 0, 0 < v0 < ae, (130)

and for the interaction between two protons:

mpa
2
p

4
logb

(
b− bv

2
0/a

2
p

b− 1

)
= −e2

r0
, j0 ̸= 0, 0 < v0 < ap. (131)

From (129) we get the dimensionless function of boundary values of R0 of free and bound
states which depends on the boundary values of relative velocities of likely charged par-
ticles V0 at 0 < V0 < 1:

R0 =
2

logb (b− 1)− logb
(
b− bV

2
0

) . (132)
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For the function (132) we get the first limiting value:

V0 → 0, R0 → ∞,

and the second:

V0 → 1, R0 → 0.

Next:
∂R0

∂V0

= − 4V0 ln b(
b(1−V 2

0 ) − 1
) (

logb (b− 1)− logb
(
b− bV

2
0

))2 .
At V0 < 1:

∂R0

∂V0

< 0.

Thus, the function R0 (132) at 0 < V0 < 1 is decreasing and always positive and doesn’t
have neither nulls nor stationary points.
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Figure 9: The graph of the function R0 (132) at b = 2 and with 0 < V0 < 1.
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Figure 10: The graph of the function R0 (132) at b = 200 and with 0 < V0 < 1.
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The graphs of dependence of R0 on V0 are shown at Figure 9 at b = 2 and at Figure
10 at b = 200. If we consider the V values instead of V0 values and R values instead of R0

values for the graphs at Figures 9 and 10, then the range of R and V values located to
the right from the R0 function graph, including the R0 and V0 values, will determine the
free states of particles at dr/dt ≥ 0. And the range of values to the left from the graph
will determine both the bound steady and the bound unsteady states of likely charged
particles.

The greater is the magnitude of the attracting force between the particles in the
bound state, the greater is the force to be applied for breaking the bond between them
and turning their bound state into the free. Proceeding from this, based on the analysis
of the Rs (53) and Fs (58) functions, one can conclude that the bound steady state
which would be most sustainable to turning into the free state is the bound steady state
of two likely charged particles when the magnitude of relative velocity of the particles
approaches the value of the neutral relative velocity of these particles from the zero side
and the distance between them approaches zero.

10 States of two particles which magnitude of their

relative velocity is greater than their neutral rel-

ative velocity

As follows from the Chapter 7, the bound state at v0 > a can be if only q1q2 < 0. And
thus, this condition can exist for interaction between the electron and the proton only
at V > 1. For this case we proceed from (41) as q1q2 < 0 and obtain the dimensionless
function of the distance between the electron and the proton which depends on the relative
velocity of particles in the bound steady states as Vs > 1:

Rs =

(
1− b(1−V 2

s )
)

V 2
s

. (133)

For the function (133) we get the first limiting value:

Vs → 1, Rs > 0,

and the second:

Vs >> 1, Rs →
1

V 2
s

.

Next:
∂Rs

∂Vs

=
2

V 3
s

(
V 2
s b

(1−V 2
s ) ln b+ b(1−V 2

s ) − 1
)
. (134)

From (134) we derive the equation which real positive roots are the stationary points of
the Rs function at Vs > 1:

V 2
s b

(1−V 2
s ) ln b+ b(1−V 2

s ) − 1 = 0. (135)

Let us consider the function formed from (135):

f(Vs) = V 2
s b

(1−V 2
s ) ln b+ b(1−V 2

s ) − 1. (136)
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For the function (136) we get the first limiting value:

Vs → 1, f(Vs) > 0,

and the second:
Vs >> 1, f(Vs) < 0.

We find the partial derivative of f(Vs) with respect to Vs:

∂f(Vs)

∂Vs

= −2V 3
s b

(1−V 2
s ) ln2 b. (137)

Thus, the f(Vs) function (136) is strictly monotonic and decreasing from positive
values to negative. Therefore, the equation (135) has only one real positive root. We find
the second derivative of Rs with respect to Vs:

∂2Rs

∂V 2
s

= − 6

V 4
s

(
V 2
s b

(1−V 2
s ) ln b+ b(1−V 2

s ) − 1
)
− 4b(1−V 2

s ) ln2 b. (138)

With Vs equal to the real positive root of the equation (135), the second derivative of Rs

is less than zero:
∂2Rs

∂V 2
s

= −4b(1−V 2
s ) ln2 b. (139)

Therefore, the value of Vs at which the equation (135) is equal to zero will be that at
which the Rs function (133) has the maximum of its positive value since the limiting
values of the Rs function are greater than zero and it doesn’t have nulls. The graphs of
dependence of Rs on Vs are shown at Figure 11 at b = 2 and at Figure 12 at b = 200.
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Figure 11: The graph of the function Rs (133) at b = 2 and with Vs > 1.

From (43) we get the dimensionless function of the magnitude of the moment of
momentum of unlikely charged particles (the electron and the proton) which depends on
the relative velocity of particles in the bound steady states at Vs > 1:

Js =

(
1− b(1−V 2

s )
)

Vs

. (140)
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Figure 12: The graph of the function Rs (133) at b = 200 and with Vs > 1.

For the function (140) we get the first limiting value:

Vs → 1, Js > 0,

and the second:

Vs >> 1, Js →
1

Vs

.

Next:
∂Js
∂Vs

=
1

V 2
s

(
2V 2

s b
(1−V 2

s ) ln b+ b(1−V 2
s ) − 1

)
. (141)

From (141) we derive the equation which real positive roots are the stationary points of
the Js function at Vs > 1:

2V 2
s b

(1−V 2
s ) ln b+ b(1−V 2

s ) − 1 = 0. (142)

From (142) we form the following function:

f(Vs) = 2V 2
s b

(1−V 2
s ) ln b+ b(1−V 2

s ) − 1. (143)

For the function (143) we get the first limiting value:

Vs → 1, f(Vs) > 0,

and the second:
Vs >> 1, f(Vs) < 0.

We find the partial derivative of f(Vs) with respect to Vs:

∂f(Vs)

∂Vs

= 2Vsb
(1−V 2

s )
(
1− 2V 2

s ln b
)
ln b. (144)

By definition of Vs for (142) and b, in the considered version of PPST (23) we have the
following:

Vs > 1, b ≥ 2, 2 ln b > 1. (145)
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Therefore:
∂f(Vs)

∂Vs

< 0.

Thus, the f(Vs) function is strictly monotonic and decreasing from positive values to
negative. As follows from it, the equation (142) has only one real positive root. We find
the second derivative of Js with respect to Vs:

∂2Js
∂V 2

s

= − 2

V 3
s

(
2V 2

s b
(1−V 2

s ) ln b+ b(1−V 2
s ) − 1

)
+

2 ln b

Vs

b(1−V 2
s )
(
1− 2V 2

s ln b
)
. (146)

Applying (142) and (145) to (146), we obtain the value of the second derivative of Js with
respect to Vs in the stationary point which is the real positive root of the equation (142):

∂2Js
∂V 2

s

< 0.

Therefore, the Js function (140) at the value of Vs equal to the real positive root of the
equation (142) will have the maximum of its positive value since the limiting values of the
Js function are greater than zero and it doesn’t have nulls. The graphs of dependence of
Js on Vs are shown at Figure 13 at b = 2 and at Figure 14 at b = 200.
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Figure 13: The graph of the function Js (140) at b = 2 and with Vs > 1.

From (47) we get the dimensionless function of the integration constant Ć which
depends on the relative velocity of unlikely charged particles in the bound steady states
at Vs > 1:

És = logb

(
bV

2
s − b

)
− 2V 2

s

(1− b(1−V 2
s ))

. (147)

We convert (147) as follows:

És = logb

(
1− b(1−V 2

s )
)
− V 2

s

1 + b(1−V 2
s )

(1− b(1−V 2
s ))

. (148)

At Vs > 1:

0 < 1− b(1−V 2
s ) < 1.
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Figure 14: The graph of the function Js (140) at b = 200 and with Vs > 1.

Thus:
És < 0. (149)

For the function (147) we get the first limiting value:

Vs → 1, És → −∞,

and the second:
Vs >> 1, És → −V 2

s .

Next:
∂És

∂Vs

=
2Vs

(1− b(1−V 2
s ))

2

(
2V 2

s b
(1−V 2

s ) ln b+ b(1−V 2
s ) − 1

)
. (150)

From (150) we derive the equation which real positive roots are the stationary points of
the És function at Vs > 1:

2V 2
s b

(1−V 2
s ) ln b+ b(1−V 2

s ) − 1 = 0. (151)

The equation (151) is identical to (142). Therefore, the És function (147) at the value of
Vs equal to the real positive root of the equation (151) will have the one stationary point.
The second derivative of És with respect to Vs as well as that of Js (140) with respect
to Vs at the conditions determined for (151) and (145) will be negative. Thus, the És

function (147) at the value of Vs equal to the real positive root of the equation (151) will
have the maximum of its negative value since És < 0. The graphs of dependence of És

on Vs are shown at Figure 15 at b = 2 and at Figure 16 at b = 200.
From (42) we get the dimensionless scalar function of interaction of particles which

depends on the relative velocity of unlikely charged particles in the bound steady states
at Vs > 1:

Fs = − V 4
s

(1− b(1−V 2
s ))

. (152)

For the function (152) we get the first limiting value:

Vs → 1, Fs → −∞,
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Figure 15: The graph of the function És (147) at b = 2 and with Vs > 1.
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Figure 16: The graph of the function És (147) at b = 200 and with Vs > 1.
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and the second:
Vs >> 1, Fs → −V 4

s .

Next:
∂Fs

∂Vs

=
2V 3

s

(1− b(1−V 2
s ))

2

(
V 2
s b

(1−V 2
s ) ln b+ 2b(1−V 2

s ) − 2
)
. (153)

From (153) we derive the equation which real positive roots are the stationary points of
the Fs function (152) at Vs > 1:

V 2
s b

(1−V 2
s ) ln b+ 2b(1−V 2

s ) − 2 = 0. (154)

Let us consider the function formed from (154):

f(Vs) = V 2
s b

(1−V 2
s ) ln b+ 2b(1−V 2

s ) − 2. (155)

For the function (155) we get the first limiting value:

Vs → 1, f(Vs) > 0,

and the second:
Vs >> 1, f(Vs) < 0.

We find the partial derivative of f(Vs) with respect to Vs:

∂f(Vs)

∂Vs

= −2Vsb
(1−V 2

s )
(
1 + V 2

s ln b
)
ln b. (156)

Thus, the f(Vs) function is strictly monotonic and decreasing from positive values to
negative. As follows from it, the equation (154) has only one real positive root which
value determines the one stationary point of the Fs function (152). The second derivative
of Fs with respect to Vs at the point determined by the real positive root of the equation
(154) will look as follows:

∂2Fs

∂V 2
s

= −4V 4
s b

(1−V 2
s ) ln b

(1− b(1−V 2
s ))

2

(
1 + V 2

s ln b
)
. (157)

It is negative and therefore, the Fs function (152) at the point determined by the real
positive root of the equation (154) has the maximum of its negative value since the limiting
values of Fs are less than zero and Fs itself doesn’t have nulls. The graphs of dependence
of Fs on Vs are shown at Figure 17 at b = 2 and at Figure 18 at b = 200.

Let us write down the function (52) at q1q2 > 0 which determines the ratio of the
squared value of the radial relative velocity of two likely charged particles (either two
protons or two electrons) to the squared value of their neutral relative velocity at V > 1:

1

a2

(
dr

dt

)2

= logb

(
b+ b(É− 2

R)
)
− J2

R2
, V > 1. (158)

From (158) we derive the not strict inequality for determination of values of R at which
the squared value of the radial relative velocity of two particles equals to zero, and for
determination of values of R at which the function (158) is positive:

logb

(
b+ b(É− 2

R)
)
− J2

R2
≥ 0, (159)
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Figure 17: The graph of the function Fs (152) at b = 2 and with Vs > 1.
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Figure 18: The graph of the function Fs (152) at b = 200 and with Vs > 1.
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those will be the values and ranges of values of distances at which particles can be from
one another during the interaction according to (158).
We convert the (159):

b+ b(É− 2
R) − b

J2

R2 ≥ 0. (160)

Based on (160), we determine and consider the function:

f(R) = b+ b(É− 2
R) − b

J2

R2 . (161)

From (161) we derive:

logb

(
b+ b(É− 2

R)
)
− J2

R2
= logb

(
1 + f(R)b

− J2

R2

)
. (162)

Therefore, if f(R) ≥ 0, then the (159) is satisfied. We determine the function of the ratio
of the squared value of the radial relative velocity of two likely charged particles to the
squared value of their neutral relative velocity (158) as the function Vr which can have
both positive and negative values:

Vr = logb

(
b+ b(É− 2

R)
)
− J2

R2
, 0 ≤ R ≤ ∞. (163)

Then the (162) can be considered as:

Vr = logb

(
1 + f(R)b

− J2

R2

)
, (164)

and the function (161) can be determined as follows:

f(R) = b+ b(É− 2
R) − b

J2

R2 , 0 ≤ R ≤ ∞. (165)

For the f(R) function (165) we find the first limiting value:

R = 0, f(R) < 0, (166)

and the second:
R = ∞, f(R) > 0. (167)

From (165) we obtain the equation for determination of real positive nulls of the f(R)

function (165):

b+ b(É− 2
R) = b

J2

R2 . (168)

In the left part of the equation (168) there is a strictly monotonically increasing function:

∂

∂R

(
b+ b(É− 2

R)
)
=

2 ln b

R2
b(É− 2

R), (169)

whereas in the right part of it there is a strictly monotonically decreasing function:

∂

∂R

(
b

J2

R2

)
= −2J2 ln b

R3
b

J2

R2 . (170)
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It means that the equation (168) has only one real positive root. As follows from it, the
f(R) function (165) has the only real positive null. The first derivative of the f(R) function
(165) with respect to R is greater than zero:

∂f(R)

∂R
=

2 ln b

R2

(
b(É− 2

R) +
J2

R
b

J2

R2

)
. (171)

Therefore, the f(R) function (165) increases from the range of negative values (166) to
the range of positive values (167). Let us make conclusions about behaviour of the f(R)

function (165):
1. with the values of R changing from zero ad infinitum, the function has only one real
positive null, R10, which is the real positive root of the equation (168);
2. for the range of values R < R10 the function is negative;
3. for the range of values R > R10 the function is positive.

Based on these conclusions, considering the Vr function (164):

Vr = logb

(
1 + f(R)b

− J2

R2

)
, (172)

provided that Vr ≥ 0, let us make conclusions about the states of two likely charged
particles, either two protons or two electrons, at V > 1:
1. The radial relative velocity of particles will equal to zero at the one value of the distance
between them, R10. With the radial relative velocity equal to zero, likely charged particles
will not stay in the bound steady state since at V > 1 likely charged particles repel and
thus, at dr/dt = 0 the radial relative acceleration of the particles d2r/dt2 is greater than
zero.
2. If dr/dt > 0 then the distance between particles increases and can’t be equal to R10 at
which dr/dt = 0. Therefore, at dr/dt > 0 the particles are in the free state.
3. If dr/dt = 0 then R = R10, d

2r/dt2 > 0, and the distance between particles will
increase, and thus, the particles are in the free state.
4. If dr/dt < 0 then the distance between particles decreases and the particles are in the
unsteady state. After dr/dt traverses the zero value at R = R10 and dr/dt becomes greater
than zero, the R value begins to increase and the particles’ state turns from unsteady to
free.

We write down the function (52) at q1q2 < 0 which determines the ratio of the squared
value of the radial relative velocity of two unlikely charged particles (the proton and the
electron) to the squared value of their neutral relative velocity at V > 1:

1

a2

(
dr

dt

)2

= logb

(
b+ b(É+ 2

R)
)
− J2

R2
, V > 1. (173)

From (173) we derive the not strict inequality for determination of values of R at which
the value of the squared radial relative velocity of two unlikely charged particles equals
to zero, and for determination of values of R at which the function (173) is positive:

logb

(
b+ b(É+ 2

R)
)
− J2

R2
≥ 0, (174)

those will be the values and ranges of values of distances at which particles can be from
one another during the interaction according to (173). We convert the (174):

b+ b(É+ 2
R) − b

J2

R2 ≥ 0. (175)
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Next, we obtain from (175):

bÉ −
(
b

J2

R2 − b

)
b−

2
R ≥ 0. (176)

Based on (176), we determine and consider the function:

f(R) = bÉ −
(
b

J2

R2 − b

)
b−

2
R . (177)

From (177) we derive:

logb

(
b+ b(É+ 2

R)
)
− J2

R2
= logb

(
1 + f(R)b

(
2
R
− J2

R2

))
. (178)

Therefore, if f(R) ≥ 0, then the (174) is satisfied. We determine the function of the ratio
of the squared value of the radial relative velocity of two unlikely charged particles to the
squared value of their neutral relative velocity (173) as the function Vr which can have
both positive and negative values:

Vr = logb

(
b+ b(É+ 2

R)
)
− J2

R2
, V > 1, 0 ≤ R ≤ ∞. (179)

Then the (178) may be considered as:

Vr = logb

(
1 + f(R)b

(
2
R
− J2

R2

))
, (180)

and the function (177) can be determined as follows:

f(R) = bÉ −
(
b

J2

R2 − b

)
b−

2
R , 0 ≤ R ≤ ∞. (181)

For the f(R) function (181) we find the first limiting value:

R = 0, f(R) < 0, (182)

and the second:
R = ∞, f(R) = bÉ + b− 1 > 0. (183)

We find the first derivative of the f(R) function with respect to R:

∂f(R)

∂R
=

2 ln b

R2
b−

2
R

(
b−

(
1− J2

R

)
b

J2

R2

)
. (184)

The (184) gives the equation which real positive roots are the stationary points of the
f(R) function:

b−
(
1− J2

R

)
b

J2

R2 = 0. (185)

From (185) we form the function which real positive nulls will be the stationary points of
the f(R) function (181):

fk(R) = b−
(
1− J2

R

)
b

J2

R2 . (186)
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Let us find the limiting values of the fk(R) function:

R = 0, fk(R) > 0. (187)

R = ∞, fk(R) > 0. (188)

We differentiate the fk(R) function with respect to R:

∂fk(R)

∂R
= −J2

R4
b

J2

R2
(
R2 − 2R ln b+ 2J2 ln b

)
. (189)

From (189) we derive the equation which real positive roots are the stationary points of
the fk(R) function:

R2 − 2R ln b+ 2J2 ln b = 0. (190)

Solving the equation (190), we get:

R1,2 = ln b

(
1∓

(
1− 2J2

ln b

)1/2
)
, J2 ≤ ln b

2
. (191)

As follows from (191), if:

J2 >
ln b

2
, (192)

then:
R2 − 2R ln b+ 2J2 ln b > 0. (193)

And thus, we derive from (189):
∂fk(R)

∂R
< 0. (194)

Then the fk(R) function (186) will decrease in the positive range, will not have stationary
points and will not have real positive nulls since its limiting ranges (187) and (188) are
positive. Therefore, the following conditions will be satisfied:

J >

(
ln b

2

)1/2

, fk(R) > 0. (195)

Next, as follows from (191):

J2 =
ln b

2
, R1,2 = ln b. (196)

At the conditions of (196):

b ≥ 2, 2 ln b > 1, fk(R) = b− 1

2
b

1
2 ln b > 0. (197)

Therefore, the fk(R) function at the conditions of (196) has the one stationary point at
which its value is positive and doesn’t have real positive nulls since its limiting values
(187) and (188), as well as its value in the stationary point, are positive. It follows from
(195), (196) and (197) correspondingly that the first derivative of f(R) function (184) with
respect to R at the conditions of (195), (196) and (197) is greater than zero and the f(R)

function at these conditions doesn’t have stationary points and increases from the range
of negative values to the range of positive values. Therefore, the f(R) function (181) at
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J2 ≥ ln b/2 has only one real positive null. If the values of R are greater than this null,
the f(R) function is positive. If the values of R are less than this null, the f(R) function
is negative.

Let us find the values of the second derivative of the fk(R) function with respect to
R at the stationary points, i.e., at the conditions of (191):

∂2fk(R)

∂R2 (R=R1,2)
= − 2J2

R4
1,2

b
J2

R2
1,2 (R1,2 − ln b) . (198)

As follows from (198), at R1,2 < ln b the value of the second derivative of the fk(R) function
in the stationary point is greater than zero. Thus, we can determine from (191) that in
the R1 stationary point:

R1 = ln b

(
1−

(
1− 2J2

ln b

)1/2
)
, (199)

the fk(R) function has its local minimum.
As it also follows from (198), at R1,2 > ln b the value of the second derivative of the fk(R)

function in the stationary point is less than zero. We can determine from (191) that in
the R2 stationary point:

R2 = ln b

(
1 +

(
1− 2J2

ln b

)1/2
)
, (200)

the fk(R) function has its local maximum.
Assuming that the values of the fk(R) function in the limiting points are positive (187,
188), in the stationary point of the minimum value (199) the fk(R) function has its local
minimum whereas in the stationary point of the maximum value (200) it has its local
maximum, and that the function doesn’t have any other stationary point, we conclude:
1. The value of the fk(R) function in the local maximum point is greater than zero.
2. If the value of the fk(R) function in the local minimum point is greater than zero, the
fk(R) function doesn’t have real positive nulls.
3. If the value of the fk(R) function in the local minimum point equals to zero, the fk(R)

function has one real positive null.
4. If the value of the fk(R) function in the local minimum point is less than zero, the
fk(R) function has two real positive nulls.

As follows from the conclusion 3 and (199), there is a single value of J which we
determine as Jc, at which the fk(R) function has one real positive null. If we determine
this null based on (199) as:

Rc = ln b

(
1−

(
1− 2J2

c

ln b

)1/2
)
, (201)

then the value of Jc will be determined from the equation (185), substituting in it the R
with the Rc value: (

1− J2
c

Rc

)
b

J2
c

R2
c − b = 0. (202)
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If we determine:

Jc =

(
1− b(1−V 2

c )
)

Vc

, Vc > 1, (203)

then the real positive root of the equation (202) will be as follows:

Rc =

(
1− b(1−V 2

c )
)

V 2
c

, Vc > 1. (204)

The value of Vc is determined from the equation derived from (201) by introducing into
it the Rc (204) and Jc (203) expressed via Vc:

2V 2
c b

(1−V 2
c ) ln b+ b(1−V 2

c ) − 1 = 0. (205)

The equation (205) is identical to the equation (142) which determines the value of Vs at
which the dimensionless function of the magnitude of moment of momentum of unlikely
charged particles, the electron and the proton, depending on the relative velocity of the
particles in the bound steady states has its maximum. As follows from the analysis of the
equation (142), at b ≥ 2 and Vc > 1 the equation (205) has only one real positive root.
At b = 2, Vc = 1.8905056... Thus, the maximum of the Js function (140) will match the
Jc value.

We substitute R with R1(J) (199) in the fk(R) function (186) which will be determined
by the J variable:

fk(J) = b−
(
1− J2

R1(J)

)
b

J2

R2
1(J) . (206)

From (203) and (205) we derive:

Jc =
2Vc ln b

2V 2
c ln b+ 1

. (207)

As follows from (196) and (197), the value of J at which the fk(R) function has one
stationary point R = ln b is determined by the equality:

J =

(
ln b

2

)(1/2)

. (208)

As it was shown hereinabove (195), the values of J at which the fk(R) function doesn’t
have stationary points are determined by the inequality:

J >

(
ln b

2

)(1/2)

. (209)

From (207) and (208) we derive the strict inequality:

2Vc ln b

2V 2
c ln b+ 1

<

(
ln b

2

)(1/2)

.

Thus:

Jc <

(
ln b

2

)(1/2)

. (210)
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Proceeding from (208) and (210), we determine the first limiting value of the fk(J) function
(206) at which and above which the fk(J) function has stationary points:

J = Jc, R1(Jc) = Rc, fk(Jc) = 0. (211)

From (195), (196) and (197) we find the second limiting value above which fk(J) doesn’t
have stationary points:

J =

(
ln b

2

)(1/2)

, R1(J) = ln b, fk(J) = b− 1

2
b

1
2 ln b > 0. (212)

We determine the derivative of the fk(J) function with respect to J at the R1(J) (199)
point:

∂fk(J)

∂J
=

2J

R3
1(J)

b
J2

R2
1(J)
(
R1(J) − J2

)
ln b. (213)

As follows from (199), R1(J) > J2, thus:

∂fk(J)

∂J
> 0.

Therefore, the fk(J) function at the range of values of J :

Jc ≤ J ≤
(
ln b

2

)(1/2)

,

doesn’t have stationary points, increases from zero to positive values and thus, it doesn’t

have nulls at J > Jc. Therefore, fk(R) at Jc < J ≤
(
ln b
2

)(1/2)
has the local minimum of

the positive value and, according to the conclusion 2, it doesn’t have real positive nulls.
As follows from it, the f(R) function at J > Jc doesn’t have stationary points and has
one real positive null.

Let us consider the equation (185) from which the fk(R) function has been formed:

b−
(
1− J2

R

)
b

J2

R2 = 0. (214)

As it was demonstrated hereinabove, the fk(R) function at J > Jc doesn’t have real
positive nulls. Thus, as the equation (214) has two real positive roots, they can only exist
at J < Jc. With J = Jc the equation (214) has one real positive root, Rc. As follows from
the analysis of the Js function (140), at Js < Jc the same value of Js can be expressed
via two different values of Vs. One of them is greater than Vc, another one is less than Vc.
Therefore, at J < Jc we can determine the double equality:

J =

(
1− b(1−x2

min)
)

xmin

=

(
1− b(1−x2

max)
)

xmax

, 1 < xmin < Vc, xmax > Vc, (215)

where the Vc value is determined as the real positive root of the equation (205). As
follows from (215), the two real positive roots of the equation (214), Rmin and Rmax

(Rmin < Rmax) will be determined via the xmax and xmin values as:

Rmin =

(
1− b(1−x2

max)
)

x2
max

, xmax > Vc, (216)
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Rmax =

(
1− b(1−x2

min)
)

x2
min

, 1 < xmin < Vc, (217)

where xmin and xmax are the different functions of J according to (215). With the value
of J < Jc determined in (215), the f(R) function will have two stationary points, one of
them is Rmin (216) and another one is Rmax (217). With J = Jc the f(R) function will
have one stationary point Rc. At J > Jc the f(R) function will not have any stationary
points. Let us find the second derivative of the f(R) function with respect to R in the
stationary points at J < Jc:

∂2f(R)

∂R2 (R=Rx)
=

2J2 ln b

R6
x

(
−R2

x + 2Rx ln b− 2J2 ln b
)
b

(
J2

R2
x
− 2

Rx

)
, (218)

where Rx can possess the values of either Rmin (216) or Rmax (217). The function:

f(x) = −R2
x + 2Rx ln b− 2J2 ln b, (219)

determines in (218) the sign of the second derivative of f(R) with respect to R in the
stationary points. If we introduce the following into (219):

Rx =

(
1− b(1−x2)

)
x2

, J =

(
1− b(1−x2)

)
x

, x > 1, (220)

where x will determine the values of either xmax or xmin from (216) and (217), then (219)
can be converted into the following form:

x4f(x)
1− b(1−x2)

= 2x2b(1−x2) ln b+ b(1−x2) − 1. (221)

The function formed from the right part of (221):

f1(x) = 2x2b(1−x2) ln b+ b(1−x2) − 1,

is identical to the function (143) considered hereinabove and has the following properties:
1. at b ≥ 2 the function has one real positive null, x = Vc;
2. at x < Vc the value of the function is positive;
3. at x > Vc the value of the function is negative.

As follows from these properties, from (216), (217) and (218), the value of the second
derivative of the f(R) function with respect to R in the Rmin point is negative whereas in
the Rmax point it’s positive. Therefore:
1. in the Rmin point the f(R) function has its local maximum;
2. in the Rmax point the f(R) function has its local minimum.

We rewrite the f(R) function (181) as follows:

f(R) = bÉ − b
logb

(
b
J2

R2 −b

)
− 2

R

, R < J. (222)

As follows from (222), if:

É = logb

(
b

J2

R2 − b

)
− 2

R
, (223)
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then the value of the f(R) function will equal to zero. If in (223) J = Jc (203) and R = Rc

(204), then the value of É at which the value of f(R) equals to zero will be determined
as:

Éc = logb

(
bV

2
c − b

)
− 2V 2

c

1− b1−V 2
c
. (224)

Therefore, the Éc value matches the maximum value of the És function (147) for the
bound steady states of the proton and the electron.

The values of the first and the second derivatives of the f(R) function with respect to
R at the Rc point and with J = Jc are equal to zero; the value of the third derivative of
the f(R) function with respect to R at the Rc point and with J = Jc will be determined
by the equality:

∂3f(R)

∂R3 (R=Rc)
= −4J2

c ln b

R6
c

b

(
J2
c

Rc
− 2

Rc

)
(Rc − ln b) , (225)

it is not equal to zero since Rc ̸= ln b. As follows from it, the f(R) function has an

inflection point Rc at J = Jc. We can conclude from (224) that at É = Éc and J = Jc the
f(R) has the inflection point Rc at which the value of f(R) equals to zero. As follows from

(222), if J = Jc and É < Éc, then the f(R) function has the inflection point Rc at which
the value of f(R) is less than zero since in this case the (222) results to the following:

bÉ < b
logb

b

J2
c

R2
c −b

− 2
Rc

. (226)

If J = Jc and É > Éc then the f(R) function has the inflection point Rc at which the
value of f(R) is greater than zero since in this case the (222) results to the following:

bÉ > b
logb

b

J2
c

R2
c −b

− 2
Rc

. (227)

The (227) demonstrates that at É > Éc the values of the local maximum and the local
minimum of the f(R) function will be greater than zero. It is determined by the following:

first, the És function (147) has the maximum at Vs = Vc:

Éc = logb

(
b

J2
c

R2
c − b

)
− 2

Rc

= logb

(
bV

2
c − b

)
− 2V 2

c

1− b1−V 2
c
, (228)

second, at J > Jc the f(R) function doesn’t have stationary points, third, the value of the
power of the negative term in the right part of (222) in the local maximum point of the
f(R) function will be as follows:

logb

(
bx

2
max − b

)
− 2x2

max

1− b1−x2
max

, xmax > Vc, (229)

whereas in the local minimum point it will be:

logb

(
bx

2
min − b

)
− 2x2

min

1− b1−x2
min

, 1 < xmin < Vc. (230)
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Thus, the following inequalities will be satisfied:

É > Éc, bÉ > b
logb

b
J2

R2
max −b

− 2
Rmax

, bÉ > b
logb

b

J2

R2
min −b

− 2
Rmin

.

Therefore, at É > Éc the f(R) function will have one real positive null.
As follows from (229) and (230), the strict inequality should be satisfied:

logb

(
bx

2
max − b

)
− 2x2

max

1− b1−x2
max

< logb

(
bx

2
min − b

)
− 2x2

min

1− b1−x2
min

, (231)

since the value of the f(R) function (222) in the local maximum point is always greater
than that in the local minimum point.

The analysis of the f(R) (181) and fk(R) (186) functions performed hereinabove
provides the following conclusions on the behaviour of the f(R) function:
1. With R → 0, f(R) < 0.
2. With R → ∞, f(R) > 0.
3. With J > Jc the f(R) function has one real positive null, R10. Within the range of
values 0 < R < R10, the f(R) function is negative. Within the range of values R > R10

the f(R) function is positive.

4. With É > Éc the f(R) function has one real positive null, R20. Within the range of
values 0 < R < R20, the f(R) function is negative. Within the range of values R > R20,
the f(R) function is positive.

5. With J = Jc and É = Éc the f(R) function has one real positive null, Rc. Rc is the
inflection point of the f(R) function. Within the range of values 0 < R < Rc, the f(R)

function is negative. Within the range of values R > Rc, the f(R) function is positive.
6. With J < Jc the f(R) function has two stationary points, one of them Rmin (216)
which determines its local maximum, and another one Rmax (217) which determines its
local minimum.
7. With J < Jc the value of the f(R) function in its local maximum point, Rmin (216), is
determined as follows:

f(Rmin) = bÉ − b
logb

(
bx

2
max−b

)
− 2x2max

1−b1−x2max . (232)

8. If:

J < Jc, É < logb

(
bx

2
max − b

)
− 2x2

max

1− b1−x2
max

, (233)

the f(R) function has one real positive null, R50, since if the f(R) function is negative in
the local maximum point then it is negative in its local minimum point. Within the range
of values 0 < R < R50 the f(R) function is negative. Within the range of values R > R50,
the f(R) function is positive.
9. With J < Jc , the value of the f(R) function in its local minimum point, Rmax (217),
is determined as follows:

f(Rmax) = bÉ − b
logb

(
bx

2
min−b

)
− 2x2min

1−b
1−x2

min . (234)
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10. If:

J < Jc, É > logb

(
bx

2
min − b

)
− 2x2

min

1− b1−x2
min

, (235)

the f(R) function has one real positive null, R60, since if the f(R) function is positive in
the local minimum point then it is positive in its local maximum point. Within the range
of values 0 < R < R60, the f(R) function is negative. Within the range of values R > R60,
the f(R) function is positive.
11. If:

J < Jc, logb

(
bx

2
max − b

)
− 2x2

max

1− b1−x2
max

< É < logb

(
bx

2
min − b

)
− 2x2

min

1− b1−x2
min

, (236)

the f(R) function has three real positive nulls since if the f(R) function is positive in the
local maximum point and negative in its local minimum point, then it traverses the zero
value thrice. The nulls of the f(R) function will be in the following points: R01, R02, and
R03; the ranges of their values are determined by the inequalities: R01 < Rmin < R02 <
Rmax < R03. Within the range of values 0 < R < R01, the f(R) function is negative.
Within the range of values R01 < R < R02, the f(R) function is positive. Within the
range of values R02 < R < R03, the f(R) function is negative. Within the range of values
R > R03, the f(R) function is positive.
12. If:

J < Jc, É = logb

(
bx

2
max − b

)
− 2x2

max

1− b1−x2
max

, (237)

the f(R) function has two real positive nulls since if the f(R) function has the null in
its local maximum point, it will traverse the zero value once again as it passes the local
minimum point. The nulls of the f(R) function will be in the following points: Rmin and
R04; the ranges of their values are determined by the inequalities: Rmin < Rmax < R04.
Within the range of values 0 < R < Rmin, the f(R) function is negative. Within the
range of values Rmin < R < R04, the f(R) function is negative. Within the range of values
R > R04, the f(R) function is positive.
13. If:

J < Jc, É = logb

(
bx

2
min − b

)
− 2x2

min

1− b1−x2
min

, (238)

the f(R) function has two real positive nulls since if the f(R) function has the null in its
local minimum point, it should traverse the zero value in order to pass the local maximum
point. The nulls of the f(R) function will be in the following points: R05 and Rmax; the
ranges of their values are determined by the inequalities: R05 < Rmin < Rmax. Within
the range of values 0 < R < R05, the f(R) function is negative. Within the range of values
R05 < R < Rmax, the f(R) function is positive. Within the range of values R > Rmax, the
f(R) function is positive.

Conclusions 1–13 provided for the f(R) function are also valid for the Vr function
(180):

Vr = logb

(
1 + f(R)b

(
2
R
− J2

R2

))
.

Based on these conclusions and on the fact that particles interacting in accordance to (173)
can be on such distance from one another at which the f(R) function and, correspondingly,
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the Vr function have either zero or positive values, we determine the states in which
the electron and the proton can be at V > 1, depending on initial conditions of the
motion. The initial state of the electron and the proton at V > 1 will depend, first,
on dimensionless integration constants É and J ; second, on the value of dimensionless
constant R0 = r0/rh (where r0 is the initial distance between the particles (16)) which in
turn determines the value of the squared initial radial relative velocity of the particles,
(dr0/dt)

2 (173); third, on the values of dr0/dt and d2r0/dt
2. The initial state will not

always match the final state. The initial state will determine the final one:
1. As follows from conclusion 3 for the f(R) function, with J > Jc the Vr function (180)
has one real positive null, R10. Within the range of values 0 < R < R10, the Vr function
is negative. Within the range of values R > R10, the Vr function is positive.
If:

J > Jc,
dr0
dt

> 0, (239)

then R > R10, and the distance between particles will increase. Thus, the radial relative
velocity of the particles will not be equal to zero since in this case the value of the distance
between particles will not traverse the value of the null point of the Vr function. Therefore,
the proton and the electron at the initial conditions of motion (239) are in the free state.
If:

J > Jc,
dr0
dt

= 0, (240)

then R0 = R10, at that the particles will not be in the bound steady state since this state
is possible at J ≤ Jc only. Thus, the distance between particles will increase since in
this case d2r0/dt

2 > 0. Therefore, the proton and the electron at the initial conditions of
motion (240) are in the free state.
If:

J > Jc,
dr0
dt

< 0, (241)

then R > R10, and the distance between particles will decrease, and thus, the particles
are in the unsteady state. Once dr/dt traverses the zero value at R = R10, dr/dt becomes
greater than zero and the R value will increase, the unsteady state of particles will turn
to free.
2. As follows from conclusion 4 for the f(R) function, with É > Éc the Vr function (180)
has one real positive null, R20. Within the range of values 0 < R < R20, the Vr function
is negative. Within the range of values R > R20, the Vr function is positive.
If:

É > Éc,
dr0
dt

> 0, (242)

then R > R20, and the distance between particles will increase. Thus, the radial relative
velocity of the particles will not be equal to zero since in this case the value of the distance
between particles will not traverse the value of the null point of the Vr function. Therefore,
the proton and the electron at the initial conditions of motion (242) are in the free state.
If:

É > Éc,
dr0
dt

= 0, (243)

then R0 = R20; at that the particles will not be in the bound steady state since this state
is possible at É ≤ Éc only. Thus, the distance between particles will increase since in
this case d2r0/dt

2 > 0. Therefore, the proton and the electron at the initial conditions of
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motion (243) are in the free state.
If:

É > Éc,
dr0
dt

< 0, (244)

then R > R20, and the distance between particles will decrease, and thus, the particles
are in the unsteady state. Once dr/dt traverses the zero value at R = R20, dr/dt becomes
greater than zero and the R value will increase, the unsteady state of particles will turn
to free.
3. As follows from conclusion 5 for the f(R) function, with J = Jc and É = Éc the Vr

function (180) has one real positive null, Rc. Rc is the inflection point of the Vr function.
Within the range of values 0 < R < Rc the Vr function is negative. Within the range of
values R > Rc the Vr function is positive.
If:

J = Jc, É = Éc, R = Rc, (245)

then dr/dt = 0 and d2r/dt2 = 0. Therefore, the proton and the electron at the conditions
(245) are in the bound steady state.
If:

J = Jc, É = Éc, dr/dt > 0, (246)

then R > Rc, and the distance between particles will increase. The radial relative velocity
of the particles will not be equal to zero since in this case the value of the distance between
particles will not traverse the value of the null point of the Vr function. Therefore, the
proton and the electron at the initial conditions of motion (246) are in the free state.
If:

J = Jc, É = Éc, dr/dt < 0, (247)

then R > Rc, and the distance between particles will decrease. Therefore, at the initial
conditions (247) the proton and the electron in their initial state will be in the unsteady
state. Once the value of the distance between the particles becomes equal to Rc, dr/dt
and d2r/dt2 become equal to zero, the distance between particles will stop changing, and
the particles will turn into the bound steady state and will remain in it. Therefore, at
the conditions of initial motion (247) the unsteady state will be initial for the proton and
the electron, whereas the bound steady state will be their final one.
4. As follows from conclusion 8 for the f(R) function, if:

J < Jc, É < logb

(
bx

2
max − b

)
− 2x2

max

1− b1−x2
max

, (248)

then the Vr function (180) has one real positive null, R50. Within the range of values
0 < R < R50 the Vr function is negative. Within the range of values R > R50 the Vr

function is positive.
If:

J < Jc, É < logb

(
bx

2
max − b

)
− 2x2

max

1− b1−x2
max

,
dr0
dt

> 0, (249)

then R > R50, and the distance between particles will increase. Thus, the radial relative
velocity of the particles will not be equal to zero since in this case the value of the distance
between particles will not traverse the value of the null point of the Vr function. Therefore,
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the proton and the electron at the initial conditions of motion (249) are in the free state.
If:

J < Jc, É < logb

(
bx

2
max − b

)
− 2x2

max

1− b1−x2
max

,
dr0
dt

= 0, (250)

then R0 = R50; at that the particles will not be in the bound steady state since this state
will possible either at:

J =
1− b1−x2

min

xmin

, R =
1− b1−x2

min

x2
min

, É = logb

(
bx

2
min − b

)
− 2x2

min

1− b1−x2
min

, (251)

or at:

J =
1− b1−x2

max

xmax

, R =
1− b1−x2

max

x2
max

, É = logb

(
bx

2
max − b

)
− 2x2

max

1− b1−x2
max

. (252)

Therefore, as follows from (251) and (252), there will be no bound steady states neither
at:

É > logb

(
bx

2
min − b

)
− 2x2

min

1− b1−x2
min

, (253)

nor at:

É < logb

(
bx

2
max − b

)
− 2x2

max

1− b1−x2
max

, (254)

nor at:

logb

(
bx

2
max − b

)
− 2x2

max

1− b1−x2
max

< É < logb

(
bx

2
min − b

)
− 2x2

min

1− b1−x2
min

. (255)

Thus, the distance between particles at the conditions of (250) will increase since in this
case d2r0/dt

2 > 0. Therefore, the proton and the electron at the initial conditions of
motion (250) are in the free state.
If:

J < Jc, É < logb

(
bx

2
max − b

)
− 2x2

max

1− b1−x2
max

,
dr0
dt

< 0, (256)

then R > R50, and the distance between particles will decrease. Therefore, at the initial
conditions (256) the proton and the electron will be in the unsteady state. Once dr/dt
traverses the zero value at R = R50, dr/dt becomes greater than zero and the R value
will increase, the unsteady state of particles will turn to free.
5. As follows from conclusion 10 for the f(R) function, if:

J < Jc, É > logb

(
bx

2
min − b

)
− 2x2

min

1− b1−x2
min

, (257)

the Vr function (180) has one real positive null, R60. Within the range of values 0 < R <
R60, the Vr function is negative. Within the range of values R > R60, the Vr function is
positive.
If:

J < Jc, É > logb

(
bx

2
min − b

)
− 2x2

min

1− b1−x2
min

,
dr0
dt

> 0, (258)

then R > R60, and the distance between particles will increase. Thus, the radial relative
velocity of the particles will not be equal to zero since in this case the value of the distance
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between particles will not traverse the value of the null point of the Vr function. Therefore,
the proton and the electron at the initial conditions of motion (258) are in the free state.
If:

J < Jc, É > logb

(
bx

2
min − b

)
− 2x2

min

1− b1−x2
min

,
dr0
dt

= 0, (259)

then R0 = R50; at that the particles will not be in the bound steady state. Thus, the
distance between particles will increase since in this case d2r0/dt

2 > 0. Therefore, the
proton and the electron at the initial conditions of motion (259) are in the free state.
If:

J < Jc, É > logb

(
bx

2
min − b

)
− 2x2

min

1− b1−x2
min

,
dr0
dt

< 0, (260)

then R > R60, and the distance between particles will decrease. Therefore, at the initial
conditions of motion (260) the proton and the electron will be in the unsteady state. Once
dr/dt traverses the zero value at R = R60, dr/dt becomes greater than zero and the R
value will increase, the unsteady state of particles will turn to free.
6. As follows from conclusion 11 for the f(R) function, if with J < Jc:

logb

(
bx

2
max − b

)
− 2x2

max

1− b1−x2
max

< É < logb

(
bx

2
min − b

)
− 2x2

min

1− b1−x2
min

, (261)

the Vr function (180) has three real positive nulls. The zero values of the Vr will be
in the points R01, R02, R03, which ranges of values will be determined by the following
inequalities: R01 < Rmin < R02 < Rmax < R03. Within the range of values 0 < R < R01,
the Vr function is negative. Within the range of values R01 < R < R02, the Vr function is
positive. Within the range of values R02 < R < R03, the Vr function is negative. Within
the range of values R > R03, the Vr function is positive.
If:

J < Jc, R01 ≤ R ≤ R02,

logb

(
bx

2
max − b

)
− 2x2

max

1− b1−x2
max

< É < logb

(
bx

2
min − b

)
− 2x2

min

1− b1−x2
min

, (262)

then the proton and the electron are in the bound unsteady state, at that the distance
between them is changing within the range of R01 ≤ R ≤ R02. If R = R01, then dr/dt = 0
and d2r/dt2 > 0. If R = R02, then dr/dt = 0 and d2r/dt2 < 0.
If:

J < Jc, R ≥ R03, dr0/dt ≥ 0,

logb

(
bx

2
max − b

)
− 2x2

max

1− b1−x2
max

< É < logb

(
bx

2
min − b

)
− 2x2

min

1− b1−x2
min

, (263)

then the proton and the electron are in the free state.
If:

J < Jc, R > R03, dr0/dt < 0,

logb

(
bx

2
max − b

)
− 2x2

max

1− b1−x2
max

< É < logb

(
bx

2
min − b

)
− 2x2

min

1− b1−x2
min

, (264)

then the initial state of the proton and the electron will be unsteady whereas the final
one will be free.
7. As follows from conclusion 12 for the f(R) function, if with J < Jc:

É = logb

(
bx

2
max − b

)
− 2x2

max

1− b1−x2
max

, (265)
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the Vr function (180) has two real positive nulls. The zero values of Vr will be in the points
Rmin and R04 which ranges of values will be determined by the inequalities: Rmin <
Rmax < R04. Within the range of values 0 < R < Rmin, the Vr function is negative.
Within the range of values Rmin < R < R04, the Vr function is negative. Within the
range of values R > R04, the Vr function is positive.
If:

J < Jc, É = logb

(
bx

2
max − b

)
− 2x2

max

1− b1−x2
max

, R = Rmin, (266)

then the proton and the electron are in the bound steady state.
If:

J < Jc, É = logb

(
bx

2
max − b

)
− 2x2

max

1− b1−x2
max

, R ≥ R04, dr0/dt ≥ 0, (267)

then proton and the electron are in the free state.
If:

J < Jc, É = logb

(
bx

2
max − b

)
− 2x2

max

1− b1−x2
max

, R > R04, dr0/dt < 0, (268)

then the initial state of the proton and the electron will be unsteady whereas the final
one will be free.
8. As follows from conclusion 13 for the f(R) function, if with J < Jc:

É = logb

(
bx

2
min − b

)
− 2x2

min

1− b1−x2
min

, (269)

the Vr function (180) has two real positive nulls. The zero values of Vr will be in the
points R05 and Rmax which ranges of values will be determined by the inequalities: R05 <
Rmin < Rmax. Within the range of values 0 < R < R05, the Vr function is negative.
Within the range of values R05 < R < Rmax, the Vr function is positive. Within the range
of values R > Rmax, the Vr function is positive.
If:

J < Jc, É = logb

(
bx

2
min − b

)
− 2x2

min

1− b1−x2
min

, R = Rmax, (270)

then the proton and the electron are in the bound steady state.
If:

J < Jc, É = logb

(
bx

2
min − b

)
− 2x2

min

1− b1−x2
min

, R > Rmax, dr0/dt > 0, (271)

then the proton and the electron are in the free state.
If:

J < Jc, É = logb

(
bx

2
min − b

)
− 2x2

min

1− b1−x2
min

, R > Rmax, dr0/dt < 0, (272)

then the initial state of the proton and the electron will be unsteady. Once the value of
R becomes equal to Rmax, the values of both dr/dt and d2r/dt2 will equal to zero, the
particles will turn to the bound steady state and will remain in it.
If:

J < Jc, É = logb

(
bx

2
min − b

)
− 2x2

min

1− b1−x2
min

, R05 < R < Rmax, dr0/dt < 0, (273)
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then the initial state of the proton and the electron will be unsteady. Once the value of
R becomes equal to R05, the values of dr/dt will equal to zero and the value of d2r/dt2

will become greater than zero, and R will begin to increase, the particles will turn to the
bound unsteady state. Once the value of R becomes equal to Rmax, the particles will turn
to the bound steady state and will remain in it.
If:

J < Jc, É = logb

(
bx

2
min − b

)
− 2x2

min

1− b1−x2
min

, R = R05, (274)

then the initial state of the proton and the electron will be bound unsteady; at that the
distance between particles will increase. Once the value of R becomes equal to Rmax, the
particles will turn to the bound steady state and will remain in it.
If:

J < Jc, É = logb

(
bx

2
min − b

)
− 2x2

min

1− b1−x2
min

, R05 < R < Rmax, dr0/dt > 0, (275)

then the initial state of the proton and the electron will be the bound unsteady; at that
the distance between particles will increase. Once the value of R becomes equal to Rmax,
the particles will turn to the bound steady state and will remain in it.
9. As follows from determination of the sign of the f(R) function (181) for the various
ranges of values of R in conclusions 11 to 13, as well as from conclusions 6 to 8 for the
Vr function (180), the distance between the proton and the electron in the bound state
cannot be greater than Rmax. As follows from the analysis of the Rs function (133), the
Rs function has its maximum value at the value of Vs determined as the real positive root
of the equation (135):

V 2
s b

(1−V 2
s ) ln b+ b(1−V 2

s ) − 1 = 0. (276)

Therefore, the maximum value of the distance between the proton and the electron in the
bound state will be the distance between them in the bound steady state when the values
of És, Js and Rs are determined by the value of Vs which is the real positive root of the
equation (276). The bound state of the proton and the electron will be determined by
the following necessary conditions:

J ≤ Jc, J =

(
1− b(1−x2

min)
)

xmin

=

(
1− b(1−x2

max)
)

xmax

, 1 < xmin ≤ Vc, xmax ≥ Vc, (277)

logb

(
bx

2
max − b

)
− 2x2

max

1− b1−x2
max

≤ É ≤ logb

(
bx

2
min − b

)
− 2x2

min

1− b1−x2
min

, V > 1, R ≤ Rsm,

where Rsm is the maximum value of Rs determined by the value of Vs which is the real
positive root of the equation (276).

With the following initial conditions of motion:

J0 = 0, dr0/dt > 0,

the electron and the proton will be in the free state since in the case of V < 1 the electron
and the proton repel, the magnitude of their relative velocity approaches the neutral
relative velocity of the proton and the electron from the zero side and the distance between
them will increase ad infinitum. If V > 1 then the electron and the proton attract but
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the magnitude of their relative velocity will approach the neutral relative velocity of the
proton and the electron from the side of plus-infinity and the distance between them will
increase ad infinitum.

Let us write down the Vr function (180) at É = És and J = Js:

Vr = logb

(
b+ b(És+

2
R)
)
− J2

s

R2
, Vs > 1. (278)

The graph of dependence of the Vr function (278) on R at Vs = Vc is shown at Figure 19.
The graph of dependence of the Vr function (278) on R at Vs < Vc, and thus, at:

É = logb

(
bx

2
min − b

)
− 2x2

min

1− b1−x2
min

.

is shown at Figure 20.
The graph of dependence of the Vr function (278) on R at Vs > Vc, and thus, at:

É = logb

(
bx

2
max − b

)
− 2x2

max

1− b1−x2
max

.

is shown at Figure 21.
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Figure 19: The graph of the Vr function (278) at b = 2, at É = És, at J = Js and at
Vs = Vc.

Let us split the states of the electron and the proton at J = Js and at É = És into
two domains of states principally different from one another:
The first is at Vs > Vc.
The second is at 1 < Vs ≤ Vc.
If the electron and the proton are in the state depending on Js and És which in turn both
depend on Vs, then:
The state of the electron and the proton in the first domain can be free, unsteady and
bound steady.
The state of the electron and the proton in the second domain can be free, unsteady and
bound steady only at Js = Jc and És = Éc (Vs = Vc), let us call it the boundary state
between the second domain and the first. For the rest of Js and És values from
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Figure 20: The graph of the Vr function (278) at b = 2, at É = És, at J = Js and at
Vs = 1.5 (Vs < Vc).
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Figure 21: The graph of the Vr function (278) at b = 2, at É = És, at J = Js and at
Vs = 3 (Vs > Vc).
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the definition domain of the second domain the state can be free, unsteady, bound steady
and bound unsteady.

All these states in PPST appear at the certain values of Js and És depending on Vs.
1. If r0/rh = Rs at Vs > Vc then dr0/dt and d2r0/dt

2 are equal to zero, and the
proton and the electron will be in the bound steady state in the first domain.

2. If r0/rh = Rs at 1 < Vs ≤ Vc then dr0/dt and d2r0/dt
2 are equal to zero, and the

proton and the electron will be in the bound steady state in the second domain.
3. If the value of r0/rh will lay below the positive area of the graphs of functions

presented at Fig. 19, Fig. 20 and Fig. 21 to the right and dr0/dt will be greater than
zero and thus, the value of R will increase then the particles will be free in both initial
and final states, both in the first and in the second domains.

4. If the value of r0/rh will lay below the positive area of the graph of the function
presented at Fig. 21 to the right in the first domain (Vs > Vc) and dr0/dt be less than zero
and thus, the value of R will decrease then the particles’ initial state will be unsteady.
Further on, as the value of dr/dt equals to zero and the value of R reaches the minimum
for the free state, R will start to increase and the particles will turn to the free state.

5. If the value of r0/rh will lay below the positive area of the graphs of the functions
presented at Fig. 19 and Fig. 20 to the right in the second domain (1 < Vs ≤ Vc) and
dr0/dt will be less than zero and thus, the value of R will decrease then the particles’
initial state will be unsteady. As the value of R equals to Rs or Rc, dr/dt and d2r/dt2

will equal to zero and the value of R stops changing, the particles will turn to the bound
steady state in the second domain and will remain in it.

6. If in the second domain at 1 < Vs < Vc the value of r0/rh will lay below the
positive area of the graph of the function presented at Fig. 20 to the left (r0/rh < Rs),
then the particles’ initial state will be the bound unsteady whereas the final one will be
the bound steady. If dr0/dt is less than zero, then the value of R initially will reach the
minimum and then will increase to Rs, further on the value of R will stop changing. If
dr0/dt is greater than zero, then the value of R will immediately increase to the Rs value,
and the electron and the proton will turn from the initial bound unsteady state in the
second domain to the bound steady state in the second domain.

The first principal difference of the first and second domains is that in the first domain
the state of particles cannot change without changing the values of Js and És whereas in
the second domain it can.

In the first domain the bound steady state separated from the free by the forbidden
domain of distances between particles at which particles cannot be at the
constant values of Js and És: the distance between particles bound steady
state is less than the minimum value of the distance for the free state. There
is no such forbidden domain of distances between the states in the second domain: the
distance between particles in the bound steady state is boundary as well as for the bound
unsteady and free states. Therefore, the electron and the proton in the second domain
can turn from the bound steady state to both unsteady and free state, with the minimum
possible change of the value of dr/dt approaching zero. Changes of values of Js and És

with the minimum possible change of the value dr/dt approaching zero will also approach
zero. Thus, the transition of the electron and the proton from the bound steady state in
the second domain to both unsteady and free states with the minimum possible change
of the value of dr/dt approaching zero can be considered without changing of the initial
conditions of motion. If at the initial moment of time, when particles leave the bound
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steady state, the value of dr/dt approaches zero from the side of minus-infinity, particles
will turn to the unsteady state. And if at that moment of time the value of dr/dt
approaches zero from the side of plus-infinity, particles will turn to the free state.

The second principal difference between bound steady states of the first domain and
bound steady states of the second domain is that in the first domain the less is the distance
between the electron and the proton, the greater is the magnitude of relative velocity of
the electron and the proton, whereas in the second domain when the distance between
the proton and the electron approaches zero, the magnitude of relative velocity of the
electron and the proton approaches the value of neutral relative velocity of the electron
and the proton from the side of plus-infinity.

The greater is the magnitude of attraction forces between the particles, the greater
is the force to be applied for breaking the bond between them. Proceeding from this and
from the analysis of the curve of the magnitude of forces acting between the proton and
the electron in the bound steady states (Fs, please refer to Fig. 17 and Fig. 18), we can
conclude the following:

1. In the first domain of states of the electron and the proton the bound steady
state at which the distance between the electron and the proton approaches the minimum
possible value with the magnitude of relative velocity of the electron and the proton
approaching the maximum possible value will be the most sustainable to external actions.

2. In bound steady states of the second domain of states of the electron and the
proton, if the value of magnitude of relative velocity of the electron and the proton will
approach the value of neutral relative velocity of the electron and the proton from the
side of plus-infinity, the distance between the proton and the electron will approach zero,
but at that, in spite of the increase of the magnitude of attraction forces between the
particles, they will keep the opportunity of transition to both unsteady and free state
without changing the initial conditions of motion.

11 Rotation frequencies of particles in bound steady

states

Rotation frequency of particles in the bound steady states will be expressed with the
following formula:

γs =
vs

2πrs
. (279)

Based on (133) and (279), we find the dimensionless function of the rotation frequency of
the electron and the proton in bound steady states, depending on the magnitude of their
relative velocity, at Vs > 1:

γs
γep

=
V 3
s

(1− b(1−V 2
s ))

, γep =
µepa

3
ep

2πe2
, µep =

memp

me +mp

. (280)

Based on (53) and (279), we find the dimensionless function of the rotation frequency of
two protons in bound steady states, depending on the magnitude of their relative velocity,
at 0 < Vs < 1:

γs
γp

=
V 3
s

(b(1−V 2
s ) − 1)

, γp =
mpa

3
p

4πe2
. (281)
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In a similar way we find also the dimensionless function of the rotation frequency of two
electrons in bound steady states, depending on the magnitude of their relative velocity,
at 0 < Vs < 1:

γs
γe

=
V 3
s

(b(1−V 2
s ) − 1)

, γe =
mea

3
e

4πe2
. (282)

The graph of the function γs/γep (280) at Vs > 1 is presented at Figure 22; the graph of
either the function γs/γp (281) or the function γs/γe (282) at 0 < Vs < 1 is presented at
Figure 23.
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Figure 22: The graph of the dimensionless function of rotation frequency of the electron
and the proton in bound steady states γs/γep depending on Vs, at Vs > 1 and b = 2.
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Figure 23: The graph of the dimensionless function of rotation frequency of either two
protons γs/γp or two electrons γs/γe, in bound steady states depending on Vs, at 0 < Vs <
1 and b = 2.

The graphs (Fig. 22 and Fig. 23) allow for the following conclusions:
1. The greater is the value of the magnitude of relative velocity of the electron

and the proton in bound steady states in the first domain, the greater is their rotation
frequency.
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2. The less is the value of the magnitude of relative velocity of the electron and the
proton in bound steady states in the second domain, starting from the certain value, the
greater is their rotation frequency. With the value of magnitude of relative velocity of the
electron and the proton approaching the value of neutral relative velocity of the electron
and the proton from the side of plus-infinity, the rotation frequency of the electron and
the proton tends to infinity.

3. The greater is the value of the magnitude of relative velocity of two protons in
bound steady states, the greater is their rotation frequency. With the value of magnitude
of relative velocity of two protons approaching the value of neutral relative velocity of
protons from the side of minus-infinity, the rotation frequency of two protons tends to
infinity.

4. The greater is the value of the magnitude of relative velocity of two electrons in
bound steady states, the greater is their rotation frequency. With the value of magnitude
of relative velocity of two electrons approaching the value of neutral relative velocity of
electrons from the side of minus-infinity, the rotation frequency of two electrons tends to
infinity.

12 General solution of the problem of two particles

in PPST

Let us rewrite the equations (51) and (52) determining the squared radial relative velocity
of two particles for various ranges of values of V :

1

a2

(
dr

dt

)2

= logb

(
b− b(È− q1q2

e2
2
R)
)
− J2

R2
, 0 ≤ V < 1, (283)

1

a2

(
dr

dt

)2

= logb

(
b+ b(É− q1q2

e2
2
R)
)
− J2

R2
, V > 1. (284)

We introduce the constants s1, s2 and s3 which can possess certain values under certain
conditions:

0 ≤ V < 1, s1 = −1, s2 = È, (285)

V > 1, s1 = +1, s2 = É, (286)

q1q2 < 0, s3 = −2, (287)

q1q2 > 0, s3 = +2. (288)

After that we merge (283) and (284) into a single equation:

1

a2

(
dr

dt

)2

= logb

(
b+ s1b

(s2−s3
1
R)
)
− J2

(
1

R

)2

. (289)

Then we convert (289) as follows:

r2h
a2

(
dR

dt

)2

= logb

(
b+ s1b

(s2−s3
1
R)
)
− J2

(
1

R

)2

. (290)
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Provided that the magnitude of angular rotation velocity of unit radius vectors of particles
in the system of their mass centre can be determined as follows:

dφ

dt
=

j0
µr2hR

2
, (291)

the (290) turns into the following:(
d

dφ

(
1

R

))2

=
1

J2
logb

(
b+ s1b

(s2−s3
1
R)
)
−
(
1

R

)2

. (292)

We introduce a variable:

ϖ =
1

R
, (293)

and rewrite the (292) as:(
dϖ

dφ

)2

=
1

J2
logb

(
b+ s1b

(s2−s3ϖ)
)
−ϖ2. (294)

In Chapter 9 and Chapter 10 we found that the number of values of distances between
particles at which the radial relative velocity of particles equals to zero is greater than or
equal to 1 but less than or equal to 3. Based on it, we can determine three variants for
(294):
The first is when the function of radial relative velocity has one real positive null:(

dϖ

dφ

)2

=
(ϖ1 −ϖ)

f 2
(ϖ)1

, (295)

f(ϖ)1 ̸= 0, ϖ1 =
1

R1

.

ϖ1 ≥ ϖ.

The second is when the function of radial relative velocity has two real positive nulls:(
dϖ

dφ

)2

=
(ϖ1 −ϖ) (ϖ −ϖ2)

f 2
(ϖ)2

, (296)

f(ϖ)2 ̸= 0, ϖ2 =
1

R2

.

(ϖ1 −ϖ) (ϖ −ϖ2) ≥ 0, ϖ1 ≥ ϖ2, ϖ1 ≥ ϖ ≥ ϖ2.

The third is when the function of radial relative velocity has three real positive nulls:(
dϖ

dφ

)2

=
(ϖ1 −ϖ) (ϖ −ϖ2) (ϖ −ϖ3)

f 2
(ϖ)3

, (297)

f(ϖ)3 ̸= 0, ϖ3 =
1

R3

.
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(ϖ1 −ϖ) (ϖ −ϖ2) (ϖ −ϖ3) ≥ 0, ϖ1 ≥ ϖ2 ≥ ϖ3.

In (295), (296) and (297) R1, R2 and R3 are the distances between particles at which the
radial relative velocity of particles is equal to zero (the ranges of these values and algebraic
equations for determination of these values are provided in Chapter 9 and Chapter 10);
furthermore:

R1 ≤ R2 ≤ R3. (298)

Each of the functions f(ϖ)1 , f(ϖ)2 and f(ϖ)3 is determined by expanding into the Taylor
series if the series at that is convergent:

f(ϖ)1 =
∞∑
n=0

c1n (ϖ −ϖ0)
n =

(
(ϖ1 −ϖ)

1
J2 logb (b+ s1b(s2−s3ϖ))−ϖ2

)1/2

, (299)

(ϖ1 −ϖ0) > 0,

f(ϖ)2 =
∞∑
n=0

c2n (ϖ −ϖ0)
n =

(
(ϖ1 −ϖ) (ϖ −ϖ2)

1
J2 logb (b+ s1b(s2−s3ϖ))−ϖ2

)1/2

, (300)

(ϖ1 −ϖ0) (ϖ0 −ϖ2) > 0

f(ϖ)3 =
∞∑
n=0

c3n (ϖ −ϖ0)
n =

(
(ϖ1 −ϖ) (ϖ −ϖ2) (ϖ −ϖ3)
1
J2 logb (b+ s1b(s2−s3ϖ))−ϖ2

)1/2

, (301)

(ϖ1 −ϖ0) (ϖ0 −ϖ2) (ϖ0 −ϖ3) > 0.

Let us consider the first variant (295). The motion of particles in accordance with the
first variant can occur at any values of constants s1, s2 and s3 determined in (285-288).
Let us introduce a variable function α1 into (295):(

dϖ

dα1

dα1

dφ

)2

=
(ϖ1 −ϖ)

f 2
(ϖ)1

, (302)

and determine it via the system of two differential equations:

dϖ

dα1

= (ϖ1 −ϖ)1/2 , (303)

dα1

dφ
=

1

f(ϖ)1

. (304)

Integrating (303), at the initial conditions of ϖ = ϖ1 and α1 = 0 we obtain:

ϖ = ϖ1 −
α2
1

4
. (305)

We assume for the f(ϖ)1 function (299) the value of ϖ0 equal to zero and substitute the
ϖ variable with the function of α1 (305). Proceeding from (304), we have:

∞∑
n=0

c1n

(
ϖ1 −

α2
1

4

)n

dα1 = dφ. (306)
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Using Newton’s Binomial, we convert the (306) as follows:

∞∑
n=0

c1n

n∑
k=0

(−1)k n!ϖn−k
1

k! (n− k)!22k
α2k
1 dα1 = dφ. (307)

Integration of (307) at the initial conditions ϖ = ϖ1, α1 = 0 and φ = 0 provides the
following:

∞∑
n=0

c1n

n∑
k=0

(−1)k n!ϖn−k
1

k! (n− k)!22k (2k + 1)
α2k+1
1 = φ. (308)

From (305) we derive:

α1 = 2 (ϖ1 −ϖ)1/2 . (309)

Using (309), from (308) we obtain the dependence of the angle of deflection of the radius
vector linking the particles on the distance between the particles if ϖ = ϖ1 and φ = 0
are assumed as initial values:

∞∑
n=0

2c1nϖ
n+1/2
1

n∑
k=0

(−1)k n!

k! (n− k)! (2k + 1)

(
1− ϖ

ϖ1

)k+1/2

= φ. (310)

In the general case of interaction, two particles interacting in accordance with the first
variant (295) approach from infinity and scatter to infinity after their closing in the
minimum distance r1 = rh/ϖ1. In other words, the initial state of particles is unsteady
and the final is free. Thus, the final value of ϖ will equal to zero. Then from (310) we
determine the maximum possible angle to which the particles scatter after their closing
in the minimum distance:

φmax =
∞∑
n=0

(
n∑

k=0

(−1)k n!

k! (n− k)! (2k + 1)

)
2c1nϖ

n+1/2
1 . (311)

After we substitute the numeric series in (311):

n∑
k=0

(−1)k n!

k! (n− k)! (2k + 1)
=

22n (n!)2

(2n+ 1)!
, (312)

finally, we derive the following:

φmax =
∞∑
n=0

22n+1 (n!)2

(2n+ 1)!
c1nϖ

n+1/2
1 . (313)

Let us consider the second variant (296). The motion of particles in accordance with the
second variant can occur only at the following values of constants s1, s2 and s3 determined
in (285-288):

s1 = −1, s2 = È, s3 = +2. (314)

The second variant determines bound states of either two protons or two electrons at the
magnitude of their relative velocity less than their neutral relative velocity. From (296)
at ϖ1 = ϖ2 = ϖc we derive: (

dϖ

dφ

)2

= −(ϖc −ϖ)2

f 2
(ϖ)2

. (315)
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As follows from (315), at ϖ1 = ϖ2 the particles are in the bound steady state:

dϖ

dφ
= 0, ϖ = ϖc = Const.

Let us consider (296) at the following condition:

ϖ2 ≤ ϖ ≤ ϖ1.

Let us introduce a variable function α2 into (296):(
dϖ

dα2

dα2

dφ

)2

=
(ϖ1 −ϖ) (ϖ −ϖ2)

f 2
(ϖ)2

, (316)

and determine it via the system of two differential equations:

dϖ

dα2

= ((ϖ1 −ϖ) (ϖ −ϖ2))
1/2 , (317)

dα2

dφ
=

1

f(ϖ)2

. (318)

Integrating (317), at the initial conditions of:

ϖ = ϖ1, α2 = 0, (319)

we obtain:

ϖ =
ϖ1 +ϖ2

2
+

ϖ1 −ϖ2

2
cosα2. (320)

We assume for the f(ϖ)2 function (300) that ϖ0 = (ϖ1 + ϖ2)/2 and substitute the ϖ
variable with the function of α2 (320). Proceeding from (318), we have:

∞∑
n=0

c2n
2n

ϖn
12 cos

n α2dα2 = dφ. (321)

where:

ϖ12 = ϖ1 −ϖ2.

Considering that:∫ 2π

0

cos2k α2dα2 = 2π
(2k)!

22k (k!)2
,

∫ 2π

0

cos2k+1 α2dα2 = 0, k = 1, ...,∞,

we integrate (321) with respect to α2 from zero to 2π at the initial conditions of (319) at
which φ = 0 and obtain the value of angle at which the radius vector linking the particles
will rotate while the value of α2 is changing from zero to 2π:

φ0 =

(
c20 +

∞∑
k=1

(2k)!

24k (k!)2
c2(2k)ϖ

2k
12

)
2π. (322)
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In (322), c2(2k) is the c2n constant with even n. Proceeding from (320), we find the cosα2

function expressed via the ϖ variable:

cosα2 =
2ϖ −ϖ1 −ϖ2

ϖ1 −ϖ2

. (323)

From (323) we conclude that the distance between particles returns to its minimum value
(r1 = rh/ϖ1) at α2 = 2πn, n = 0, 1...,∞, whereas it returns to the maximum one
(r2 = rh/ϖ2) at α2 = π + 2πn, n = 0, 1...,∞. Thus, from (322) we can determine the
value of angle of displacement of pericentres and apocentres of the particles’ trajectories,
either for two protons or for two electrons in the bound unsteady state:

△φ =

(
c20 +

∞∑
k=1

(2k)!

24k (k!)2
c2(2k)ϖ

2k
12 − 1

)
2π. (324)

If △φ = 0 then pericentres and apocentres of the particles’ trajectories remain their
spatial positions and particles move along elliptical trajectories which have one of their
foci at the point of particles’ mass centre. If △φ > 0 then pericentres and apocentres of
the particles’ trajectories displace to the direction of rotation of the radius vector linking
the particles. In case of △φ < 0 pericentres and apocentres of the particles’ trajectories
displace to the direction opposite to the rotation of the radius vector linking the particles.
Therefore, while moving in the coordinate system which centre matches the mass centre
of particles and which rotates within the plane of rotation of particles having the following
angular velocity:

dφ1

dt
=

dφ

dt
− dα2

dt
, (325)

or, considering (318) and determination of the magnitude of angular rotation velocity of
particles via the magnitude of their moment of momentum:

dφ1

dt
=

j0ϖ
2

µr2h

(
1− 1

f(ϖ)2

)
, (326)

the particles will move along elliptical trajectories:

R =
R0

1 + ε cosα2

, R0 =
2R2R1

R2 +R1

, ε =
R2 −R1

R2 +R1

. (327)

Let us consider the third variant (297). The motion of particles in accordance with the
third variant can occur only at the following values of constants s1, s2 and s3 determined
in (285-288):

s1 = +1, s2 = É, s3 = −2. (328)

The third variant determines the states of interacting electron and proton at the mag-
nitude of their relative velocity greater than the neutral relative velocity of the electron
and the proton. From (297) at ϖ1 = ϖ2 = ϖc1 we obtain:(

dϖ

dφ

)2

= −(ϖ −ϖc1)
2 (ϖ −ϖ3)

f 2
(ϖ)3

. (329)
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If ϖ > ϖ3 then ϖ = ϖc1 will be the solution of (329) since the electron and the proton
will be in the bound steady state in the first domain of states. If ϖ ≤ ϖ3 then the (329)
will possess the following form:(

dϖ

dφ

)2

=
(ϖc1 −ϖ)2 (ϖ3 −ϖ)

f 2
(ϖ)3

, ϖ3 −ϖ ≥ 0, ϖc1 −ϖ > 0. (330)

Let us introduce a variable function α3 into (330):(
dϖ

dα3

dα3

dφ

)2

=
(ϖc1 −ϖ)2 (ϖ3 −ϖ)

f 2
(ϖ)3

. (331)

and determine it via the system of two differential equations:

dϖ

dα3

= (ϖ3 −ϖ)1/2 , (332)

dα3

dφ
=

ϖc1 −ϖ

f(ϖ)3

. (333)

Integrating (332), at the initial conditions of:

ϖ = ϖ3, α2 = 0, (334)

we obtain:

ϖ = ϖ3 −
α2
3

4
. (335)

We assume for the f(ϖ)3 function (301) that the value of ϖ0 will equal to zero, and
proceeding from (333), we will have:

∞∑
n=0

c3n
ϖc1

ϖn(
1− ϖ

ϖc1

)dα3 = dφ. (336)

Then, after the left part is converted, the (336) will take the following form:

∞∑
n=0

∞∑
k=0

c3n

ϖk+1
c1

ϖn+kdα3 = dφ. (337)

We substitute the ϖ variable in (337) with the function of α3 (335):

∞∑
n=0

∞∑
k=0

c3n

ϖk+1
c1

(
ϖ3 −

α2
3

4

)n+k

dα3 = dφ. (338)

Using Newton’s Binomial, we convert the (338) as follows:

∞∑
n=0

c3nϖ
n
3

ϖc1

∞∑
k=0

ϖk
3

ϖk
c1

n+k∑
s=0

(−1)s (n+ k)!ϖ−s
3

s! (n+ k − s)!22s
α2s
3 dα3 = dφ. (339)
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Integration of (339) from zero to α3 provides the following:

∞∑
n=0

c3nϖ
n
3

ϖc1

∞∑
k=0

ϖk
3

ϖk
c1

n+k∑
s=0

(−1)s (n+ k)!ϖ−s
3

s! (n+ k − s)!22s (2s+ 1)
α2s+1
3 = φ. (340)

Substituting α3 with the function of ϖ obtained from (335):

α3 = 2 (ϖ3 −ϖ)1/2 , (341)

we will have from (340) the value of rotation angle of the radius vector linking the particles,
depending on the distance between the particles after they traverse the minimum value
of that distance:

φ =
∞∑
n=0

2c3nϖ
n+1/2
3

ϖc1

∞∑
k=0

ϖk
3

ϖk
c1

n+k∑
s=0

(−1)s (n+ k)!

s! (n+ k − s)! (2s+ 1)

(
1− ϖ

ϖ3

)s+1/2

. (342)

The (342) provides the value of scattering angle to infinity after the closing to the minimum
distance r3 = rh/ϖ3:

φmax =
∞∑
n=0

(
∞∑
k=0

ϖk
3

ϖk
c1

22(n+k) ((n+ k)!)2

(2 (n+ k) + 1)!

)
2c3nϖ

n+1/2
3

ϖc1

,
ϖ3

ϖc1

< 1. (343)

The (343) follows from (342) at ϖ = 0 and at the following:

n+k∑
s=0

(−1)s (n+ k)!

s! (n+ k − s)! (2s+ 1)
=

22(n+k) ((n+ k)!)2

(2 (n+ k) + 1)!
. (344)

From (297) at ϖ1 = ϖ2 = ϖ3 = ϖc2 we derive:(
dϖ

dφ

)2

=
(ϖc2 −ϖ)3

f 2
(ϖ)3

, ϖc2 ≥ ϖ. (345)

We introduce a variable function α31 into (345):(
dϖ

dα31

dα31

dφ

)2

=
(ϖc2 −ϖ)3

f 2
(ϖ)3

, (346)

and determine it via the system of two differential equations:

dϖ

dα31

= (ϖc2 −ϖ)3/2 , (347)

dα31

dφ
=

1

f(ϖ)3

. (348)

Integrating (347), at the initial conditions of:

ϖ = ϖc2, α31 = ∞, (349)
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we obtain:

ϖ = ϖc2 −
4

α2
31

. (350)

Proceeding from (348) and considering (350), we will have:

∞∑
n=0

c3n

(
ϖc2 −

4

α2
31

)n

dα31 = dφ. (351)

Using Newton’s Binomial, we convert the (351) as follows:

∞∑
n=0

c3n

n∑
k=0

(−1)k n!ϖn−k
c2 22k

k! (n− k)!α2k
31

dα31 = dφ. (352)

Integrating the (352) from α31 = 2ϖ
−1/2
c2 at ϖ = 0 and φ = 0 to α31, we obtain the

following:

φ =
∞∑
n=0

2c3nϖ
n−1/2
c2

n∑
k=0

(−1)k n!

k! (n− k)! (2k − 1)

1−

(
2ϖ

−1/2
c2

α31

)2k−1
 . (353)

Substituting α31 with its value of ϖ obtained from (350):

α31 =
2

(ϖc2 −ϖ)1/2
, (354)

we will determine from (353) the dependence of rotation angle of the radius vector linking
the particles on the distance between the particles after they begin to approach from
infinity (ϖ = 0):

φ =
∞∑
n=0

2c3nϖ
n−1/2
c2

n∑
k=0

(−1)k n!

k! (n− k)! (2k − 1)

1−

(
1− ϖ

ϖc2

)k
(
1− ϖ

ϖc2

)1/2
 . (355)

As follows from (355), if ϖ → ϖc2 then φ → ∞, and particles turn to the bound steady
state in the second domain (the boundary state of the second domain and the first).

Proceeding from (297), at ϖ2 = ϖ3 = ϖc3 we obtain:(
dϖ

dφ

)2

=
(ϖ1 −ϖ) (ϖ −ϖc3)

2

f 2
(ϖ)3

, ϖ ≤ ϖ1. (356)

The (356) will determine the motion of the electron and the proton in the second domain
of states at J = Js and É = És. Let us consider the (356) at ϖ ≤ ϖc3 and thus,
at ϖ < ϖ1 as well. We introduce an α32 variable and determine it via the system of
differential equations:

dϖ

dα32

= ϖc3 −ϖ, (357)

dα32

dφ
=

(ϖ1 −ϖ)1/2

f(ϖ)3

. (358)
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Integrating (357) at the initial conditions of α32 = 0, ϖ = 0, and at the final conditions
of α32 = ∞ and ϖ = ϖc3, we will have:

ϖ = ϖc3

(
1− e−α32

)
, (359)

where e is the Euler’s number. From (358) we obtain:

∞∑
n=0

c3nϖ
n

ϖ
1/2
1

(
1− ϖ

ϖ1

)−1/2

dα32 = dφ. (360)

Then, considering that at ϖ < ϖ1:(
1− ϖ

ϖ1

)−1/2

=
∞∑
k=0

(2k)!ϖk

22k (k!)2ϖk
1

, (361)

we can represent the (360) as follows:

∞∑
n=0

∞∑
k=0

c3n (2k)!ϖ
n+k

22k (k!)2ϖ
k+1/2
1

dα32 = dφ. (362)

We substitute ϖ in (362) with the function of α32 (359):

∞∑
n=0

c3nϖ
n
c3

∞∑
k=0

(2k)!ϖk
c3

22k (k!)2 ϖ
k+1/2
1

(
1− e−α32

)n+k
dα32 = dφ. (363)

Using Newton’s Binomial, we convert the (363) as follows:

∞∑
n=0

c3nϖ
n
c3

∞∑
k=0

(2k)!ϖk
c3

22k (k!)2ϖ
k+1/2
1

n+k∑
s=0

(−1)s (n+ k)!

s! (n+ k − s)!
e−sα32dα32 = dφ. (364)

Integrating (364) at the initial conditions of α32 = 0, φ = 0, we will have:

φ =
∞∑
n=0

c3nϖ
n
c3

∞∑
k=0

(2k)!ϖk
c3

22k (k!)2 ϖ
k+1/2
1

(
α32 +

n+k ̸=0∑
s=1

(−1)s (n+ k)!

s! (n+ k − s)!s

(
1− e−sα32

))
. (365)

Substituting α32 in (365) with the function of ϖ, derived from (359):

α32 = ln

(
ϖc3

ϖc3 −ϖ

)
, (366)

we will have the dependence of the rotation angle of the radius vector linking the particles
on the distance between the particles at the initial conditions of ϖ = 0, φ = 0:

φ =
∞∑
n=0

c3nϖ
n
c3

ϖ
1
2
1

(
1− ϖc3

ϖ1

)−1/2

ln

(
1

1− ϖ
ϖc3

)
+

+
∞∑
n=0

c3nϖ
n
c3

ϖ
1
2
1

∞∑
k=0

(2k)!

22k (k!)2

(
ϖc3

ϖ1

)k n+k ̸=0∑
s=1

(−1)s (n+ k)!

s! (n+ k − s)!s

(
1−

(
1− ϖ

ϖc3

)s)
. (367)
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The (367) demonstrates that if ϖ → ϖc3 then φ → ∞, i.e., the unsteady state of particles
will turn to the bound steady one.

Let us consider the (356) at ϖ1 ≥ ϖ ≥ ϖc3. We introduce an α33 variable and
determine it via the system of differential equations:

dϖ

dα33

= ϖ −ϖc3, (368)

dα33

dφ
=

(ϖ1 −ϖ)1/2

f(ϖ)3

. (369)

Integrating the (368), at the initial conditions of:

ϖ = ϖ1, α33 = 0, (370)

we obtain:
ϖ = ϖc3 + (ϖ1 −ϖc3) e

α33 , (371)

where e is the Euler’s number. As follows from (371), if ϖ = ϖc3 then α33 = −∞. Thus,
we can determine the (371) as following:

ϖ = ϖc3 + (ϖ1 −ϖc3) e
−α33 , 0 ≤ α33 ≤ ∞. (372)

After the substitution of ϖ in the (369) with the function of α33 (372), we bring the (369)
to the following form:

∞∑
n=0

c3n
(ϖc3 + ϖ̃1c3e

−α33)
n

ϖ̃
1/2
1c3 (1− e−α33)1/2

dα33 = dφ. (373)

where:
ϖ̃1c3 = ϖ1 −ϖc3.

Then, applying Newton’s Binomial, we represent the (373) as follows:

∞∑
n=0

c3n

ϖ̃
1/2
1c3

n∑
k=0

n!ϖn−k
c3 ϖ̃k

1c3

k! (n− k)!

e−kα33

(1− e−α33)1/2
dα33 = dφ. (374)

Expanding the (1− e−α33)
−1/2

function into the Maclaurin series:

(
1− e−α33

)−1/2
=

∞∑
s=0

(2s)!

22s (s!)2
e−sα33 ,

we will have:

∞∑
n=0

c3n

ϖ̃
1/2
1c3

n∑
k=0

n!ϖn−k
c3 ϖ̃k

1c3

k! (n− k)!

∞∑
s=0

(2s)!

22s (s!)2
e−(k+s)α33dα33 = dφ. (375)

Let us integrate the (375):

∞∑
n=0

c3nϖ
n
c3

ϖ̃
1/2
1c3

(
α33 −

∞∑
s=1

(2s)!

22s (s!)2 s
e−sα33

)
−
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−
∞∑
n=1

c3n

ϖ̃
1/2
1c3

n∑
k=1

n!ϖn−k
c3 ϖ̃k

1c3

k! (n− k)!

∞∑
s=0

(2s)!

22s (s!)2 (k + s)
e−(k+s)α33 = φ+ C0. (376)

Proceeding from the (372), we obtain the following:

e−α33 =
ϖ −ϖc3

ϖ1 −ϖc3

, α33 = ln

(
ϖ1 −ϖc3

ϖ −ϖc3

)
. (377)

We introduce the values of the function (377) into the (376):

∞∑
n=0

c3nϖ
n
c3

ϖ̃
1/2
1c3

(
ln

(
ϖ1 −ϖc3

ϖ −ϖc3

)
−

∞∑
s=1

(2s)!

22s (s!)2 s

(
ϖ −ϖc3

ϖ1 −ϖc3

)s
)
−

−
∞∑
n=1

c3n

ϖ̃
1/2
1c3

n∑
k=1

n!ϖn−k
c3 ϖ̃k

1c3

k! (n− k)!

∞∑
s=0

(2s)!

22s (s!)2 (k + s)

(
ϖ −ϖc3

ϖ1 −ϖc3

)(k+s)

= φ+ C0. (378)

The value of the integrating constant C0 is determined at the following initial conditions:
ϖ = ϖ1, φ = 0:

C0 = −
∞∑
n=0

c3nϖ
n
c3

ϖ̃
1/2
1c3

∞∑
s=1

(2s)!

22s (s!)2 s
−

∞∑
n=1

c3n

ϖ̃
1/2
1c3

n∑
k=1

n!ϖn−k
c3 ϖ̃k

1c3

k! (n− k)!

∞∑
s=0

(2s)!

22s (s!)2 (k + s)
. (379)

We can substitute the sums over s in the (379) with their numeric values:

∞∑
s=1

(2s)!

22s (s!)2 s
= 2 ln 2. (380)

∞∑
s=0

(2s)!

22s (s!)2 (k + s)
=

π1/2Γ (k)

Γ (k + 1/2)
, k = 1, ...,∞, (381)

where Γ (k) is the gamma function. Thus, considering (380) and (381), we can rewrite
the (378) as follows:

φ =
∞∑
n=0

c3nϖ
n
c3

ϖ̃
1/2
1c3

(
ln

(
ϖ1 −ϖc3

ϖ −ϖc3

)
−

∞∑
s=1

(2s)!

22s (s!)2 s

(
ϖ −ϖc3

ϖ1 −ϖc3

)s

+ 2 ln 2

)
−

−
∞∑
n=1

c3n

ϖ̃
1/2
1c3

n∑
k=1

n!ϖn−k
c3 ϖ̃k

1c3

k! (n− k)!

(
∞∑
s=0

(2s)!

22s (s!)2 (k + s)

(
ϖ −ϖc3

ϖ1 −ϖc3

)(k+s)

− π1/2Γ (k)

Γ (k + 1/2)

)
.

(382)
Therefore, as follows from (382), if ϖ → ϖc3 then φ → ∞. In other words, if ϖ → ϖc3

then the electron and the proton turn from the unsteady state in the second domain to
the bound steady state in the second domain and remain in it.

Let us consider the (297) at the following condition: ϖ ≤ ϖ3:(
dϖ

dφ

)2

=
(ϖ1 −ϖ) (ϖ2 −ϖ) (ϖ3 −ϖ)

f 2
(ϖ)3

. (383)
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We introduce an α34 variable and determine it via the system of differential equations:

dϖ

dα34

= (ϖ3 −ϖ)1/2 , (384)

dα34

dφ
=

(ϖ1 −ϖ)1/2 (ϖ2 −ϖ)1/2

f(ϖ)3

. (385)

Integrating the (384) at the following initial conditions:

ϖ = ϖ3, α34 = 0, (386)

we obtain:

ϖ = ϖ3 −
α2
34

4
, 0 ≤ α2

34

4
≤ ϖ3. (387)

We convert the (385):

∞∑
0

cnϖ
n

ϖ
1/2
1 ϖ

1/2
2

(
1− ϖ

ϖ1

)−1/2(
1− ϖ

ϖ2

)−1/2

dα34 = dφ. (388)

If ϖ ≤ ϖ3 then ϖ < ϖ2 < ϖ1, and thus, we can determine the (388) as following:

∞∑
n=0

cn

ϖ
1/2
1 ϖ

1/2
2

∞∑
s=0

(2s)!

22s (s!)2ϖs
1

∞∑
k=0

(2k)!

22k (k!)2 ϖk
2

ϖn+s+kdα34 = dφ. (389)

We substitute ϖ in the (389) with the function of α34 (387):

∞∑
n=0

cn

ϖ
1/2
1 ϖ

1/2
2

∞∑
s=0

(2s)!

22s (s!)2 ϖs
1

∞∑
k=0

(2k)!

22k (k!)2ϖk
2

(
ϖ3 −

α2
34

4

)n+s+k

dα34 = dφ. (390)

Using Newton’s Binomial, we derive from the (390):

∞∑
n=0

cn

ϖ
1/2
1 ϖ

1/2
2

∞∑
s=0

(2s)!

22s (s!)2 ϖs
1

∞∑
k=0

(2k)!

22k (k!)2ϖk
2

n+s+k∑
l=0

(n+ s+ k)!ϖn+s+k−l
3

l! (n+ s+ k − l)!22l
α2l
34dα34 = dφ.

(391)
Integrating the (391) at the initial conditions of ϖ = ϖ3, φ = 0 and α34 = 0, we will
have:

∞∑
n=0

cn

ϖ
1/2
1 ϖ

1/2
2

∞∑
s=0

(2s)!

22s (s!)2ϖs
1

∞∑
k=0

(2k)!

22k (k!)2 ϖk
2

n+s+k∑
l=0

(n+ s+ k)!ϖn+s+k−l
3 α2l+1

34

l! (n+ s+ k − l)!22l (2l + 1)
= φ.

(392)
Substituting α34 in (392) with the function of ϖ derived from (387), we will have the
dependence of the rotation angle of the radius vector linking the particles on the distance
between them if at the moment of approach of particles to each other to the minimum
distance the value of this angle will equal to zero:

∞∑
n=0

2cnϖ
n−1/2
3

ϖ
1/2
1 ϖ

1/2
2

∞∑
s=0

(2s)!ϖs
3

22s (s!)2 ϖs
1

∞∑
k=0

(2k)!ϖk
3

22k (k!)2ϖk
2

n+s+k∑
l=0

(n+ s+ k)!
(
1− ϖ

ϖ3

)l+1/2

l! (n+ s+ k − l)! (2l + 1)
= φ.

(393)
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From (393) we determine the maximum possible angle to which the particles scatter ad
infinitum after their closing in the minimum distance of r3 = rh/ϖ3:

φ0 =
∞∑
n=0

2cnϖ
n−1/2
3

ϖ
1/2
1 ϖ

1/2
2

∞∑
s=0

(2s)!ϖs
3

22s (s!)2ϖs
1

∞∑
k=0

(2k)!ϖk
3

22k (k!)2 ϖk
2

n+s+k∑
l=0

(n+ s+ k)!

l! (n+ s+ k − l)! (2l + 1)
.

(394)
Let us consider the (297) at ϖ2 ≤ ϖ ≤ ϖ1:(

dϖ

dφ

)2

=
(ϖ1 −ϖ) (ϖ −ϖ2) (ϖ −ϖ3)

f 2
(ϖ)3

. (395)

We introduce an α35 variable and determine it via the system of differential equations:

dϖ

dα35

= ((ϖ1 −ϖ) (ϖ −ϖ2))
1/2 , (396)

dα35

dφ
=

(ϖ −ϖ3)
1/2

f(ϖ)3

. (397)

Integrating the (396) at the following initial conditions:

ϖ = ϖ1, α35 = 0, (398)

we obtain:

ϖ =
ϖ1 +ϖ2

2
+

ϖ1 −ϖ2

2
cosα35. (399)

We convert the (397):
f(ϖ)3

(ϖ −ϖ3)
1/2

dα35 = dφ. (400)

We substitute ϖ in the (400) with the function of α35 (399):

∞∑
n=0

cnϖ
n
12 (1 + κ1 cosα35)

n

ϖ
1/2
13 (1 + κ2 cosα35)

1/2
dα35 = dφ, (401)

where:

ϖ12 =
ϖ1 +ϖ2

2
, ϖ13 =

ϖ1 +ϖ2 − 2ϖ3

2
, ϖ13 > 0,

κ1 =
ϖ1 −ϖ2

ϖ1 +ϖ2

, κ1 < 1, κ2 =
ϖ1 −ϖ2

ϖ1 +ϖ2 − 2ϖ3

, κ2 < 1. (402)

Using the expansion into the series:

1

(1 + κ2 cosα35)
1/2

=
∞∑
s=0

(−1)s (2s)!

22s (s!)2
κs
2 cos

s α35, (403)

and using Newton’s Binomial, from (401) we derive:

∞∑
n=0

cnϖ
n
12

ϖ
1/2
13

n∑
k=0

n!κk
1

k! (n− k)!

∞∑
s=0

(−1)s (2s)!κs
2

22s (s!)2
cosk+s α35dα35 = dφ. (404)
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We integrate the (404) with respect to α35 from zero to 2π and obtain the value of angle at
which the radius vector linking the particles will rotate while the value of α35 is changing
from zero to 2π:

φ0 =

(
∞∑
n=0

cnϖ
n
12

ϖ
1/2
13

n∑
k=0

n!κk
1

k! (n− k)!

∞∑
s=0

(−1)s (2s)!κs
2

22s (s!)2
(k + s)!

2(k+s)
((

k+s
2

)
!
)2
)
2π. (405)

In (405), the summing over the indices k and s is performed over the parts of the sum
for which (k + s)/2 is either a whole or zero. Proceeding from (399), we find the cosα35

function expressed via the ϖ variable:

cosα35 =
2ϖ −ϖ1 −ϖ2

ϖ1 −ϖ2

. (406)

From (406) we conclude that the distance between particles returns to its minimum value
(r1 = rh/ϖ1) at α35 = 2πn, n = 0, 1...,∞, whereas it returns to the maximum one
(r2 = rh/ϖ2) at α25 = π + 2πn, n = 0, 1...,∞. Thus, from (405) we can determine the
value of angle of displacement of pericentres and apocentres of the particles’ trajectories,
the proton and the electron, in the bound unsteady state:

△φ = φ0 − 2π. (407)

If △φ = 0 then pericentres and apocentres of the particles’ trajectories remain their
spatial positions and particles move along elliptical trajectories which have one of their
foci at the point of particles’ mass centre. If △φ > 0 then pericentres and apocentres of
the particles’ trajectories displace to the direction of rotation of the radius vector linking
the particles. In case of △φ < 0 pericentres and apocentres of the particles’ trajectories
displace to the direction opposite to the rotation of the radius vector linking the particles.
Therefore, while moving in the coordinate system which centre matches the mass centre
of particles and which rotates within the plane of rotation of particles having the following
angular velocity:

dφ2

dt
=

dφ

dt
− dα35

dt
, (408)

or, considering determination of the magnitude of angular rotation velocity of particles
via the magnitude of their moment of momentum:

dφ2

dt
=

j0ϖ
2

µr2h

(
1− (ϖ −ϖ3)

1/2

f(ϖ)3

)
, (409)

the particles will move along elliptical trajectories:

R =
R0

1 + ε cosα35

, R0 =
2R2R1

R2 +R1

, ε =
R2 −R1

R2 +R1

. (410)

13 Types of interactions in PPST

Let us split the interaction of particles in PPST into three types:
1. interaction at high velocities;

82



2. interaction at low velocities;
3. interaction at the zero velocity.

We determine the interaction at high velocities as interaction at which
the values of the magnitude of relative velocity of interacting particles are
greater than the value of these particles’ neutral relative velocity (ap, ae, aep).
In other words, this is the interaction at which likely charged particles repel whereas
unlikely charged those attract.

We determine the interaction at low velocities as interaction at which
the values of the magnitude of relative velocity of interacting particles are
less than the value of these particles’ neutral relative velocity (ap, ae, aep) but
greater than zero. In other words, this is the interaction at which likely charged
particles attract whereas unlikely charged those repel, at the same time the magnitude of
their relative velocity is not equal to zero.

We determine the interaction at the zero velocity as interaction of parti-
cles which are in the same state; at this type of interaction the value of the
magnitude of relative velocity of interacting particles is changing from zero
to the value less than the value of these particles’ neutral relative velocity
(ap, ae, aep). Equality of the magnitude of relative velocity of particles to zero will be
possible only in case of simultaneous equality of unit vectors and magnitudes of particles’
velocities in the arbitrary coordinate system. In the moment of the zero value of magni-
tude of relative velocity likely charged particles will attract with the maximum possible
force whereas unlikely charged particles will repel with the maximum possible force for the
distance between them at which the interaction occurs. This is a consequence of equality
of the magnitude of relative velocity of particles to zero in the equation (12):

v12 = 0, µ12
d2r12
dt2

= −q1q2
r212

(b− 1) , b ≥ 2. (411)

In (411) ) there is no centrifugal forces of inertia which are opposite to the forces of
interaction between the particles at j0 ̸= 0. Therefore, at the moment of time when the
magnitude of relative velocity of the particles equals to zero, the radial relative acceleration
of the particles (d2r12/dt

2) will not equal to zero like it would at the constant value of the
magnitude of relative velocity of the particles not equal to zero in the bound steady state
at j0 ̸= 0 or in the neutral state while the particles are moving along the same straight line.
Thus, after this moment of time the magnitude of relative velocity of the particles will
increase whereas the magnitude of forces acting between the particles will decrease. The
maximum possible forces in the (411) depend on the (b− 1) parameter. The maximum
magnitudes of interaction forces at the zero velocity will be determined by this parameter.
If this parameter will be greater than one (b > 2) then magnitudes of interaction forces
at the zero velocity of particles, at the certain distance, in the moment of equality of the
magnitude of their relative velocity to zero, will be greater than the maximum possible
magnitude of interaction forces between these particles at high velocities and at the same
distance, whereas their sign will be opposite to that of interaction forces at high velocities.

During the interaction of particles within the range of magnitudes of relative velocities
0 ≤ v < a, where a is the neutral relative velocity of particles, the interaction at the zero
velocity and the interaction at low velocities will be possible whereas the interaction at
high velocities will be impossible.

Let us consider a limited volume consisting of N likely charged particles (either
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protons or electrons) which interact within the range of magnitudes of relative velocities
0 ≤ v < a, and the value of the interaction constant of these particles is greater than two
(b > 2), with that, the maximum possible magnitude of relative velocity of particles has
the value at which none of the particles can leave the volume. Particles in this volume will
permanently attract and will be in the bound state. Being at certain distances, particles
which magnitude of relative velocity will equal to zero within a certain period of time,
until the magnitude of their relative velocity during the interaction increases to the value
at which the interaction forces between them decrease and become equal to the forces of
their interaction with surrounding particles, will be able to change their momenta both
relatively one another and relatively surrounding particles. Let us call the changing of
particles’ momenta during the interaction at the zero velocity as interchange
of momenta. If S acts of interaction at the zero velocity will simultaneously occur in
that volume and the total number of acts of interaction between particles in the volume
(the number of bonds between particles in the considered dynamic system) will be as
follows:

SN =
N−1∑
n=1

n, N > 1, (412)

then we can determine the following function:

SsN =
S

SN

, 0 ≤ SsN ≤ 1. (413)

With SsN equal to one all particles of the volume will interact at the zero velocity.
In this case unit vectors of velocities of all particles will be parallel and magnitudes of
velocities of all particles will be equal to one another.

The value of the SsN function will be the measure of contribution of interactions at
the zero velocity into the overall attraction of particles in the volume. The greater is this
measure, the stronger will particles attract between one another.

The average number of simultaneous acts of interaction at the zero velocity, S, will
be the function of the number of degrees of freedom of unit vectors of particles’ veloci-
ties. With the decrease of the number of degrees of freedom of unit vectors of particles’
velocities the probability of their parallelism increases, and the parallelism of unit vectors
of velocities is a necessary condition of existence of the zero relative velocity of particles.
Thus, as the number of degrees of freedom of unit vectors of particles’ velocities decrease,
the S in the (413) should increase – in other words, the average number of simultaneous
acts of interaction at the zero velocity should increase.

If the motion of particles is chaotic, or disordered, then unit vectors of particles’
velocities will be spread over all possible degrees of freedom, and thus, the SsN will
have the minimum value. As unit vectors of particles’ velocities will lose some degrees of
freedom, then the SsN value will increase. It means that with the decrease of the number of
degrees of freedom of unit vectors of particles’ velocities the volume of particles determined
hereinabove will start to shrink.

Thus, during the interaction of protons with protons, electrons with electrons and
electrons with protons at the zero velocity particles will interchange their momenta. The
greater will be the values of constants bp, be, bep, the greater will be the distances at which
particles are able to interchange their momenta.

Proceeding from this, we can establish the following analogy between quantum-
mechanical effects and effects of PPST:
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Emission and absorption of energy quanta by particles in the quantum mechanics is
analogous to the interchange of momenta during the interaction at the zero velocity of
particles in PPST.

The interchange of momenta during the interaction of two electrons results to their
attraction, during the interaction of two protons – to their attraction, and during the
interaction of the proton and the electron – to their repulsion.

Determination of the process of momenta interchange between particles during the
interaction at the zero velocity in PPST as the process of emission and absorption of en-
ergy quanta in the quantum mechanics is related, first, with the possibility of interaction
of particles at the long distances (depending on the values of bp, be, bep constants); second,
with the limited duration of such interaction (as the magnitude of relative velocity of par-
ticles increases, the interaction stops since as the magnitude of relative velocity of particles
increases, the magnitudes of forces acting between the particles decreases); third, with
the existence of the maximum value of magnitude of relative velocity of particles which
they acquire during the interaction (less than the neutral relative velocity of particles
(ap, ae, aep), please refer to Chapter 7); fourth, with the selective nature of the interaction
(only those particles interact which relative velocities are equal to zero). If this process is
interpreted in PPST as emission and absorption of the energy quantum in the quantum
mechanics, then the emission of the energy quantum by a particle or by the system of
particles will be possible only in case if this energy quantum is simultaneously absorbed
by another particle or the system of particles. In other words, according to the laws of
classical dynamics, the system of particles can’t change by itself the sum of momenta of
particles belonging to the system without interaction with another system of particles.

In PPST, at b > 2, volumes of particles which magnitudes of interaction forces at
high velocities between them tend to zero can interchange the momenta. Let us consider
two dynamic systems which are remote from one another at the distance at which the
magnitudes of interaction forces at high velocities between particles of the systems can be
accepted as equal to zero, but at which the interactions of particles at the zero velocities
are possible. In the moment of time when the interactions between the systems at low
velocities as well as the interaction between them at the zero velocities will be lacking, we
can presume that the momenta of mass centres of each system relatively to the arbitrary
coordinate system are constant and equal to some certain values. If at the next moment
of time an interaction act of a particle of one dynamic system and a particle of another
dynamic system occurs at the zero velocity and if in the further period of time there will
be no interaction acts between particles of the systems at the zero velocities, then the
momenta of mass centres of each system will change and possess other constant values
but the sum of these values will remain unchanged as it was before the interaction. This
process as the analogue of the process of emission and absorption of energy quanta by
particles or systems of particles in the quantum mechanics is exactly what we will call the
interchange of momenta during the interaction of particles at the zero velocity in PPST.

This work considers the emission and absorption of energy only within the frame-
work of corpuscular component of a physical phenomenon determined in the quantum
mechanics as the corpuscular-wave dualism. Here we consider the corpuscular component
of dualism. The wave component of dualism is not considered in the present work.
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14 Formation and evaporation of condensate consist-

ing of bound pairs of like particles

From the determination of the state of two like particles we can conclude about the state
of a set of like particles. According to (123), if:

ma2

4
logb

(
b− bv

2
0/a

2

b− 1

)
+

e2

r0
> 0, v0 < a, j0 ̸= 0, (414)

then particles are bound.
In the (414):
m is a mass of a single particle, either the electron or the proton,
b is the constant of interaction of likely charged particles with respect to their masses,
either electrons or protons,
a is the neutral relative velocity of likely charged particles with respect to their masses,
either electrons or protons.
We introduce the value of the density of particles:

ρ =
m

r3ρ
, (415)

where m is the mass of a single particle, rρ is the average distance between the neighbour
particles in the limited volume which can be expressed as a function of density:

rρ =

(
m

ρ

)1/3

. (416)

Based on the Maxwell–Boltzmann distribution, we write down the value of the most
probable velocity of particles as a function of temperature:

vv =

(
2kbT

m

)1/2

, (417)

where:
m is the mass of a particle,
kb is the Boltzmann’s constant,
T is the temperature,
vv is the most probable velocity of particles.
Let us consider the interaction of likely charged particles in the limited volume. If we
assume that the most probable velocity of particles is the velocity relatively to the mass
centre of the volume, then, proceeding from the (417), we can determine the maximum
value of the most probable relative velocity of particles in the volume as the
doubled most probable velocity of particles:

vm =

(
8kbT

m

)1/2

. (418)

If we consider as the parameters of the bound state of two likely charged particles (414)
the squared magnitude of their relative velocity as the squared maximum value of the most
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probable relative velocity of particles and the distance between the particles as a function
of density, then, based on the (418), (416) and (414), we obtain conditions depending on
temperature and density of the certain volume of likely charged particles at which the
neighbour particles of the volume which values of magnitudes of relative velocities are less
than or equal to the maximum value of the most probable relative velocity of particles in
the volume will be able to form bound pairs:

ma2

4
logb

(
b− b

8kbT

ma2

b− 1

)
+ e2

( ρ

m

)1/3
> 0, T <

ma2

8kb
. (419)

At the conditions of (419), the particles of volume which maximum magnitudes of their
velocities relatively to the mass centre of the volume is less than the halved value of the
neutral relative velocity of these particles will participate in the process of formation of
bound pairs of like particles. Thus, the forming bound pairs of particles will attract one
another, and the conditions of (419) should be those of formation of the condensate of
bound pairs of like particles which particles had the values of their velocities relatively to
the mass centre of the volume less than or equal to the value of the most probable velocity
in the volume of particles with the temperature T and the density ρ. As follows from
the (419), the greater is the density of particles, the closer the value of the temperature
at which particles start condensation will be to the value of ma2 (8kb)

−1 from the side of
zero.

Let us introduce the following definitions:
Particles fast relatively to one another are the particles which interact at high
velocities (as determined in Chapter 13);
Particles slow relatively to one another are the particles interact at low veloc-
ities and at the zero velocity (as determined in Chapter 13).

Using these definitions, the process of formation of a drop of condensate can be
described as follows:
If a small volume of particles slow relatively to one another but fast relatively to the rest
particles of volume is formed in the volume of particles fast relatively to one another,
then the volume of particles slow relatively to one another will start to shrink, repelling
particles fast relatively to it. The volume of particles fast relatively to one another will
start to grow, repelling the volume of slow particles as fast relatively to itself, shrinking
by this the volume of slow particles. If the temperature and the density of particles in
the small volume will comply to the conditions of (419) as a result of this process, then
particles which velocities in the small volume are equal to or less than the most probable
velocity of particles in the small volume will bind into pairs and form the condensate.
Therefore, a drop of condensate is formed in the small volume from the bound pairs of
like particles.

Now let us assume that there is a drop of condensate consisting of bound pairs of like
particles. We pretend that, as a result of external action on this drop, the magnitude of
relative velocity of particles of the bound pair and the distance between them are changing.
If the conditions of (414) are violated at that, then these two particles will turn to the free
state. If the magnitude of relative velocity of free particles will become greater than a at
that, then they will repel one another. And if the magnitudes of velocities particles which
turned to the free state relatively the rest particles of the drop will become greater than
a, then these two particles will repel from the drop as well with the force proportional to
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the cumulative charge of the drop. This is the way the evaporation, or the process inverse
to the condensation, occurs.

In other words, if in the volume of particles slow relatively to one another appear
some particles which are fast relatively to those of volume, then the fast particles will be
repulsed outside the volume.

In the processes of condensation and evaporation described hereinabove we didn’t
consider a distribution of momenta between the fast and the slow particles (an equalising
of temperatures). It is believed that the processes of condensation and evaporation in the
considered cases are going faster than the process of equalising of temperatures. Therefore,
using the values of temperature and density of particles in the (419) is to be considered
as a qualitative determination of processes which requires some further correction. Also,
here we didn’t consider the interaction of particles at the zero velocity; it is believed that
the value of the SsN function (413) is small enough if the motion of particles is chaotic.

As the condensate evaporates emitting two free particles which have been bound
in the condensate, the following scenarios can take place, depending on changing of the
magnitude of relative velocity of particles and the distance between them:
First scenario is the emission in the opposite directions relatively the evaporation zone.
Second scenario is the emission alongside at the value of magnitude of relative velocity of
scattering particles less than the neutral relative velocity of these particles.

The first scenario is realised if the external action results to the increase of the
magnitude of relative velocity of the particles which becomes much greater than the
neutral relative velocity of these particles. In this case the particles repel both from
one another and from the condensate according to the Coulomb law and scatter in the
opposite directions.

The second scenario is realised if the external action turns the particles into the free
state while the magnitude of their relative velocity and the distance between them are
changing and the particles nevertheless still attract. In this case the mass centre of the
particles should have the velocity enough for emission of particles from the condensate.
The magnitude of relative velocity of the scattering particles at that will be less than the
neutral relative velocity of these particles, if the interaction with the condensate during
the emission of particles will not change this magnitude.

Perhaps both these scenarios of the proton condensate evaporation are realised during
the double-proton decay of the 6B nucleus as a primary emission of two protons either
alongside or in the opposite directions [15].

For the interaction of two likely charged particles at the magnitude of their initial
relative velocity greater than the neutral relative velocity of these particles, we obtain
from the (50):

v2 = a2 logb

(
b+ b(E− 2

R)
)
. (420)

Based on the (420), we conclude:
The magnitude of relative velocity of two interacting like particles cannot equal to zero if
the magnitude of their initial relative velocity is greater than the neutral relative velocity
of these particles. Thus, at the motion of the particles towards each other, if their moment
of momentum equals to zero, the distance between the particles will tend to zero and the
magnitude of relative velocity of the particles will approach the neutral relative velocity
of these particles from the side of plus-infinity.

If the three likely charged particles will be located at the same straight line and two
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outermost of them will be at the same distance from the central one and will have initial
velocities relatively to the central particle equal in modulus but directed oppositely –
toward the central particle, with the magnitude of the initial velocity of the outermost
particle relatively the central one is greater than the value of the neutral relative velocity
of these particles, then the radial relative acceleration of the outermost and the central
particles can be described by the following equation:

d2r

dt2
=

e2

4mr2

(
5− 4b

(
1−( dr

dt )
2
/a2
)
− b

(
1−4( dr

dt )
2
/a2
))

,

(
dr0
dt

)2

> a2,
dr0
dt

< 0, (421)

where:
r is the distance between the central and the outermost particles,
dr/dt is the radial relative velocity of the central and the outermost particles,
dr0/dt - is the initial radial relative velocity of the central and the outermost particles.
In this case the distance between particles will tend to zero and the magnitude of relative
velocity of the outermost and central particles will decrease approaching a certain value.
Setting the radial relative acceleration of the outermost and central particles to zero,
we obtain from the (421) the algebraic equation for determination of the value of this
magnitude (v):

5− 4b(1−v2/a2) − b(1−4v2/a2) = 0. (422)

From the (422) we form and determine the function:

f(v) = 5− 4b(1−v2/a2) − b(1−4v2/a2), 0 ≤ v ≤ ∞. (423)

We find the limiting values of the f(v) function.
First:

v = 0, f(v) = 5 (1− b) < 0. (424)

Second:
v = ∞, f(v) = 5 > 0. (425)

Then:
∂f(v)
∂v

=
8v ln b

a2

(
b(1−v2/a2) + b(1−4v2/a2)

)
. (426)

The first derivative of the f(v) function with respect to v is greater than zero; thus, the
f(v) function (423) does not have stationary points and increases from the negative range
to the positive. Therefore, the (422) equation has one real positive root. Proceeding from
the (422), with v2 > a2 we have:

b(1−v2/a2) < 1, b(1−4v2/a2) < 1, 5− 4b(1−v2/a2) − b(1−4v2/a2) > 0. (427)

With v2 = a2 we obtain from the (422):

1− b−3 > 0, 5− 4b(1−v2/a2) − b(1−4v2/a2) > 0. (428)

Based on the (427) and (428), we conclude that the algebraic equation (422) where v is
an unknown will have the real positive root at v2 < a2 only and with any value of b. It
means that the set of like particles moving along a straight line relatively one another will
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have an opportunity to decrease the magnitudes of their relative velocities to the values
less than those of neutral relative velocities and to switch from repulsion to attraction. If
while moving towards with the value of moment of momentum relatively one another close
to zero two particles enter the zone of the short-term action of the third particle and the
magnitude of their relative velocity after this interaction becomes less than the neutral
relative velocity of these particles and the distance between them becomes that at which
the conditions of (414) are satisfied, then the particles turn to the bound state. The short-
term action force should prevent from the closing of particles and its magnitude should
tend to zero at the moment as the dynamical parameters of closing particles reach the
values required for the bound state. The termination of action preventing from the closing
can occur upon receding of one particle from the zone of interaction of three particles via
its interaction at the zero velocity with other particles (please refer to Chapter 13).

If a set of parallel trajectories along which a lot of like particles moves will exist, then
the attraction between particles will be possible not only along trajectories as described
hereinabove but also across them. Unit vectors of particles’ velocities in the trajectories
will have only two degrees of freedom, and once the ranges of values of magnitudes of
particles’ velocities along trajectories relatively an arbitrary coordinate system match one
another, the value of the SsN function (413) will increase which will result to the crosswise
attraction of particles at the parallel trajectories. Thus, while moving in a beam parallel
to each other both along the straight line and along closed trajectories, likely charged
particles will have the opportunity of attraction and formation of the condensate.

Therefore, within the PPST framework some free and separated volumes of both
electron and proton condensates can exist.

Once an external magnetic field appears, bound pairs of like particles which form
the condensate will acquire a dedicated orientation of the angular rotation velocity of
particles in the bound pairs. An ordered rotation of pairs of particles appears, unit
vectors of which velocities will lose some degrees of freedom. The number of acts of
interaction between particles at the zero velocity will increase, and the value of the SsN

function (413) will grow. Additional forces of attraction of particles of the condensate
to one another will appear. Thus, in the external magnetic field of a certain value the
volume of the condensate formed by bound pairs of like particles should shrink.

If we have an interaction of the electron and the proton, then in accordance with the
(12) we obtain:

µep
dv⃗ep
dt

= − e2

r2ep

(
1− b(1−v2ep/a

2
ep)
)
r̂ep. (429)

With vep < aep the proton and the electron repel. And thus, separated volumes of con-
densates of these particles at the certain velocity at which these volumes move relatively
one another and which is less in modulus than aep will repel. Correspondingly, at the
certain velocity at which volumes of condensates move relatively one another and which
is greater in modulus than aep, these volumes will attract. On the contrary, volumes of
condensates consisting of the same particles at the certain magnitude of relative velocity
of volumes which is less than the neutral relative velocity of particles will attract. And
at the certain magnitude of relative velocity which is greater than the neutral relative
velocity the volumes will repel.

If we go back to Chapter 9 and analyse the changing of the magnitude of attraction
forces between two likely charged particles in the bound steady states (please refer to the
graphs at Fig. 7 and Fig. 8) depending on the magnitude of relative velocity of particles
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and on the distance between them (please refer to the graphs at Fig. 1 and 2), we can
see that under the certain conditions like particles in the state of condensate will attract
each other with forces very strong in moduli. And thus, we can expect that a dynamic
system formed by the volumes of condensates of likely charged particles can be more solid
than a crystal structure of neutral atoms.

15 Dynamic system of two protons and electron

The values of neutral relative velocities of particles play a special role in the dynamics
of a system consisting of both electrons and protons if the number of particles in the
system is greater than or equal to three. Therefore, starting from the first principle of
selection of the type of modifying function, the correspondence of processes of particles’
interaction in the theory to really observable physical processes (please refer to Chapter
3), we determine an inequality:

ap << aep < ae. (430)

Let us consider conditions of interaction of particles determined by the inequality (430),
by the inequality b ≥ 2 (24), by the equality bp = bep = be = b (23) and by the system
of equations (7) as one of the possible variants of PPST and further on, analysing the
system of equations (7), we will use conditions of (430), (24) and (23).

Let us consider a dynamic system consisting of two protons and an electron. We
write down the system of equations (7) which determines the motion of particles in this
dynamic system:

me
dv⃗e
dt

= − e2

r2ep1

(
1− b(1−v2ep1/a

2
ep)
)
r̂ep1 −

e2

r2ep2

(
1− b(1−v2ep2/a

2
ep)
)
r̂ep2 , (431)

mp
dv⃗p1
dt

= − e2

r2p1e

(
1− b(1−v2p1e/a

2
ep)
)
r̂p1e +

e2

r2p1p2

(
1− b(1−v2p1p2/a

2
p)
)
r̂p1p2 , (432)

mp
dv⃗p2
dt

= − e2

r2p2e

(
1− b(1−v2p2e/a

2
ep)
)
r̂p2e +

e2

r2p2p1

(
1− b(1−v2p2p1/a

2
p)
)
r̂p2p1 , (433)

where:
r⃗e is the radius vector of position of the electron,
r⃗p1 is the radius vector of position of the first proton,
r⃗p2 is the radius vector of position of the second proton,
r⃗ep1 is the radius vector of position of the electron relatively to the first proton,
r⃗ep2 is the radius vector of position of the electron relatively to the second proton,
r⃗p1e is the radius vector of position of the first proton relatively to the electron,
r⃗p2e is the radius vector of position of the second proton relatively to the electron,
r⃗p1p2 is the radius vector of position of the first proton relatively to the second proton,
r⃗p2p1 is the radius vector of position of the second proton relatively to the first proton.

Let us assume that the electron and the first proton are in the bound state. From
(431) and (432) we obtain an equation of motion of the mass centre of bound pair of
electron and the first proton:

(mp +me)
dv⃗c
dt

= − e2

r2ep2

(
1− b(1−v2ep2/a

2
ep)
)
r̂ep2 +

e2

r2p1p2

(
1− b(1−v2p1p2/a

2
p)
)
r̂p1p2 , (434)
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where r⃗c is the radius vector of position of the mass centre of electron and the first proton
and v⃗c is its velocity correspondingly. From equations (433) and (434) we obtain the
equation of motion of the second proton relatively to the mass centre of the bound pair
of electron and the first proton:

mp (mp +me)

(2mp +me)

dv⃗p2c
dt

= − e2

r2p2e

(
1− b(1−v2p2e/a

2
ep)
)
r̂p2e +

e2

r2p2p1

(
1− b(1−v2p2p1/a

2
p)
)
r̂p2p1 .

(435)
Based on determination of the mass centre of the system of particles, we can write down:

mpr⃗p1c = −mer⃗ec, r⃗p2e = r⃗p2c − r⃗ec, r⃗p2p1 = r⃗p2c +
me

mp

r⃗ec. (436)

With the condition of rp2c >> rec, the (435) with regard to (436) will acquire the following
form:

mp (mp +me)

(2mp +me)

dv⃗p2c
dt

=
e2

r2p2c

(
b

(
1−(v⃗p2c−v⃗ec)

2
/a2ep

)
− b

(
1−(v⃗p2c−v⃗p1c)

2
/a2p

))
r̂p2c. (437)

In the (437):
v⃗p2c is the velocity of the second proton relatively to the mass centre of the bound pair of
electron and the first proton;
v⃗ec is the velocity of the electron relatively to the mass centre of the bound pair of electron
and the first proton;
v⃗p1c is the velocity of the first proton relatively to the mass centre of the bound pair of
electron and the first proton.

We represent the scalar function of interaction of the second proton and the bound
pair of electron and the first proton as follows:

Φp2c =
e2

r2p2c
Qp2c. (438)

From the (437) we separate aQp2c function which determines the sign of the scalar function
of interaction of the second proton and the bound pair of electron and the first proton:

Qp2c = b

(
1−(v⃗p2c−v⃗ec)

2
/a2ep

)
− b

(
1−(v⃗p2c−v⃗p1c)

2
/a2p

)
. (439)

Or, considering that v⃗p2p1 = v⃗p2c +
me

mp
v⃗ec:

Qp2c = b

(
1−(v⃗p2c−v⃗ec)

2
/a2ep

)
− b

(
1−
(
v⃗p2c+

me
mp

v⃗ec
)2

/a2p

)
. (440)

Then, as vp2c >> vec, we write down the (440):

Qp2c = b(1−v2p2c/a
2
ep) − b(1−v2p2c/a

2
p). (441)

As follows from (430), v2p2c/a
2
ep << v2p2c/a

2
p, and thus, the (441) can be determined as:

Qp2c = b(1−v2p2c/a
2
ep). (442)
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Considering the (442), we obtain from the (437):

mp (mp +me)

(2mp +me)

dv⃗p2c
dt

=
e2

r2p2c
b(1−v2p2c/a

2
ep)r̂p2c. (443)

The scalar multiplication of the (443) by v⃗p2c and further integration provide the following:

mp (mp +me)

(2mp +me)

a2ep
2b ln b

bv
2
p2c

/a2ep +
e2

rp2c
= C0. (444)

Therefore, as follows from the (443), with:

rp2c >> rec, vp2c >> vec, (445)

the scalar function of interaction of the second proton and the bound pair of electron and
the first proton (438) is greater than zero, and therefore, the second proton and the bound
pair of electron and the first proton repel, and with the further increase of the magnitude
of relative velocity of the second proton and the mass centre of the bound pair of electron
and the first proton (vp2c) the magnitude of repulsion forces between them will tend to
zero.

Based on the (439) we determine inequalities:

vp2c − vec
aep

>
vp2c + vp1c

ap
, vp2c > vec, (446)

which fulfilment should result to that of the following condition: Qp2c < 0. In the (446),
the difference of magnitudes of velocities of the second proton and the electron determines
the minimum possible magnitude of their relative velocity. The sum of magnitudes of
velocities of the first and second protons determines the maximum possible magnitude of
their relative velocity. Conversion of the (446) provides the following:

vp2c (ap − aep) > vecap + vp1caep. (447)

Considering that ap << aep (430), we conclude from the (447) that inequalities (446) are
not fulfilled. Then, based on the (439), we determine inequalities:

vec − vp2c
aep

>
vp2c + vp1c

ap
, vp2c < vec, (448)

which fulfilment should result to that of the following condition: Qp2c < 0. Conversion of
the (448) with regard to mevec = mpvp1c provides the following:

vp2c <
mpap −meaep
mp (ap + aep)

vec. (449)

Thus, if the following inequalities fulfil:

rp2c >> rec, vp2c <
mpap −meaep
mp (ap + aep)

vec, mpap > meaep, (450)

then the second proton and the bound pair of electron and the first proton will attract
since as Qp2c < 0, the scalar function of their interaction (438) will be less than zero. For
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this case, the (450) considering (430) provides an additional limitation for neutral relative
velocities of particles:

me

mp

<
ap
aep

<< 1. (451)

The second proton and the bound pair of electron and the first proton will repel at
Qp2c > 0 if the following conditions fulfil:

vp2c − vp1c
ap

>
vp2c + vec

aep
, vp2c > vp1c, (452)

and thus, with:

rp2c >> rec, vp2c >
mpap +meaep
mp (aep − ap)

vec, (453)

the second proton and the bound pair of electron and the first proton repel.
The following conditions:

vp1c − vp2c
ap

>
vp2c + vec

aep
, vp2c < vp1c, Qp2c > 0, (454)

will not fulfil as the (454) results to the following:

vec(meaep −mpap) > mpvp2c(aep + ap), (455)

and the inequality (455) contradicts to conditions of (451).
In order to determine conditions at which two protons and the electron will attract

each other, we write down the following conclusions from Chapter 7:
1. If the magnitude of relative velocity of two protons is less than the value of neutral
relative velocity of protons then the protons attract.
2. If the magnitude of relative velocity of the electron and the proton is greater than the
value of neutral relative velocity of electron and proton then the proton and the electron
attract.

Let us write down a system of inequalities using these conclusions:

vp2c + vp1c < ap, vec − vp2c > aep, vec + vp1c > aep, vec > vp2c, (456)

where vec, vp1c and vp2c are the magnitudes of velocities of particles relatively to the mass
centre of the bound pair of electron and the first proton. If the system of inequalities
(456) always fulfils then two protons and the electron will permanently attract each other.
Proceeding from the (456) and considering that mevec = mpvp1c, we obtain the following:

vp2c <
mpap −meaep

mp +me

,
meaep

mp +me

< vp1c < ap,
mpaep

mp +me

< vec <
mp

me

ap. (457)

Let us conclude from this chapter:
1. The proton and the bound pair of electron and proton being at the distance much
longer than the distance between the proton and the electron in the bound pair will
attract at the conditions of (450):

rp2c >> rec, vp2c <
mpap −meaep
mp (ap + aep)

vec.
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2. The proton and the bound pair of electron and proton being at the distance much
longer than the distance between the proton and the electron in the bound pair will repel
at the conditions of (453):

rp2c >> rec, vp2c >
mpap +meaep
mp (aep − ap)

vec,

whereas at the conditions of (445):

rp2c >> rec, vp2c >> vec,

the magnitude of repulsion forces between them will begin to tend to zero.
3. Two protons and the electron will attract each other at the conditions of (457):

vp2c <
mpap −meaep

mp +me

,
meaep

mp +me

< vp1c < ap,
mpaep

mp +me

< vec <
mp

me

ap.

4. Within the range of values of magnitudes of relative velocities of the proton and the
mass centre of the bound pair of electron and proton (vp2c) being at the distance much
longer than the distance between the proton and the electron in the bound pair:

mpap −meaep
mp (ap + aep)

vec ≤ vp2c ≤
mpap +meaep
mp (aep − ap)

vec,

there will exist the values at which the magnitude of the interaction force between the
proton and the bound pair of electron and proton equals to zero.

16 Atom of hydrogen, neutron and deuteron

A link between experimentally observable physical objects and dynamic systems of parti-
cles which are in the certain states according to PPST can be established by comparison
of their properties. In PPST, determination of boundaries at which the properties of
one dynamic system end and those of another one begin is rather conventional. Forces
acting between particles in accordance with the system of equations (7) are responsible
for all states. The balance of these forces determines the state of particles depending on
initial conditions of motion, and thus, it also determines the properties of dynamic sys-
tems. Therefore, the boundaries of correspondence of experimentally observable physical
objects to dynamic systems of particles in various states in PPST proposed herein are the
matter of convention.

An atom of hydrogen is a dynamic system of the electron and the proton which
bound steady state can be in the first domain of states only (please refer to Chapter 10).

A neutron is a dynamic system of the electron and the proton which bound steady
state can be in the second domain of states only (please refer to Chapter 10).

A deuteron is a dynamic system of the proton and the neutron in the bound state
when all three particles (two protons and electron) attract each other (please refer to
conclusion 3 in Chapter 15).

Based on PPST, let us determine the properties which these objects should possess.
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If the electron and the proton in the hydrogen atom are in the bound steady state,
then the less is the distance between electron and proton the greater is the value of the
magnitude of relative velocity of electron and proton and their rotation frequency; with
that there is an always existing forbidden domain of distances between the bound steady
and the free states at the constant values of És and Js. The atom of hydrogen does not
have an opportunity of being ionised without changing the values of És and Js (please
refer to Chapter 10). The most sustainable to external action bound steady state of the
hydrogen atom is the state at which the distance between the electron and the proton
tends to the minimum possible at the same time as the value of magnitude of relative
velocity of electron and proton tends to the maximum possible (conclusion 1 of Chapter
10).

If the electron and the proton in the neutron are in the bound steady state, then
the less is the distance between electron and proton the less is the value of magnitude
of relative velocity of electron and proton and the greater is their rotation frequency;
with that the forbidden domain of distances between the bound unsteady and the free
states at the constant values of És and Js is always lacking. A decay of the neutron, or
transformation of the bound steady state of electron and proton into the free state without
changing the values of És and Js (i.e., without changing of initial conditions of motion,
please refer to Chapter 10) is possible. If the distance between the electron and the
proton being in the bound steady state in the neutron tends to zero, then the magnitude
of relative velocity of electron and proton tends to the value of the neutral relative velocity
of electron and proton from the side of plus-infinity; at that, the possibility of decay of the
neutron into the electron and the proton without changing of initial conditions of motion
always exists (conclusion 2 at the end of Chapter 10).

In the deuteron, the maximum value of magnitude of relative velocity of protons is
less than the value of the neutral relative velocity of protons and the minimum value of
magnitude of velocity of electron relative to each of protons is greater than the value of
the neutral relative velocity of electron and proton (conclusion 3 of Chapter 15); at that
there are limitations for velocities of particles in the deuteron represented as the system
of inequalities (457).

17 Nucleus and electron shells of the atom

Presuming that the nucleus of atom consists of bound protons and neutrons, and the
neutron in accordance to PPST consists of bound electron and proton, let us determine
the boundaries of localisation of electrons in the atom separating them into electrons of
nucleus and electrons of atom’s electron shells.

As follows from the experience, the boundary between the nucleus and electron shells
of the atom does exist. As also follows from the experience, while interacting with protons,
electrons in electron shells behave like the electron in the atom of hydrogen. Thus, as
the distance between the nucleus and the electron of the shell decreases, the velocity
of electron relatively the mass centre of atom will increase. The longer is the distance
between electrons in shells and the nucleus, the less should be their velocity relatively
to the mass centre of atom. Therefore, let us split electron shells of atom into two
types, internal and external.

Based on the hereinabove, let us introduce the following definitions for electrons of
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atom:
Electrons of nucleus are the electrons of atom which values of maximum

magnitudes of velocities of motion relatively one another are less than the
value of neutral relative velocity of electrons and those which are bound with
protons in neutrons.

Electrons of internal electron shells are the electrons of atom which mini-
mum values of magnitudes of velocities of motion relatively the mass centre of
atom are greater than or equal to the halved value of neutral relative velocity
of electrons and those which are more distant from the mass centre of atom
than electrons of the nucleus.

Electrons of external electron shells are the electrons of atom which max-
imum values of magnitudes of velocities of motion relatively the mass centre
of atom are less than the halved value of neutral relative velocity of electrons
and those which are more distant from the mass centre of atom than electrons
of internal electron shells of atom.

If the atom is stable and does not ionise and its nucleus does not decay, then, in
accordance with definitions of the neutron and the deuteron, considering definitions for
electrons of nuclei and those of electron shells of atoms, we can conclude the following:

1. All electrons in the atom should have the minimum values of velocities of motion
relatively protons in the nucleus, including those in neutrons, greater than the value of
neutral relative velocity of electron and proton - all electrons should attract with all
protons of the nucleus.

2. All protons in the nucleus, including those in neutrons, should have the maximum
values of velocities of motion relatively one another less than the value of neutral relative
velocity of protons - all protons of the atom nucleus should attract one another.

3. All electrons in the nucleus should have the maximum values of velocities of
motion relatively one another less than the value of neutral relative velocity of electrons
- all electrons of the atom nucleus should attract one another.

4. The minimum values of velocities of electrons in the internal electron shells of
atom relatively the mass centre of atom should be greater than or equal to the halved
value of the neutral relative velocity of electrons.

5. The maximum values of velocities of electrons in the external electron shells of
atom relatively the mass centre of atom should be less than the halved value of the neutral
relative velocity of electrons. All electrons in the external electron shells of atoms should
attract one another.

Based on these conclusions, let us determine the inequalities for magnitudes of ve-
locities of two arbitrary taken protons and two arbitrary chosen electrons in the nucleus
of atom relatively the mass centre of atom:

ve1 − vp1 > aep, ve1 − vp2 > aep,

ve2 − vp1 > aep, ve2 − vp2 > aep,

ve1 + ve2 < ae, vp1 + vp2 < ap. (458)

Proceeding from the inequalities of (458), we obtain the following inequalities de-
termining the values of magnitudes of velocities of protons and electrons in the atomic
nucleus at which protons and electrons will always attract one another:

0 ≤ vp < ap/2, aep + ap/2 < ve < ae/2, (459)
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where:
vp is the magnitude of velocity of protons in the nucleus of atom relatively the mass centre
of atom,
ve is the magnitude of velocity of electrons in the nucleus of atom relatively the mass
centre of atom.

The last inequality in the (459) provides an additional limitation for neutral relative
velocities of particles:

ae > 2aep + ap. (460)

According to the (459), interaction at the zero velocity between the particles of atoms
will occur in the various domains of values of magnitudes of velocities of particles relatively
the mass centre of the atom since the equality of magnitudes of velocities of particles is
the necessary condition of interaction at the zero velocity. Non-intersection of domains
of values of velocities results to impossibility of existence of the zero relative velocity of
particles from different domains.

As follows from that, particles of different and same atoms should interact with one
another at the zero velocity in the three domains of values of magnitudes of velocities if
the velocities of mass centres of atoms relatively each other are equal to zero:

1. Interaction at the zero velocity of electrons of internal electron shells of atoms -
the domain of highest magnitudes of velocities:

v ≥ ae/2. (461)

2. Interaction at the zero velocity of electrons of nuclei and electrons of external
electron shells of atoms - the domain of average magnitudes of velocities:

aep + ap/2 < v < ae/2. (462)

3. Interaction at the zero velocity of protons of nuclei of atoms - the domain of lowest
magnitudes of velocities:

0 ≤ v < ap/2, (463)

the hydrogen atom is an exception where the proton can have the magnitude of velocity
relatively the mass centre of atom greater than or equal to the halved neutral relative
velocity of protons. The proton in the neutron can also have the magnitude of velocity
relatively the mass centre of neutron greater than or equal to the halved neutral relative
velocity of protons. This state of neutron to be considered in the chapter ”Decay of a
neutron and neutron emission”.

As follows from that, the particles of the same atoms, which magnitudes of relative
velocities of mass centres are equal to zero, will interact at the zero velocity most probably.

As also follows from definitions of domains of values of magnitudes of velocities of
interaction of particles of atoms at the zero velocity, particles of atoms which nuclei are in
the unperturbed states, excluding hydrogen atoms, will not interact at the zero velocity
if magnitudes of relative velocities of mass centres of atoms are equal to zero, in the
following range of magnitudes of velocities:

ap/2 ≤ v ≤ aep + ap/2. (464)

As follows from the (464), the extent of this range is equal to the value of neutral relative
velocity of the electron and the proton, aep.

98



Electrons of external electron shells of different and same atoms can attract each other
since magnitudes of their relative velocities will be less than the neutral relative velocity of
electrons if magnitudes of relative velocities of mass centres of atoms equal to zero. This
attraction should contribute to formation of chemical bonds between atoms in molecules
with pairing of electrons of external electron shells of atoms. The presence of paired
electrons in external electron shells of atoms probably has been observed experimentally
[16]: the photoemission of bound pairs of electrons from aromatic hydrocarbons.

Attraction of Rydberg atoms and formation of condensate and molecules of them [17]
can be explained by the decrease of magnitude of rotation velocity of electrons in electron
shells of atoms while the distance between electrons and nuclei of atoms increases. As
magnitudes of velocities of electrons of various atoms relatively one another become less
than the neutral relative velocity of electrons, these electrons become attract one another
providing by this the attraction of atoms. The process of interaction of Rydberg atoms
of hydrogen within the frame of PPST can be described as follows:

Once the magnitudes of velocities of the electron and the proton relatively their mu-
tual mass centre in atoms of hydrogen and the magnitudes of velocities of mass centres
of atoms relatively one another will be so that the magnitudes of relative velocities of
electrons of atoms will be less than the neutral relative velocity of electrons, and the
magnitudes of relative velocities of protons of atoms will be less than the neutral relative
velocity of protons, then both electrons of atoms and protons of atoms will attract. At
that, if the magnitudes of relative velocities of electrons and protons in hydrogen atoms
will be greater than the neutral relative velocity of electron and proton, and the distances
between them will be so that they will be bound, then hydrogen atoms will not ionise.
Interactions between particles of atoms of hydrogen can occur at the zero velocity. Do-
mains of values of magnitudes of velocities of electrons and protons will not match during
this process, thus, the attraction between atoms should be stronger while the number of
degrees of freedom of unit vectors of velocities of electrons and protons will decrease. At
that, two acts of interaction at the zero velocity will occur simultaneously - between the
electrons and between the protons of two interacting atoms of hydrogen since the unit
vectors of velocities of the electron and the proton in the atom of hydrogen are antipar-
allel. And if the magnitudes of velocities of electrons of interacting atoms are equal, the
magnitudes of velocities of their protons will be equal as well.

18 Interaction between particles of atoms and parti-

cle beam at zero velocity

During the interaction of particles at the zero velocity the magnitude of relative velocity
of interacting particles will increase from zero to a certain value. This certain value will
depend on the distance between particles, on the value of interaction constant b (in this
chapter we will assume that b >> 2), on the neutral relative velocity of particles and
on the interaction of particles with surrounding those. The magnitude of velocity of
interacting particles relatively to surrounding particles can both increase and decrease.
Therefore, particles while interacting with other particles at the zero velocity can change
the state of particles of the dynamic system which particles they are bound with, both
without turning to the free state and with turning to the free state relatively to particles
of the system. Turning the particle into the free state relatively to particles of dynamic
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system which it is bound with depends both on forces tending to turn the particle into the
free state and on forces tending to keep it in the bound state. The balance of these forces
will determine what is going to happen, either changing of initial conditions of motion of
particles of the dynamic system without turning its particles into the free state (according
to terms of quantum mechanics, either the decrease or the increase of the bond energy of
particles in the system), or turning of individual particles into the free state relatively to
particles of the system (according to terms of quantum mechanics, either the ionisation
of atom or the decay of the nucleus of atom. In PPST, a decay of a neutron and turning
of a bound pair of like particles into the free state is added to that). At that, the velocity
of the mass centre of particles of the system will change in any case.

Let us consider the interaction at the zero velocity between particles of atoms located
at a certain volume and a particle beam which is either decelerated or accelerated by
external forces along a straight line relatively the volume of atoms. The magnitude of
interaction at the zero velocity between the particles of beam and the particles of atoms
will be permanently changing either from the maximum of the particles of beam relatively
the mass centre of the volume of atoms to the minimum one during the deceleration or
vice versa during the acceleration. Therefore, the particles of atoms will interact at the
zero velocity with the particles of beam at the coincidence of the magnitude and the unit
vector of their velocity and the magnitude and the unit vector of velocity of particles in the
beam. What exact particles in the atom will interact the particles of beam with at the zero
velocity, either electrons of shells, or electrons of the nucleus, or protons of the nucleus,
will depend on the maximum magnitude of velocities of particles in the beam during the
deceleration or acceleration. If the maximum magnitude of velocities of particles in the
beam relatively mass centres of atoms will equal to the halved neutral relative velocity of
protons, then the interaction at the zero velocity with protons of nuclei only will occur.
As the maximum magnitude increases, the beam will begin to interact with electrons in
nuclei and electrons in external shells, and with electrons of internal shells of atoms at
the further increase. Within the range of values of magnitudes of velocities of particles of
the beam relatively mass centres of atoms determined in the (464):

ap/2 ≤ v ≤ aep + ap/2,

there will be no interaction at the zero velocity between particles of the beam and particles
of atoms which nuclei are in unperturbed states.

The range of values of magnitudes of velocities at which particles of atoms will
interact with particles of the beam at the zero velocity will depend on velocities of atoms
relatively to the beam. As the temperature of the volume of atoms increases, the maximum
magnitude of interaction at the zero velocity will increase whereas the minimum one will
decrease. The domain of magnitudes of velocities of interaction between particles of atoms
and particles of the beam should expand due to summation of the temperature velocity
of mass centre of the atom and velocity of particle in the atom.

The magnitude of interaction force at the zero velocity between a particle of the atom
and particles of the beam will be directly proportional to the number of particles of the
beam participating in the simultaneous interaction at the zero velocity with the particle of
the atom. This interaction can be an analogue of the process of bremsstrahlung produced
by particles.

The magnitude of interaction force at the zero velocity between a particle of the beam
and particles of atoms will also depend on the number of particles of atoms participating
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in the simultaneous interaction at the zero velocity with the particle of the beam. This
interaction can be an analogue of processes at which the maximum scattering of particle
beam appears in a substance.

The interaction at the zero velocity between the beam consisting of a single proton
and a single atom of hydrogen while the distance between the mass centre of the atom
and the proton of the beam is much greater than the distance between the proton and
the electron in the hydrogen atom can be considered using the (437) equation:

mp (mp +me)

(2mp +me)

dv⃗p2c
dt

=
e2

r2p2c

(
b

(
1−(v⃗p2c−v⃗ec)

2
/a2ep

)
− b

(
1−(v⃗p2c−v⃗p1c)

2
/a2p

))
r̂p2c, (465)

where:
r⃗p2 is a radius vector of position of the proton of beam;
r⃗p1 is a radius vector of position of the proton of hydrogen atom;
r⃗e is a radius vector of position of the electron of hydrogen atom;
r⃗c is a radius vector of position of the mass centre of hydrogen atom.

Let us assume that an increment of magnitude of relative velocity of the proton of
the beam and the mass centre of the atom of hydrogen resulted by their interaction is
much less than the magnitude of their relative velocity, and the hydrogen atom does not
ionise at that.

If the magnitude of velocity of the proton of the beam relatively to the mass centre
of the hydrogen atom will match the magnitude of velocity of the proton in the atom of
hydrogen relatively the mass centre of the atom and the unit vector of its velocity will
lay within the plane of rotation of electron and proton in the atom of hydrogen, then the
expression enclosed in large parentheses in the (465) will look as follows:
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)
, (466)

where:
γ is a rotation frequency of the proton in the atom of hydrogen,
rpc is a distance between the proton of hydrogen atom and the mass centre of the atom,
t is the time,
φ0 is an initial angle between the unit vector of velocity of the proton in the beam and
the unit vector of velocity of the proton in the atom of hydrogen.

Considering that:

|m
2
e
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p

+ 2
me

mp

cos (2πγt+ φ0) | << 1, (467)

we can rewrite the (466) as follows:
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At the moment of time t1:

t1 =
2π − φ0

2πγ
, 0 ≤ φ0 ≤ 2π,

the scalar function of interaction between the proton of the beam and the proton of the
atom of hydrogen will possess the following value:

Φp2c = − e2

r2p2c
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b− b
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2
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. (469)
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Thus, at this moment of time Φp2c < 0. At the following moment of time:

t2 =
3π − φ0

2πγ
,

the scalar function will possess the following value:
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2
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a2p

))
. (470)

As follows from the (470), if mpap > 2meaep, then Φp2c < 0, and thus, in this case the
proton and the atom of hydrogen during the time period of t2 − t1 = (2γ)−1 will acquire
the momenta toward each other. And if mpap < 2meaep, then Φp2c > 0, and the proton
and the atom of hydrogen during the interaction within the time period of t2−t1 = (2γ)−1

will acquire the momenta relatively to one another equal to the momenta acquired during
the attraction and repulsion.

Let us consider the interaction of the atom of hydrogen and the beam consisting of
a single electron while the distance between the mass centre of the atom and the electron
of the beam is much greater than the distance between the proton and the electron in the
hydrogen atom:

me (mp +me)
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where:
r⃗e2 is a radius vector of position of the electron of beam;
r⃗p is a radius vector of position of the proton of hydrogen atom;
r⃗e1 is a radius vector of position of the electron of hydrogen atom;
r⃗c is a radius vector of position of the mass centre of hydrogen atom.

Let us assume that an increment of magnitude of relative velocity of the electron of
the beam and the mass centre of the atom of hydrogen resulted by their interaction is
much less than the magnitude of their relative velocity, and the hydrogen atom does not
ionise at that.

If the magnitude of velocity of the electron of the beam relatively to the mass centre
of the hydrogen atom will match the magnitude of velocity of the electron in the atom
of hydrogen relatively the mass centre of the atom and the unit vector of its velocity will
lay within the plane of rotation of electron and proton in the atom of hydrogen, then the
expression enclosed in parentheses in the (471) will look as follows:
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where:
rec is a radius of rotation of the electron in the atom of hydrogen.

If we consider the (467), then at the moment of time when the unit vector of velocity
of the electron of the atom will be parallel to the unit vector of velocity of the electron
in the beam, the scalar function of interaction between the electron and the atom of
hydrogen will possess the following value:

Φe2c = − e2

r2e2c

(
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1− 4π2γ2r2ec

a2ep

))
. (473)
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Thus, at this moment of time Φe2c < 0.
At the moment of time when the unit vector of velocity of electron of the atom

becomes antiparallel to the unit vector of velocity of electron in the beam, the scalar
function will acquire the following value:

Φe2c =
e2

r2e2c

(
b
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1− 4π2γ2r2ec
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)
− b

(
1− 16π2γ2r2ec

a2e

))
. (474)

As determined in the (460), ae > 2aep+ap, and thus, in the (474) Φe2c < 0. Therefore,
the electron of the beam and the atom of hydrogen during the time period of t2 − t1 =
(2γ)−1 will acquire the momenta toward each other.

We can consider in a similar way some other types of interaction at the zero velocity:
1. Interaction between the proton of the beam and the electron of the hydrogen

atom.
2. Interaction between the electron of the beam and the proton of the hydrogen

atom.
3. Interaction between the proton of the beam and the proton of the neutron.
4. Interaction between the proton of the beam and the electron of the neutron.
5. Interaction between the electron of the beam and the electron of the neutron.
6. Interaction between the electron of the beam and the proton of the neutron.
If the force acting on the electron of the atom of hydrogen during the act of interaction

at the zero velocity from particles of the beam will be greater than the force acting on
the electron of the atom of hydrogen from the proton of the atom that much that it will
be able to turn the proton and the electron of the hydrogen atom into the free state,
then a ionisation of the hydrogen atom will occur during the one act of interaction at
the zero velocity. Otherwise, the mass centre of the atom will change its velocity, having
the opportunity to convert the atom into another bound state (changing of the quantum
state of the electron in the atom of hydrogen). The momentum acquired by the electron
during several acts of interaction at the zero velocity with the particle beam is the sum
of momenta acquired at each of acts. Therefore, in PPST the ionisation of atom is
possible both at the single and at the multiple interaction at the zero velocity between
the particle beam and the electron of the atom. In PPST, the ionisation of atoms in the
certain volume during the interaction with the particle beam should depend, first, on the
following parameters of particle beam dynamics:

1. the maximum and minimum magnitudes of velocities of particles of the beam
relatively the mass centre of the volume;

2. the number of particles of the beam which have equal magnitudes and unit vectors
of velocities;

3. the repetition rate of equal magnitudes and unit vectors of particles in the beam
(depends on the oscillation frequency of particles in the beam).

Second, it should depend on parameters that determine the dynamics of particles of
the volume of atoms with which the particle beam interacts:

1. magnitudes of velocities of particles in atoms relatively to mass centres of atoms
and magnitudes of velocities of mass centres of atoms relatively to the mass centre of
volume;

2. number of degrees of freedom of unit vectors of velocities of particles of atoms in
the volume;
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3. rotation frequencies of particles in atoms.
An orientation of unit vectors of velocities of particles of the beam relatively the

volume of atoms and distances between particles of the beam and particles of atoms of
the volume will be the common parameters for the beam and the volume.

The ionisation of atoms of the volume during the interaction with the particle beam
will depend on certain coincidences of values of parameters of dynamics of the particle
beam and the volume of particles atoms (coincidence or multiplicity of integer value
of oscillation frequencies of particles of the beam and rotation frequencies of particles
in atoms; coincidence or intersection of ranges of values of magnitudes of velocities of
particles of the beam and particles of the volume of atoms relatively the mass centre of
the volume), on the number of particles of the beam participating in the simultaneous
interaction at the zero velocity with the particle of the atom and on the orientation of unit
vectors of velocities of particles of the beam relatively to the volume of atoms (the more
coincidences between unit vectors of velocities of particles of the beam and unit vectors
of velocities of particles of the volume occur, the greater is the probability of ionisation).
The less is the distance between particles of the beam and particles of the volume, the
greater are magnitudes of interaction forces between particles, and thus, the greater is the
probability of ionisation.

All changes of states of atoms of the volume in these processes will be related to the
change of momenta of particles in the beam. In other words, according to the terms of
quantum mechanics, the processes of emission and absorption of energy quanta between
particles of the beam and atoms of the volume will occur.

Undetection of bound pairs of protons outside nuclei of atoms can be related, first, to
the low relative velocity of protons required for the formation of bound pairs; second, to
the formation of deuteron during the binding of electron with the bound pair of protons;
third, to the interaction of bound pairs of protons at the zero velocity with protons of
atomic nuclei. The ranges of magnitudes of velocities of protons in the bound pair of
protons and in the nuclei of atoms will match each other. The highest magnitude of
this range will be less than the halved neutral relative velocity of protons. Besides the
mutual attraction, protons in the nuclei of atoms are attracted by electrons of neutrons.
Therefore, during the interaction at the zero velocity of the bound pair of protons with
protons of the nucleus of atom, the probability of turning of the bound pair of protons
into the free state is greater than that of emission of the proton from the nucleus of atom.
And as the bound pair of protons, in contrast to the atom, is not electrically neutral,
it will experience a permanent acceleration and deceleration while interacting with other
particles. It results to the permanent interaction at the zero velocity between protons of
the pair and protons of the atom which is similar to the interaction at the zero velocity
between the particle beam and atoms, as described hereinabove.

Proceeding from the analysis of interaction of particles at the zero velocity, let us
make six conclusions:

1. If the beam of electrons goes through the volume of atoms which magnitudes of
velocities match the magnitudes of velocities of electrons of electron shells of atoms, then
the following processes can be observable:
- changing of quantum states of electrons of electron shells of atoms;
- ionisation of atoms with emission of electrons having a projection of the vector of velocity
towards the beam;
- scattering of electrons of the beam;
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- acceleration of atoms towards the beam.
2. If the beam of electrons goes through the volume of atoms which magnitudes

of velocities match the magnitudes of velocities of electrons of atomic nuclei, then the
following processes can be observable:
- changing of quantum states of nuclei of atoms;
- beta decay of nuclei of atoms with emission of electrons having a projection of the vector
of velocity towards the beam;
- decay of nuclei of atoms with emission of neutrons having a projection of the vector of
velocity towards the beam;
- scattering of electrons of the beam;
- acceleration of atoms towards the beam.

3. If the beam of electrons goes through the volume of atoms which magnitudes
of velocities match the magnitudes of velocities of protons of atomic nuclei, then the
following processes can be observable:
- changing of quantum states of nuclei of atoms;
- decay of nuclei of atoms with emission of protons or neutrons having a projection of the
vector of velocity away from the beam;
- scattering of electrons of the beam;
- acceleration of atoms away from the beam.

4. If the beam of protons goes through the volume of atoms which magnitudes of
velocities match the magnitudes of velocities of electrons of electron shells of atoms, then
the following processes can be observable:
- changing of quantum states of electrons of electron shells of atoms;
- ionisation of atoms with emission of electrons having a projection of the vector of velocity
away from the beam;
- scattering of protons of the beam during the interaction of the proton of beam with the
large number of electrons of electron shells of atoms;
- acceleration of atoms away from the beam.

5. If the beam of protons goes through the volume of atoms which magnitudes
of velocities match the magnitudes of velocities of electrons of atomic nuclei, then the
following processes can be observable:
- changing of quantum states of nuclei of atoms.
- beta decay of nuclei of atoms with emission of electrons having a projection of the vector
of velocity away from the beam;
- decay of nuclei of atoms with emission of neutrons having a projection of the vector of
velocity away from the beam;
- scattering of protons of the beam during the interaction of the proton of beam with the
large number of electrons of atomic nuclei;
- acceleration of atoms away from the beam.

6. If the beam of protons goes through the volume of atoms which magnitudes of
velocities match the magnitudes of velocities of protons of atomic nuclei, then the following
processes can be observable:
- changing of quantum states of nuclei of atoms;
- decay of nuclei of atoms with emission of protons or neutrons having a projection of the
vector of velocity towards the beam;
- scattering of protons of the beam;
- acceleration of atoms towards the beam.
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Neutron impulses correlating with those of X-rays have been detected in high-voltage
discharges produced in laboratory conditions: ”It has been established that during the
process of high-voltage discharge in the air there are neutrons emitted, possessing the
energy > 10 MeV, which are the products of nuclear reactions yet unknown. . . The data
obtained allow for assumption that the process of discharge results to formation of fast
neutrons, and their generation occurs at the initial phase of discharge and correlates to
the generation of quanta of hard X-ray radiation” [18], [19]. In this experiment neutron
impulses have been observed at the beginning of the discharge process when particles of
the discharge just start to accelerate and have the lowest in moduli velocities relatively
atoms surrounding the discharge. It means that neutron impulses can be the result of
the process determined either by conclusion 2, or by conclusion 5, at the magnitudes of
velocities of electrons or protons of discharge relatively atoms surrounding the discharge
comparable to the magnitudes of velocities of electrons in the nucleus of atom, or by
conclusion 3, or by conclusion 6, at the magnitudes of velocities of electrons or protons
in the discharge less than the halved neutral relative velocity of protons. Conditions of
interaction of particles in PPST which can result to correlation of emission of a neutron
from the nucleus of atom with the impulse of X-ray radiation to be considered in Chapter
19 (”Decay of a neutron and neutron emission”) and Chapter 20 (”Correspondence of
ranges of magnitudes of particles’ velocities in PPST to ranges of radiation”).

In the experiment [20] the process of collision of accelerated hydrogen atoms and
molecules of deuterium has been studied. The gas of deuterium molecules has been
cooled using the method of supersonic outflow from the nozzle. Perhaps the process
of interaction at the zero velocity between particles of hydrogen atoms and particles of
deuterium molecules at the coincidence of magnitudes and unit vectors of velocities of like
particles in hydrogen and in a deuterium molecule has been observed, when molecules of
deuterium attract atoms of hydrogen and force them to accelerate towards direction of
their motion, ahead to the molecules of deuterium.

Using the mechanism of interaction of particles at the zero velocity described in
conclusion 4, the Bragg peak of ionisation of atoms during the transition of the beam
of heavy charged particles through the volume of atoms and molecules can be explained
[21, 22]:

The beam of protons in which magnitudes of velocities of protons relatively the mass
centre of the volume of atoms are greater than magnitudes of velocities of electrons of
internal electron shells of atoms relatively the mass centre of the volume of atoms cannot
interact at the zero velocity with particles of the volume. If protons of the beam during
the deceleration at the interaction of atoms of the volume decrease magnitudes of their
velocities to the values of magnitudes of electrons of the electron shells of atoms in the
volume, then the mass interaction of protons of the beam and electrons of the electron
shells of atoms at the zero velocity will occur. In this case the beam of protons will begin
to scatter in that part of its trajectory where such mass interaction at the zero velocity
with electrons of atoms appeared. Being emitted from atoms during this interaction,
electrons will acquire a component of velocity away from the beam of protons, which will
result to additional ionisation of atoms around the scattering beam of protons. New ions
will repel from the beam of protons. Volumes of resulting ions will begin to expand if
protons of ions in volumes will have magnitudes of velocities relatively to one another
greater than the neutral relative velocity of protons, and will shrink if they will have
less magnitudes of velocities, which will result to destruction of molecules in volumes.

106



As a result of this process, a local ionisation explosion deep in the volume of atoms and
molecules will occur. The volume of this explosion along the trajectory of the beam of
protons will depend on the maximum radius of interaction at the zero velocity between
protons and electrons in this volume of atoms. As the beam of protons begins to scatter,
then unit vectors of velocities of protons will acquire different directions. Thus, with the
further decrease of magnitudes of velocities of protons in the beam, their interaction with
electrons of nuclei and with protons of nuclei of atoms at the zero velocity yet will not be
the mass but individual, and the affection on the structure of nuclei of atoms will be the
minimum within this process.

Processes similar to the Bragg peak of ionisation of atoms can occur both during
the explosive destruction of conductors and during the explosive electron emission at
the formation of vacuum arc [23], when magnitudes of velocities of a certain number of
electrons in the small section of conductor reach the values relatively mass centres of atoms
of conductor equal to the values of magnitudes of velocities of electrons in atoms. As a
result of this process, electrons of atoms interacting at the zero velocity with electrons of
current will be removed from atoms and will acquire the component of velocity towards
the direction of electrons of current. The resulting volume of ions in the conductor can
either explode under the action of Coulomb repulsion forces, or condensate if relative
velocities of protons of ions will be less than the neutral relative velocity of protons, and
then can either evaporate or stay in the fluid state. According to PPST, this process can
be controlled if one could arrange the rotation of electrons in atoms of conductor in the
way that the unit vector of the current of electrons will be parallel to planes of rotation
of electrons, then the maximum of the process of explosion can be reached. And as the
unit vector of the current of electrons will be normal to planes of rotation of electrons,
then there will be no interaction at the zero velocity between electrons of the current and
electrons of atoms, and thus, the process will not occur. But if the electronic current
will form a strong enough magnetic field around itself, then atoms in the neighbourhood
of the current will be oriented so that the unit vector of the current of electrons will be
parallel to planes of rotation of electrons in atoms. Therefore, the strong enough current
will establish conditions for the explosive destruction.

19 Decay of a neutron and neutron emission

There are three variants of decay of a neutron in PPST.
First variant of decay is realised when the electron and the proton in the neutron turn

to the free state from the bound steady one while preserving initial parameters of motion
(please refer to Chapter 10). In other words, when the proton and electron in the neutron
begin their rotation around the mutual mass centre without changing the value of distance
relatively one another, the decay of the neutron becomes possible while preserving initial
parameters of motion, És and Js (please refer to Chapters 10 and Chapter 16).

In a certain volume containing a certain number of free neutrons along with other
particles there will exist a certain number of neutrons where the proton and the electron
are in the bound steady state. The state of particles in the volume will permanently
change while they are interacting with each other. And since there is no forbidden domain
of distances between the bound steady, bound unsteady and free states of electron and
proton in the neutron, and the bound steady state is the boundary one for both bound
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unsteady and free states, the electron and the proton of the neutron will turn from the
bound steady state either to the free state or to the unsteady state at the minimum
possible external action which would be able to force the electron and the proton of the
neutron to leave the equilibrium state of the bound steady state.

The magnitude of relative velocity of scattering electron and proton in the first variant
of decay of the neutron can be determined from the (50):(

dr∞
dt

)2

= a2ep logb
(
b+ bEs

)
. (475)

Proceeding from the (475), based on that the value of the distance between electron
and proton in the neutron approaches zero, the magnitude of relative velocity of electron
and proton in the neutron tends to aep from the side of plus-infinity whereas the value of
Es at that tends to the greater in modulus negative value (please refer to graphs of the Es

function at Figure 5 and Figure 6), we conclude that the magnitude of relative velocity
of scattering electron and proton will tend to the neutral relative velocity of electron and
proton from the side of plus-infinity.

According to terms of quantum mechanics, the decay of neutron to electron and
proton according to the first variant will occur without emission and absorption of en-
ergy quanta and without changing of moment of momentum of particles of disintegrated
neutron.

Second variant of decay of neutron is realised when due to external action the proton
and the electron in the neutron decrease the value of magnitude of their relative velocity,
and the value of magnitude of their relative velocity becomes less than the value of the
neutral relative velocity of electron and proton. In this case proton and electron repel
and become free. The relative velocity of their scattering tends at that to the neutral
relative velocity of electron and proton from the side of zero. The decay of neutron to
electron and proton according to the second variant will occur while the initial conditions
of motion are changing.

Third variant of decay of neutron is realised in the case when due to external action
the proton and the electron in the neutron turn to the free state and the initial condition
of motion are changing, at that the value of magnitude of their relative velocity remains
greater than the value of the neutral relative velocity of electron and proton.

All three variants of decay of neutron can be realised in the nucleus of atom. The
decay of neutron according to the first variant in the nucleus should not differ from its
decay according to the first variant in the free state since all conditions for that variant
remain in the nucleus of atom. The number of proton in the nucleus of atom is greater
than that of electrons. Protons and neutrons in the nucleus are located close to one
another. The value of magnitude of velocity of the free electron according to the (475)
during the decay of neutron under the first variant matches the values of velocities of
electron in the neutron. The lack of beta radioactivity of stable nuclei is an ascertained
fact. Thus, distances between protons and neutrons in stable nuclei should be so that an
electron leaving a proton during the decay of a neutron immediately binds a neighbour
proton, forming a new neutron. As follows from that, the decay of neutron in the nucleus
according to the first variant with emission of electron from the nucleus should occur
either while distances between protons and neutrons in the nucleus increase or in the
nucleus where the number of protons is less than the number of neutrons. The lack of a
pair proton for the free electron formed due to the decay of the first neutron with which
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proton it should form the second neutron after the first one disintegrates can result to
emission of electron from the nucleus. At that, the velocity of electron relatively to protons
of the nucleus, according to the (475), will tend to the neutral relative velocity of electron
and proton from the side of plus-infinity. Therefore, the existence of a stable dineutron
(which should consist of two neutrons) is impossible in PPST, whereas the existence of
a stable deuteron (consists of a proton and a neutron) is possible. This mechanism can
determine the beta decay of tritium (its nucleus consists of a proton and two neutrons).

The decay of neutron according to the second variant can result to the emission of
electron from the nucleus. The electron and the proton of the neutron in the nucleus can
decrease the value of their relative velocity, at that the electron and the proton of the
neutron should turn to the free state with the relative velocity less than aep. If in this case
the velocity of electron relatively to protons of the nucleus will also be less than aep, then
protons of the nucleus will repel the electron of disintegrated neutron, and the electron
will be able to leave the nucleus with the velocity relatively to protons of the nucleus less
than the neutral relative velocity of electron and proton.

The beta decay of the nucleus can also occur under the third variant of decay of
a neutron in the nucleus. According to the third variant, if the velocity of electron of
a neutron disintegrated in the nucleus relatively to protons of the nucleus will not tend
to the neutral relative velocity of electron and proton from the side of plus-infinity as it
occurs in the first variant of decay, then the electron should acquire a high velocity in
order to overcome the attraction of protons – the higher is the velocity of electron, the
stronger is the attraction of it by protons of the nucleus.

A neutron emission (i.e., emission of a single neutron from the nucleus) can occur
during the transition of electron and proton in the neutron from the bound steady state
to unsteady (please refer to Chapter 10). As it is shown at Figure 24, using the (50), the
following graphs were plotted: f1 (476) which is a dependence of dimensionless function
of magnitude of radial relative velocity of electron and proton in the neutron, and f2
(477) which is a dependence of dimensionless function of magnitude of relative velocity
of electron and proton in the neutron on R, with Vs = 1.15 and b = 2:
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, R ≥ R05, (476)
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logb
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2
R)
))1/2

, R ≥ R05. (477)

In the (476) and (477) R05 is the minimum value of R, at which dr/dt = 0.
Given graphs (Figure 24) demonstrate that during the transition of electron and

proton of the neutron from the bound steady state to the bound unsteady and back
while preserving initial conditions of motion, the short-time increase of the magnitude
of their relative velocity occurs. The f2 function which determines this magnitude is
changing from Vs to Vmax as R is changing from Rs to R05, then from Vmax to Vs as R is
changing from R05 to Rs. At that, the less is the value of R05 the greater is the value of
Vmax. If during this process the magnitude of velocity of proton of the neutron relatively
protons of the nucleus becomes greater than the neutral relative velocity of protons and
the magnitude of velocity of electron of the neutron relatively to electrons of the nucleus
becomes greater than the neutral relative velocity of electrons, then the proton of the
neutron will repel from protons of the nucleus and the electron of the neutron will repel
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Figure 24: Graph of the change of dimensionless function of magnitude of relative velocity
f2 (the upper curve) and graph of the change of dimensionless function of magnitude of
radial relative velocity f1 (the lower curve) of electron and proton in the neutron depending
on the change of R, with b = 2 and Vs = 1.15.

from electrons of the nucleus, and attraction of the neutron by the nucleus will weaken.
At that, if the force of inertia acting on the neutron in the nucleus becomes greater than
attraction forces of the neutron by the nucleus, then the neutron will be able to leave the
nucleus.

20 Correspondence of ranges of magnitudes of parti-

cles’ velocities in PPST to ranges of radiation

Figure 25 shows the following graphs: f1 (476) which is a dependence of dimensionless
function of magnitude of radial relative velocity of electron and proton in the neutron,
and f2 (477) which is a dependence of dimensionless function of magnitude of relative
velocity of electron and proton in the neutron on R, with Vs = 1.002 and b = 200. These
graphs allow for conclusion that during the transition of electron and proton from the
bound steady state to the unsteady state at the longer section of trajectory almost all
the value of magnitude of relative velocity of electron and proton can be concentrated
in the radial relative velocity of particles when the proton and electron of the neutron
begin to move along trajectories similar to elliptical with the greater value of eccentricity
close to one (please refer to Chapter 12). Particles move along the most of such elliptical
trajectory with lesser curvature of the motion trajectory. Therefore, during the transition
into the unsteady state the neutron can be easily represented as two particle beams: the
first beam consists of one electron, the second beam consists of one proton, and they
move in the different directions with a certain relative acceleration within a certain time
period. Interaction at the zero velocity between such particle beams has been considered
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Figure 25: Graph of the change of dimensionless function of magnitude of relative velocity
f2 (the upper curve) and graph of the change of dimensionless function of magnitude of
radial relative velocity f1 (the lower curve) of electron and proton in the neutron depending
on the change of R, with b = 200 and Vs = 1.002.

in Chapter 18. As follows from that, during the transition of proton and electron of the
neutron from the bound steady state to the unsteady some acts of interaction between
particles of the neutron and particles surrounding the nucleus of atom at the zero velocity
can occur, since at this time, first, ranges of values of magnitudes of velocities of electron
and proton relatively to surrounding particles will expand to the side of maximum values;
second, the curvature of trajectories of their motion will become less at the distant sections
of these trajectories. These acts of interaction will be similar to the process of observation
of bursts of radiation of atoms. As follows from that, radiation can occur both at the
neutron emission and at the decay of a neutron through the unsteady state of electron
and proton, i.e., during the sequential change of the states of electron and proton in the
neutron: bound steady – unsteady – free.

X-ray impulses during the neutron emission from the nucleus of atom [18] and, prob-
ably the gamma radiation as well can be related to the interaction at the zero velocity of
electron of the neutron with other particles, when electron in the neutron briefly increases
the magnitude of its velocity and straightens the trajectory of its motion relatively to par-
ticles surrounding it. However, similar processes occur with the proton in the neutron
simultaneously with it.

Correlation of gamma radiation to radio radiation, similarity of their forms and
commonness of their source, lightning discharges (lightnings), have been determined ex-
perimentally [24]. Proceeding from this experimental fact, we can presume that the
interaction of proton of the neutron with surrounding particles during the transition of
electron and proton of the neutron from the bound steady state to the unsteady can
be the cause of bursts of radio radiation in these cases. Therefore, during the lightning
discharges three events correlating with one another can occur simultaneously: a burst
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of the neutron flow, a burst of gamma radiation and a burst of radio radiation. In other
words, as the interaction between electron or proton of the neutron of the nucleus of atom
at the zero velocity and the beam of electrons of the lightning discharge, velocities of
which electrons coincide with the velocity of electron or proton in the neutron being in
the bound steady state, turns the proton and the electron of the neutron into the bound
unsteady state which, in turn, allows the neutron to leave the nucleus, with simultaneous
interaction between electron and proton of the neutron being emitted from the nucleus
at the zero velocity and particles surrounding the atom, the three events correlating with
one another can occur: the neutron emission, the burst of gamma radiation and the burst
of radio radiation.

As follows from presumption that the radio radiation during the neutron emission
is the consequence of velocity of proton in the neutron and the gamma radiation is the
consequence of velocity of electron in the neutron relatively to the receiver of radiation
(the consequence of interaction between particles of the neutron and particles of receiver
at the zero velocity), the range of values of magnitudes of particles’ velocities relatively
to mass centres of atoms as it was determined in the (464):

ap/2 ≤ v ≤ aep + ap/2, (478)

should determine the range of radiation at which both sources and receivers of radiation
are lacking, if we consider as those atoms and their nuclei in the unperturbed state at
relative velocities of mass centres of atoms or their nuclei equal to zero (this determination
does not include molecules formed by atoms since mass centres of atoms in a molecule can
have different velocities). Probably this range includes the terahertz range with certain
zones of regions of microwave and infrared ranges adjacent to it from the left and from
the right, creation of sources and receivers of radiation in which requires the development
of new technologies which would be different from traditional those applied in the radio
and optical ranges. This range is called a terahertz gap since creation of powerful and
compact sources and sensitive receivers of radiation is very complicated in this range [7].

If, in accordance to the (460):

ae > 2aep + ap,

then in a certain volume, within the range of magnitudes of velocities relatively the
volume as determined as (478), there will be electrons slow relatively to one another and
able to form the condensate. Then, if the presumption that the range of velocities (478)
corresponds to the range of radiation which includes the terahertz range and regions of
microwave and infrared ranges adjacent to it corresponds to the reality, then the electron
condensate and electrons slow relatively to one another should radiate within this range,
and observation of their states requires a special receiver of radiation since slow electrons
radiating in this range do not interact at the zero velocity with atoms and nuclei of atoms
being in the unperturbed state (those that do not interchange the energy quanta). That
is why the electron condensate localised in the volume of atoms should vaporise either
with the increase of the temperature of volume, or with the increase of the velocity of
condensate flow relatively to individual atoms of the volume, or under the radiation of the
range determined hereinabove acting on the condensate, when particles of the radiation
source will interact at the zero velocity with electrons of the condensate.

Therefore, each range of magnitudes of velocities of particles in PPST will correspond
to the certain range of radiation. In other words, if the magnitude of velocity of the particle
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relatively the receiver of radiation with which particles this particle can interact at the zero
velocity will change from vmin to vmax, then the radiation which can be registered by the
receiver while interacting with this particle will be determined by the range of wavelengths
from lmax to lmin, where every value of wavelength will correspond to the certain value of
magnitude of velocity of the particle relatively to the receiver of radiation. The highest
value of wavelength within the range of wavelengths will correspond to the lowest value of
magnitude of velocity within the range of magnitudes of velocities of the particle, and vice
versa, the lowest value of wavelength will correspond to the highest value of magnitude
of velocity. The theory of this phenomenon within the frame of PPST, the propagation
of radiation within the volume of particles as the consequence of momenta interchanges
between particles during the interaction at the zero velocity, is planned to be considered
in the next study dedicated to the wave component of corpuscular-wave dualism.

21 Interaction between single particles and atoms or

ions

Let us consider the interaction of an electron and a neutral atom (the number of positive
charges in the atom is equal to that of negative charges). At that we determine that
the distance between the electron and the mass centre of atom is much greater than the
radius of atom. Proceeding from the (7), we obtain the following system of equations:

me
dv⃗e
dt

=
e2

r2ec

N∑
n=1

(
b(1−(v⃗e−v⃗pn )

2/a2ep) − b(1−(v⃗e−v⃗en )
2/a2e)

)
r̂ec, (479)

N (me +mp)
dv⃗c
dt

=
e2

r2ce

N∑
n=1

(
b(1−(v⃗pn−v⃗e)

2/a2ep) − b(1−(v⃗en−v⃗e)
2/a2e)

)
r̂ce,

where:
N is the number of protons equal to the number of electrons in the atom,
r⃗e is the radius vector of position of the electron,
r⃗c is the radius vector of position of the mass centre of the atom,
r⃗pn is the radius vector of position of a proton No. n of the atom,
r⃗en is the radius vector of position of an electron No. n of the atom.

From the equations of (479) we obtain an equation of the motion of electron relatively
the mass centre of the atom:

Mme

(M +me)

dv⃗ec
dt

=
Ne2

r2ec

1

N

N∑
n=1

(
b(1−(v⃗ec−v⃗pnc)

2/a2ep) − b(1−(v⃗ec−v⃗enc)
2/a2e)

)
r̂ec, (480)

where:
M = N (me +mp) is the mass of atom,
v⃗ec is the velocity of electron relatively to the mass centre of atom,
v⃗pnc is the velocity of a proton No. n relatively to the mass centre of atom,
v⃗enc is the velocity of an electron No. n relatively to the mass centre of atom.
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We emphasise from the (480) the Qec function which determines the sign of forces
acting between the electron and the neutral atom:

Qec =
1

N

N∑
n=1

(
b(1−(v⃗ec−v⃗pnc)

2/a2ep) − b(1−(v⃗ec−v⃗enc)
2/a2e)

)
. (481)

Let us write down the Qec function (481) for interaction of electron and atom of hydrogen:

Qec = b

(
1−(v⃗ec−v⃗p1c)

2
/a2ep

)
− b

(
1−(v⃗ec−v⃗e1c)

2
/a2e

)
, (482)

where v⃗ec is the velocity of electron interacting with the atom relatively to the mass centre
of the atom of hydrogen, and v⃗e1c and v⃗p1c are correspondingly the velocity of electron
and the velocity of proton of the hydrogen atom relatively the mass centre of the atom.

Let us determine inequalities at which in the (482) Qec > 0:

vp1c + vec
aep

<
ve1c − vec

ae
, ve1c > vec. (483)

As follows from the (483), considering that mpvp1c = meve1c if:

vec < ve1c
mpaep −meae
mp(ae + aep)

, (484)

then the atom of hydrogen at the distance much longer than the distance between proton
and electron in the atom of hydrogen will repel the electron interacting with the atom.
As follows from the (483) and (482), while the magnitude of relative velocity of electron
and mass centre of the hydrogen atom decreases to zero, the magnitude of repulsion forces
between them will increase. From the (484) we obtain an additional limitation for neutral
relative velocities of particles:

mpaep > meae. (485)

Let us determine inequalities at which in the (482) Qec < 0:

vec − vp1c
aep

>
vec + ve1c

ae
, vec > vp1c. (486)

As follows from the (486), considering that mpvp1c = meve1c, if:

vec > ve1c
mpaep +meae
mp(ae − aep)

, (487)

then the atom of hydrogen at the distance much longer than the distance between proton
and electron in the atom of hydrogen will attract the electron interacting with the atom.

With vec >> ve1c, considering that the velocity of proton in the atom of hydrogen
relatively to the mass centre of atom is less than the velocity of electron relatively to the
mass centre of atom, the Qec (482) function will have the following form:

Qec = b(1−v2ec/a
2
ep) − b(1−v2ec/a

2
e). (488)

As follows from the (430), aep < ae. Thus, from the (488) we conclude:

vec >> ve1c, Qec < 0. (489)
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Therefore, if the velocity of electron relatively to the mass centre of the hydrogen atom is
much greater than the velocity of electron in the atom of hydrogen, then the electron and
the atom of hydrogen attract one another. As also follows from the (488), with the further
increase of relative velocity of the electron and the mass centre of atom of hydrogen the
magnitude of attraction forces between the electron and the atom of hydrogen will tend
to zero.

Based on the (484), (487) and (489), we can conclude that, considering all conditions
determined for the (484), (487) and (489):

1. With the magnitude of relative velocity of the electron and the mass centre of the
atom of hydrogen satisfying the conditions of (484):

vec < ve1c
mpaep −meae
mp(ae + aep)

,

the electron and the atom of hydrogen being at the distance much longer than the radius
of hydrogen atom will repel. If the magnitude of relative velocity of the electron and the
mass centre of the atom of hydrogen decreases to zero, then the magnitude of repulsion
forces between the electron and the atom of hydrogen will tend to a certain maximum
value.

2. With the magnitude of relative velocity of the electron and the mass centre of the
atom of hydrogen satisfying the conditions of (487):

vec > ve1c
mpaep +meae
mp(ae − aep)

,

the electron and the atom of hydrogen being at the distance much longer than the radius
of hydrogen atom will attract.

3. During the interaction between the electron and the mass centre of the atom
of hydrogen at the distance much longer than the radius of hydrogen atom, within the
range of magnitude of relative velocity of the electron and the mass centre of the atom of
hydrogen:

ve1c
mpaep −meae
mp(ae + aep)

≤ vec ≤ ve1c
mpaep +meae
mp(ae − aep)

, (490)

there will exist the values at which the magnitude of force acting between them will equal
to zero. At a certain value of magnitude of relative velocity of the electron and the mass
centre of the atom of hydrogen less than these values the electron and the hydrogen atom
will repel whereas at this value greater than those they will attract.

4. With the magnitude of relative velocity of the electron and the mass centre of the
atom of hydrogen satisfying the conditions of (489):

vec >> ve1c,

the electron and the atom of hydrogen will attract and the magnitude of forces acting
between them will tend to zero.

Let us consider the interaction between an electron and a neutral atom. For Qec

(481) we obtain conditions at which satisfaction Qec > 0:

vpnc + vec
aep

<
venc − vec

ae
, venc > vec, n = 1, 2, .., N. (491)
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Taking into account that in the (491) vpnc < ap/2 and venc > aep + ap/2 (please refer to
Chapter 17), we can rewrite conditions of (491) as follows:

ap/2 + vec
aep

<
aep + ap/2− vec

ae
, vec < aep + ap/2. (492)

After transformation of the (492) we come to the following conditions:

vec <
a2ep − ap(ae − aep)/2

ae + aep
, Qec > 0, (493)

from which we get an additional limitation for the values of neutral relative velocities of
particles:

ap <
2a2ep

ae − aep
. (494)

Thus, at the conditions of (493) and (494) the electron and the neutral atom will repel. As
also follows from the (492), as the relative velocity of the electron and the mass centre of
atom decreases to zero, repulsion forces between them will increase to a certain maximum
value.

For Qec (481) we obtain conditions at which Qec < 0:

vec − vpnc
aep

>
vec + venc

ae
, vec > vpnc, n = 1, 2, .., N. (495)

Considering that vpnc < ap/2 (please refer to Chapter 17), we will have from the (495):

vec >
vencaep + apae/2

ae − aep
, n = 1, 2, .., N. (496)

If we determine that vemc is the maximum magnitude of velocity of electrons in the atom
relatively to the mass centre of atom, then the following arises from the (496):

vec >
vemcaep + apae/2

ae − aep
, Qec < 0. (497)

Thus, at the conditions of (497) the electron and the neutral atom will attract.
Let us consider the interaction between an electron and a neutral atom at vec >> vemc.

In this case, considering that magnitudes of velocities of protons in atoms are less than
magnitudes of velocities of electrons, the following is obtained from the (481):

Qec = b(1−v2ec/a
2
ep) − b(1−v2ec/a

2
e). (498)

According to the (460) and (498), we can write down the following inequalities:

vec >> vemc, ae > 2aep + ap, Qec < 0. (499)

Therefore, the electron and the neutral atom with the magnitude of relative velocity of
the electron and the mass centre of the atom greater than the maximum magnitude of
velocity of electrons in the atom relatively to the mass centre of the atom will attract. As
also follows from the (498), with the further increase of relative velocity of the electron
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and the mass centre of the neutral atom, attraction forces between the electron and the
neutral atom will tend to zero.

Based on the (493), (497) and (499), considering all conditions determined for the
(493), (497) and (499), we can conclude the following:

1. If the magnitude of relative velocity of the electron and the mass centre of the
neutral atom satisfies to conditions of (493):

vec <
a2ep − ap(ae − aep)/2

ae + aep
,

then the electron and the neutral atom being at the distance much longer than the radius
of neutral atom will repel. As the magnitude of relative velocity of the electron and the
mass centre of neutral atom decreases to zero, the magnitude of repulsion forces between
the electron and the neutral atom will tend to a certain maximum value.

2. If the magnitude of relative velocity of the electron and the mass centre of the
neutral atom satisfies to conditions of (497):

vec >
vemcaep + apae/2

ae − aep
,

then the electron and the neutral atom being at the distance much longer than the radius
of neutral atom will attract.

3. During the interaction between the electron and the mass centre of the neutral
atom at the distance much longer than the radius of atom, within the range of magnitude
of relative velocity of the electron and the mass centre of the neutral atom:

a2ep − ap(ae − aep)/2

ae + aep
≤ vec ≤

vemcaep + apae/2

ae − aep
, (500)

there will exist the values at which the magnitude of force acting between them will equal
to zero. At a certain value of magnitude of relative velocity of the electron and the mass
centre of the neutral atom less than these values the electron and the neutral atom will
repel whereas at this value greater than those they will attract.

4. With the magnitude of relative velocity of the electron and the mass centre of the
neutral atom satisfying the conditions of (499):

vec >> vemc,

the magnitude of forces acting between them will tend to zero from the side of minus-
infinity.

If we presume that the Ramsauer effect (i.e., the phenomenon of anomalously faint
scattering of slow electrons by atoms of noble gases) is determined by interaction of
electron and neutral atom as described hereinabove, then the deep minimum of scattering
of electrons can be a consequence of magnitudes of forces, which values are close to
zero, acting between electrons and atoms relatively to which electrons are moving with
the certain magnitudes of velocities. Electrons with higher magnitudes of velocities will
scatter under the attraction to atoms. Electrons with lower magnitudes of velocities will
scatter under the repulsion from atoms.
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Let us consider the interaction between an electron and a positively charged ion with
the +Ze charge, at the distance much longer than the radius of ion. Proceeding from the
system of equations (7), for this case we will obtain the following:

me
dv⃗e
dt

=
e2

r2ec

N∑
n=1

(
b(1−(v⃗e−v⃗pn )

2/a2ep) − b(1−(v⃗e−v⃗en )
2/a2e)

)
r̂ec−

− e2

r2ec

(
Z −

Z∑
z=1

b(1−(v⃗e−v⃗pz )
2/a2ep)

)
r̂ec, (501)

((N + Z)mp +Nme)
dv⃗c
dt

=
e2

r2ce

N∑
n=1

(
b(1−(v⃗pn−v⃗e)

2/a2ep) − b(1−(v⃗en−v⃗e)
2/a2e)

)
r̂ce−

− e2

r2ce

(
Z −

Z∑
z=1

b(1−(v⃗pz−v⃗e)
2/a2ep)

)
r̂ce, (502)

where:
Z is the number of positive charges of ion.

We transform equations (501) and (502) into the equation of motion of electron
relatively to the mass centre of ion:

Mime

(Mi +me)

dv⃗ec
dt

=
Ne2

r2ec
Qeir̂ec, (503)

whereMi = (N + Z)mp+Nme is the mass of ion, andQei is determined by the expression:

1

N

N∑
n=1

(
b(1−(v⃗ec−v⃗pnc)

2/a2ep) − b(1−(v⃗ec−v⃗enc)
2/a2e)

)
− Z

N
+

1

N

Z∑
z=1

b(1−(v⃗ec−v⃗pzc)
2/a2ep). (504)

From the (504) we obtain the system of inequalities upon fulfilment of which Qei > 0:

vpnc + vec
aep

<
venc − vec

ae
, venc > vec, n = 1, 2, .., N, (505)

vpzc + vec
aep

< 1, z = 1, 2, .., Z. (506)

Inequalities of (505) coincide with those of (491), and thus, it follows from the (505):

vec <
a2ep − ap(ae − aep)/2

ae + aep
. (507)

With vpzc < ap/2 (please refer to Chapter 17), from the (506) we can determine the
following:

vec < aep − ap/2. (508)

The inequality (507) for vec is stricter than the inequality (508):

a2ep − ap(ae − aep)/2

ae + aep
< aep − ap/2. (509)
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Thus, the conditions at which Qei > 0 will be those of (507). Therefore, with the values
of magnitude of relative velocity of the electron and the mass centre of ion satisfying
conditions of (507), the electron and the ion repel, and as their relative velocity decreases,
the magnitude of repulsion forces between them will increase.

From the (504) we obtain the system of inequalities upon fulfilment of which Qei < 0:

vec − vpnc
aep

>
vec + venc

ae
, vec > vpnc, n = 1, 2, .., N, (510)

vec − vpzc
aep

> 1, vec > vpzc, z = 1, 2, .., Z. (511)

Inequalities of (510) coincide with those of (495), and thus, it follows from the (510):

vec >
vemcaep + apae/2

ae − aep
, (512)

where vemc is the maximum magnitude of velocity of electrons in the ion relatively to the
mass centre of ion. Proceeding from (511), with vpzc < ap/2 (please refer to Chapter 17),
we can determine the following:

vec > aep + ap/2. (513)

We form an equality from the (513) and (512):

vemcaep + apae/2

ae − aep
= aep + ap/2, (514)

from which we determine the following:

vemc = ae − aep − ap/2. (515)

From the (515), (513) and (512) arise the first system of inequalities:

vemc ≥ ae − aep − ap/2, vec >
vemcaep + apae/2

ae − aep
, Qei < 0, (516)

and the second:

vemc < ae − aep − ap/2, vec > aep + ap/2, Qei < 0. (517)

Therefore, with the values of magnitude of relative velocity of the electron and the mass
centre of ion satisfying either conditions of (516) or conditions of (517), the electron and
the ion attract.

If vec >> venc, with n = 1, 2, .., N from the (504) we obtain the following:

Qei = b(1−v2ec/a
2
ep) − b(1−v2ec/a

2
e) − Z

N

(
1− b(1−v2ec/a

2
ep)
)
. (518)

In the (518) ae > aep, vec > aep, and thus:

b(1−v2ec/a
2
ep) < b(1−v2ec/a

2
e), 1 > b(1−v2ec/a

2
ep). (519)
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From the (518) and (519) we conclude the following:

vec >> vemc, Qei < 0. (520)

Therefore, the electron and the ion with the magnitude of relative velocity of the electron
and the mass centre of ion much greater than the maximum magnitude of velocity of
electrons in ion will attract, and with the further increase of their relative velocity this
attraction will be approximately described by the Coulomb law since in this case Qei →
−Z/N . And the (503) will look as follows:

Mime

(Mi +me)

dv⃗ec
dt

= −Ze2

r2ec
r̂ec.

From (507), (516), (517) and (520) we can conclude the following:
1. With the value of magnitude of relative velocity of the electron and the mass

centre of ion satisfying conditions of (507):

vec <
a2ep − ap(ae − aep)/2

ae + aep
,

the electron and the ion being at the distance much longer than the radius of ion will
repel, and as the magnitude of their relative velocity decreases to zero, the magnitude of
repulsion forces between them will increase to the certain maximum value.

2. With the value of the maximum magnitude of velocity of electrons in the ion
relatively the mass centre of ion (vemc) and the value of magnitude of relative velocity of
the electron and the mass centre of ion (vec) satisfying either conditions of (516):

vemc ≥ ae − aep − ap/2, vec >
vemcaep + apae/2

ae − aep
,

or conditions of (517):

vemc < ae − aep − ap/2, vec > aep + ap/2,

the electron and the ion being at the distance much longer than the radius of ion will
attract.

3. During the interaction of the electron and the ion being at the distance much
longer than the radius of ion, either within the range of the value of magnitude of relative
velocity of the electron and the mass centre of ion:

a2ep − ap(ae − aep)/2

ae + aep
≤ vec ≤

vemcaep + apae/2

ae − aep
, (521)

at:
vemc ≥ ae − aep − ap/2,

or within the following range:

a2ep − ap(ae − aep)/2

ae + aep
≤ vec ≤ aep + ap/2, (522)
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at:

vemc < ae − aep − ap/2,

there will exist the values at which the magnitude of force acting between them will equal
to zero. With the certain value of magnitude of relative velocity of the electron and the
mass centre of ion less than these values the electron and the ion will repel whereas at
the value greater than these values they will attract.

4. With the value of magnitude of relative velocity of the electron and the mass
centre of ion satisfying conditions of (520):

vec >> vemc,

the electron and the ion being at the distance much greater than the radius of ion will
attract, and as the magnitude of their relative velocity increases, this attraction will be
approximately described by the Coulomb law.

Let us consider the interaction of a proton and a neutral atom. At that we determine
that the distance between the proton and the mass centre of atom is much greater than
the radius of atom. Proceeding from the (7), we obtain the following system of equations:

mp
dv⃗p
dt

=
e2

r2pc

N∑
n=1

(
b(1−(v⃗p−v⃗en )

2/a2ep) − b(1−(v⃗p−v⃗pn )
2/a2p)

)
r̂pc, (523)

N (me +mp)
dv⃗c
dt

=
e2

r2cp

N∑
n=1

(
b(1−(v⃗p−v⃗en )

2/a2ep) − b(1−(v⃗p−v⃗pn )
2/a2p)

)
r̂cp,

where:
N is the number of protons equal to the number of electrons in the atom,
r⃗p is the radius vector of position of the proton,
r⃗c is the radius vector of position of the mass centre of the atom,
r⃗pn is the radius vector of position of a proton No. n of the atom,
r⃗en is the radius vector of position of an electron No. n of the atom.

From the equations of (523) we obtain an equation of motion of the proton relatively
the mass centre of the atom:

Mmp

(M +mp)

dv⃗pc
dt

=
Ne2

r2pc

1

N

N∑
n=1

(
b(1−(v⃗pc−v⃗enc)

2/a2ep) − b(1−(v⃗pc−v⃗pnc)
2/a2p)

)
r̂pc, (524)

where:
M = N (me +mp) is the mass of atom,
v⃗pc is the velocity of proton relatively to the mass centre of atom,
v⃗pnc is the velocity of a proton No. n relatively to the mass centre of atom,
v⃗enc is the velocity of an electron No. n relatively to the mass centre of atom.

We emphasise from the (524) the Qpc function which determines the sign of forces
acting between the proton and the neutral atom:

Qpc =
1

N

N∑
n=1

(
b(1−(v⃗pc−v⃗enc)

2/a2ep) − b(1−(v⃗pc−v⃗pnc)
2/a2p)

)
, (525)
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Proceeding from the (525), we determine conditions at which Qpc < 0:

venc − vpc
aep

>
vpnc + vpc

ap
, venc > vpc, n = 1, 2, .., N. (526)

Considering that venc > aep + ap/2 and vpnc < ap/2 with n = 1, 2, .., N (please refer to
Chapter 17), we can rewrite the (526) as follows:

aep + ap/2− vpc
aep

>
ap/2 + vpc

ap
, (527)

and obtain from the (527):

vpc <
ap
2
, Qpc < 0. (528)

Thus, at the conditions of (528) the neutral atom attracts the proton, and as follows from
the (526), as the relative velocity of proton and mass centre of the neutral atom decreases
to zero, the magnitude of attraction forces between them will tend to the maximum value.

Proceeding from the (525), we determine conditions at which Qpc > 0:

vpc − vpnc
ap

>
vpc + venc

aep
, vpc > vpnc, n = 1, 2, .., N. (529)

Upon the condition that vpnc < ap/2, we can rewrite the (529) as follows:

vpc − ap/2

ap
>

vpc + venc
aep

, vpc > ap/2, n = 1, 2, .., N. (530)

Being transformed, the (530) provides the following:

vpc > ap
aep/2 + venc
aep − ap

, n = 1, 2, .., N, Qpc > 0. (531)

If we determine that vemc is the maximum magnitude of velocity of electrons in the atom
relatively to the mass centre of the atom, then it follows from the (531):

vpc > ap
aep/2 + vemc

aep − ap
, Qpc > 0. (532)

Thus, upon satisfying conditions of (532), the neutral atom and the proton repel. In case
of vpc >> vemc, from the (525) we obtain the following:

Qec = b(1−v2pc/a
2
ep) − b(1−v2pc/a

2
p). (533)

From the (533), the following conditions arise:

vpc >> vemc, ap << aep, Qpc > 0, (534)

and with the further increase of the magnitude of relative velocity of the proton and the
mass centre of the atom, the Qpc will tend to zero from the side of plus-infinity.

From (528), (532) and (534) we can conclude the following:
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1. The proton and the neutral atom being at the distance much longer than the
radius of atom, upon satisfying the condition (528):

vpc <
ap
2
,

will attract. As the relative velocity of proton and mass centre of the neutral atom de-
creases to zero, the magnitude of attraction forces between them will tend to the maximum
value.

2. The proton and the neutral atom being at the distance much longer than the
radius of atom, upon satisfying the condition (532):

vpc > ap
aep/2 + vemc

aep − ap
,

will repel.
3. During the interaction of the proton and the neutral atom being at the distance

much longer than the radius of atom, within the range of the value of magnitude of relative
velocities of the proton and the mass centre of the neutral atom:

ap
2

≤ vpc ≤ ap
aep/2 + vemc

aep − ap
, (535)

there will exist the values of magnitude of relative velocities of the proton and the mass
centre of the neutral atom at which the magnitude of force acting between them will equal
to zero. With the certain value of magnitude of relative velocity of the proton and the
mass centre of the neutral atom less than these values the proton and the neutral atom
will attract whereas at the value greater than these values they will repel.

4. Upon the condition of (534):

vpc >> vemc,

the magnitude of the repulsion force between the proton and the neutral atom will tend
to zero from the side of plus-infinity.

Let us consider the interaction between a proton and a positively charged ion with
the +Ze charge, at the distance much longer than the radius of ion. Proceeding from the
system of equations (7), for this case we will obtain the following:

mp
dv⃗p
dt

=
e2

r2pc

N∑
n=1

(
b(1−(v⃗p−v⃗en )

2/a2ep) − b(1−(v⃗p−v⃗pn )
2/a2p)

)
r̂pc+

+
e2

r2pc

(
Z −

Z∑
z=1

b(1−(v⃗p−v⃗pz )
2/a2p)

)
r̂pc, (536)

((N + Z)mp +Nme)
dv⃗c
dt

=
e2

r2cp

N∑
n=1

(
b(1−(v⃗en−v⃗p)

2/a2ep) − b(1−(v⃗pn−v⃗p)
2/a2p)

)
r̂cp+

+
e2

r2cp

(
Z −

Z∑
z=1

b(1−(v⃗pz−v⃗p)
2/a2p)

)
r̂cp, (537)
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where:
Z is the number of positive charges of ion.

We transform equations (536) and (537) into the equation of motion of proton rela-
tively to the mass centre of ion:

Mimp

(Mi +mp)

dv⃗pc
dt

=
Ne2

r2pc
Qpir̂pc, (538)

whereMi = (N + Z)mp+Nme is the mass of ion, andQpi is determined by the expression:

1

N

N∑
n=1

(
b(1−(v⃗pc−v⃗enc)

2/a2ep) − b(1−(v⃗pc−v⃗pnc)
2/a2p)

)
+

Z

N
− 1

N

Z∑
z=1

b(1−(v⃗pc−v⃗pzc)
2/a2p). (539)

From the (539) we obtain the system of inequalities upon fulfilment of which Qpi < 0:

venc − vpc
aep

>
vpnc + vpc

ap
, venc > vpc, n = 1, 2, .., N, (540)

vpzc + vpc
ap

< 1, z = 1, 2, .., Z. (541)

Inequalities of (540) coincide with those of (526), and thus, it follows from the (540):

vpc <
ap
2
, Qpc < 0, (542)

Taking into account that in the (541) vpzc < ap/2 (please refer to Chapter 17), from the
(541) we obtain the following:

vpc <
ap
2
, Qpc < 0. (543)

Therefore, at vpc < ap/2 the proton and the ion being at the distance much longer than
the radius of ion will attract. And as the magnitude of relative velocity of the proton and
the mass centre of ion approaches zero, the magnitude of force acting between them will
tend to the certain maximum value.

Further on, from the (539) we obtain the system of inequalities upon fulfilment of
which Qpi > 0:

vpc + venc
aep

<
vpc − vpnc

ap
, vpc > vpnc, n = 1, 2, .., N, (544)

vpc − vpzc
ap

> 1, z = 1, 2, .., Z. (545)

Proceeding from the (544) and (545), upon the conditions of vpnc < ap/2 and vpzc < ap/2,
we have the following:

vpc > ap
aep/2 + venc
aep − ap

, n = 1, 2, .., N, (546)

vpc > 3
ap
2
. (547)
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If vemc is the maximum magnitude of velocity of electrons in the ion, then we can rewrite
the (546) as follows:

vpc > ap
aep/2 + vemc

aep − ap
. (548)

From the condition of vemc > aep + ap/2 (462) arises the following:

ap
aep/2 + vemc

aep − ap
>

3

2
ap, (549)

and from the (549), (548) and (547) the following:

vpc > ap
aep/2 + vemc

aep − ap
, Qpi > 0. (550)

Thus, upon conditions of (550), the proton and the ion being at the distance much longer
than the radius of ion repel.

Let us consider the (539) at vpc >> vemc:

Qpi =
1

N

N∑
n=1

(
b(1−v2pc/a

2
ep) − b(1−v2pc/a

2
p)
)
+

Z

N
− 1

N

Z∑
z=1

b(1−v2pc/a
2
p). (551)

In the (551) vpc >> aep, and aep >> ap, and thus:

b(1−v2pc/a
2
ep) > b(1−v2pc/a

2
p), b(1−v2pc/a

2
p) < 1. (552)

Therefore, as follows from the (552) and (551):

vpc >> vemc, Qpi > 0. (553)

Under the conditions of (553) the proton and the ion being at the distance much longer
than the radius of ion repel, and with the further increase of relative velocity of the proton
and the mass centre of ion, repulsion forces acting between them will be approximately
described by the Coulomb law since in this case Qpi → Z/N . And the (538) will look as
follows:

Mimp

(Mi +mp)

dv⃗pc
dt

=
Ze2

r2pc
r̂pc.

From (543), (550) and (553) we can conclude the following:
1. The proton and the ion being at the distance much longer than the radius of ion,

upon the condition of (543):

vpc <
ap
2
,

will attract. As the magnitude of relative velocity of the proton and the mass centre of
ion decreases to zero, the magnitude of attraction force between them will tend to the
maximum value.

2. The proton and the ion being at the distance much longer than the radius of ion
and upon the condition of (550):

vpc > ap
aep/2 + vemc

aep − ap
,
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will repel.
3. During the interaction of the proton and the ion being at the distance much longer

than the radius of ion, within the range of values of magnitudes of relative velocities of
the proton and the mass centre of ion:

ap
2

≤ vpc ≤ ap
aep/2 + vemc

aep − ap
, (554)

there will exist the values of magnitudes of relative velocities of the proton and the mass
centre of ion at which the magnitude of force acting between them will equal to zero.
With the certain value of magnitude of relative velocity of the proton and the mass centre
of ion less than these values the proton and the ion will attract whereas at the value
greater than these values they will repel.

4. Upon the condition of (553):

vpc >> vemc,

the repulsion forces between the proton and the ion being at the distance much longer
than the radius of ion will be approximately described by the Coulomb law.

As follows from the conclusions made for the interaction of both electron and proton
with the neutral atom and positively charged ion, all these interactions have the ranges
of relative velocities within which the electron or the proton and the neutral atom, the
electron or the proton and the ion attract, repel and do not interact. The difference of
these interaction, first, is so that the magnitude of interaction forces of electron or proton
with the neutral atom is less than the magnitude of forces of their interaction with ion;
second, as the value of magnitude of relative velocity of electron or proton and the neutral
atom increases to the certain value, the magnitude of force acting between them tends to
zero, whereas while the value of magnitude of relative velocity of electron or proton and
the ion increases to the certain value, their interaction can be approximately described
by the Coulomb law.

Conclusions of this chapter allow for making three presumptions:
1. A separated volume of electrons which electrons have the maximum magnitudes

of velocities relatively to the mass centre of volume less than the certain value should
possess the effect of attenuation of gravitational interaction with the volume of neutral
atoms at the distance much longer than the maximum radius of volumes.

2. A separated volume of protons which protons have the minimum magnitudes of
velocities relatively to the mass centre of volume greater than the certain value should
possess the effect of attenuation of gravitational interaction with the volume of neutral
atoms at the distance much longer than the maximum radius of volumes.

3. Effects of attenuation of gravitational interaction should depend on the magnitude
of velocity of the mass centre of the volume of like particles relatively to the mass centre
of the volume of neutral atoms and on the magnitudes of velocities of motion of neutral
atoms in the volume.

22 Thermo-electrical phenomena

If there is a temperature gradient in the volume of neutral atoms, then, according to
PPST, at certain conditions there will exist an electromotive force acting on free charged
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particles in this volume. It follows from conclusions of consideration of interaction of both
single electron and single proton with the neutral atom in Chapter 21. These conclusions
can be applied to the qualitative description of such thermo-electrical phenomena as the
Seebeck effect, the Peltier effect, the Thomson effect and inversion of thermo-current
according to the Avenarius law.

Let us consider the force acting on a free charged particle located at the boundary of
contact of two equal volumes of neutral atoms: atoms in the volumes are the same and are
in the same conditions, volumes are equal and densities of atoms in all points of volumes
are also equal. In this case the magnitude of resulting force acting on the free charged
particle from all atoms of volumes will equal to zero. If the temperature of the first volume
starts to increase whereas in the second volume it remains unchanged, then, according
to conclusions of the previous chapter, with the increase of relative velocities of mass
centres of atoms in the first volume relatively the free charged particle, the magnitude
of force acting on this particle will change, whereas the magnitude of force acting from
atoms of the second volume will remain the same. Let us call the first volume where the
temperature increases hot, and the second where the temperature does not change cold.

Let us consider the force acting on an electron located at the boundary of contact of
two equal volumes of neutral atoms determined hereinabove. If the initial temperature of
volumes is so that the magnitudes of velocities of the electron relatively to mass centres
of atoms of volumes satisfy conditions of (493):

vec <
a2ep − ap(ae − aep)/2

ae + aep
, (555)

where vec are the magnitudes of velocities of the electron relatively to mass centres of
atoms of volumes, then both volumes will repel the electron with equal forces. As the
temperature of the first volume rises, velocities of mass centres of atoms in it relatively to
the electron will increase. Thus, the magnitude of repulsion force acting on the electron
from the side of atoms of hot volume will decrease, and the resulting force acting on the
electron will be directed from the cold volume to the hot. The cold volume will repel the
electron stronger than the hot. Upon the further rise of temperature of hot volume, the
magnitude of force acting on the electron from the side of hot volume will become equal
to zero, and the electron will be affected by the repulsion force from the cold volume only.
Further on, as the temperature rises, the hot volume will begin to attract the electron,
and the electron will be affected by the attraction force from the hot volume and the
repulsion force from the cold one. As the attraction force of the hot volume reaches the
maximum, the resulting force acting on the electron will also possess the maximum value.
With the further increase of the temperature, the magnitude of resulting force will start
to decrease but the force will always act along the direction from the cold volume to the
hot.

If the initial temperature of volumes will be so that the magnitudes of velocities of
the electron relatively to mass centres of atoms of volumes satisfy the conditions of (497):

vec >
vemcaep + apae/2

ae − aep
, (556)

where vemc is the maximum magnitude of velocity of electrons in atoms of volumes, then
both volumes will attract the electron with equal forces, and the resulting force acting
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on the electron will equal to zero. As the temperature of the first volume rises, velocities
of mass centres of atoms in it relatively to the electron will increase. If initial relative
velocities of the electron and mass centres of atoms of volumes upon conditions of (556)
will be so that the magnitudes of forces of attraction of the electron by volumes of atoms
under the rise of temperatures of volumes will increase, then the magnitude of attraction
force acting on the electron from the side of atoms of hot volume will increase, and the
resulting force acting on the electron will be directed from the cold volume to the hot.
The hot volume will attract the electron stronger than the cold. Upon the further rise of
temperature of hot volume, the magnitude of force acting on the electron from the side
of hot volume will reach the maximum, and the resulting force acting on the electron will
also possess the maximum value. It will be the result of action of the constant attraction
force of the cold volume and the maximum attraction force of the hot one. With the
further increase of the temperature, the magnitude of force acting from the side of the
hot volume will start to decrease, and once this force becomes equal in modulus to the
attraction force acting from the side of cold volume, the resulting force acting on the
electron will equal to zero. Further on, as the temperature rises, the force from the hot
volume will decrease and the resulting force acting on the electron will change is direction
to the opposite. The cold volume will attract the electron stronger than the hot. The
electron will be affected by the force acting along the direction from the hot volume to
the cold.

Let us consider the force acting on a proton located at the boundary of contact of
two equal volumes of neutral atoms determined hereinabove. If the initial temperature of
volumes is so that the magnitudes of velocities of the proton relatively to mass centres of
atoms of volumes satisfy conditions of (528):

vpc <
ap
2
, (557)

where vpc are the magnitudes of velocities of the proton relatively to mass centres of
atoms of volumes, then both volumes will attract the proton with equal forces. As the
temperature of the first volume rises, velocities of mass centres of atoms in it relatively
to the proton will increase. Thus, the magnitude of attraction force acting on the proton
from the side of atoms of hot volume will decrease, and the resulting force acting on the
proton will be directed from the hot volume to the cold. The cold volume will attract the
proton stronger than the hot. Upon the further rise of temperature of hot volume, the
magnitude of force acting on the proton from the side of hot volume will become equal to
zero, and the proton will be affected by the attraction force from the cold volume only.
Further on, as the temperature rises, the hot volume will begin to repel the proton, and
the proton will be affected by the repulsion force from the hot volume and the attraction
force from the cold one. As the repulsion force of the hot volume reaches the maximum,
the resulting force acting on the proton will also possess the maximum value. With the
further increase of the temperature, the magnitude of resulting force will start to decrease
but the force will always act along the direction from the hot volume to the cold.

If the initial temperature of volumes will be so that the magnitudes of velocities of
the proton relatively to mass centres of atoms of volumes satisfy the conditions of (532):

vpc > ap
aep/2 + vemc

aep − ap
. (558)
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where vemc is the maximum magnitude of velocity of electrons in atoms of volumes, then
both volumes will repel the proton with equal forces, and the resulting force acting on the
proton will equal to zero. As the temperature of the first volume rises, velocities of mass
centres of atoms in it relatively to the proton will increase. If initial relative velocities
of the proton and mass centres of atoms of volumes upon conditions of (558) will be so
that the magnitudes of forces of repulsion of the proton by volumes of atoms under the
rise of temperatures of volumes will increase, then the magnitude of repulsion force acting
on the proton from the side of atoms of hot volume will increase, and the resulting force
acting on the proton will be directed from the hot volume to the cold. The hot volume
will repel the proton stronger than the cold. Upon the further rise of temperature of hot
volume, the magnitude of force acting on the proton from the side of hot volume will
reach the maximum, and the resulting force acting on the proton will also possess the
maximum value. It will be the result of action of the constant repulsion force of the cold
volume and the maximum repulsion force of the hot one. With the further increase of
the temperature, the magnitude of force acting from the side of the hot volume will start
to decrease, and once this force becomes equal in modulus to the repulsion force acting
from the side of cold volume, the resulting force acting on the proton will equal to zero.
Further on, as the temperature rises, the force from the hot volume will decrease and the
resulting force acting on the proton will change is direction to the opposite. The cold
volume will repel the proton stronger than the hot. The proton will be affected by the
force acting along the direction from the cold volume to the hot.

If a free charged particle located between two volumes will be affected by an external
electromotive force not outgoing from atoms of volumes, then, as the direction of this
force is coincident to that of resulting force acting on the free charged particle from the
volumes, the kinetic energy of the particle will be the sum of kinetic energies provided to
the particle by the external force and by the volumes of atoms. Thus, particles of atoms
of the volumes will lose their kinetic energy, and the temperature of volumes will decrease.

If a free charged particle located between two volumes will be affected by an external
electromotive force not outgoing from atoms of volumes, then, as the direction of this force
is opposite to that of resulting force acting on the free charged particle from the volumes,
the kinetic energy of the particle will be the difference of kinetic energies provided to the
particle by the external force and by the volumes of atoms. Thus, particles of atoms of
the volumes will increase their kinetic energy, and the temperature of volumes will rise.

In common case the resulting force acting on the free charged particle located between
two volumes of neutral atoms will depend not only on temperatures of volumes but also
on the differences of atoms of the first and second volumes (the number and magnitudes
of velocities of particles in atoms), on the orientation of atoms in crystal lattices of the
volumes (orientation of rotation vectors of particles in the volume of atoms), and on
the distribution of density of atoms in the volumes (gradients of density of atoms in the
volumes). This resulting force will also depend on the quantity, density and velocities
of free charged particles in the volumes, both relatively to the volumes and relatively
to one another. Therefore, the hereinabove description of thermo-electrical phenomena
within the frame of PPST is the approximate, qualitative description of these phenomena.
Nevertheless, general results of physical experiments related to the thermo-electricity
[25, 26] match the PPST conclusions.

Conclusions of PPST are applicable to consideration of thermo-electrical phenomena
in superconductors. Based on the description of interaction of the electron and the vol-
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umes of atoms at the low relative velocities, when the volumes repel the electron at initial
temperatures, one can conclude that the thermo-current at low temperatures should reach
the maximum values in the case when the cold volume of atoms repels the electron and
the hot one attracts it.

23 Electrification of volumes of neutral atoms

Electrification of volumes of neutral atoms can be both a consequence of thermo-electrical
phenomena considered in the previous chapter and a consequence of physical difference
of electrifying volumes of atoms (quantities and magnitudes of velocities of particles in
atoms, orientation of rotation vectors of particles in the volume of atoms, gradients of
density in volumes).

Let us consider the first volume of neutral atoms; it is located in a volume containing
free charged particles. We presume that the first volume of neutral atoms upon initial
conditions does not contain free charged particles. We also presume that the first volume
of neutral atoms attracts free charged particles of the external volume, and as these
particles enter the volume of neutral atoms, they are still attracted by the atoms of
volume. The number of free particles in the first volume of neutral atoms will increase
to the moment until attraction forces between particles of external volume and the first
volume of neutral atoms, pressure forces in the volume of free particles entered the first
volume of neutral atoms from the external volume, and attraction or repulsion forces
between the volume of free particles located inside the first volume of neutral atoms and
free particles of external volume, come to equilibrium. From this moment of time the
first volume of neutral atoms containing a certain number of charged particles can be
considered electrically neutral relatively to the external volume since there will be no
electromotive force between the first and the external volumes – the sum of pressure
forces, attraction and repulsion forces acting on free charged particles of external volume
from the side of first volume of neutral atoms and free charged particles located inside it
will equal to zero.

Let us consider the second volume of neutral atoms. We presume that the second
volume is located in the same volume as the first one, but the first and the second volumes
are at the distance between one another at which interaction forces between them can
be counted as equal to zero. Let us assume that the second volume of neutral atoms
upon initial conditions does not contain free charged particles. We also presume that the
second volume of neutral atoms attracts free charged particles of the external volume,
and as these particles enter the volume of neutral atoms, they are still attracted by the
atoms of volume. The number of free particles in the second volume of neutral atoms
will increase to the moment until the second volume as well as the first one considered
hereinabove becomes electrically neutral relatively to the external volume.

Let us bring the first and the second volumes of neutral atoms with certain numbers of
free charged particles located inside them as close to one another as their edges contact. If
due to some physical process (e.g., changing of temperatures of volumes, changing of their
densities, etc.) the balance of forces acting from the side of the volumes of neutral atoms
and charged particles inside them on a single free charged particle at the boundary of
contact of volumes is disturbed, then an electromotive force will appear at this boundary
and will start to move free charged particles from one volume to another. In one volume
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the quantity of free charged particles will decrease whereas in another one it will increase.
If due to this process the neutrality of volumes regarding the external volume is disrupted,
volumes will begin to restore their neutrality. Further on, if we bring the first and the
second volumes apart at the initial distance before the moment when the volumes become
neutral relatively to external volume, then there will exist electromotive forces between
the external volume and separated volumes. The separated volumes in this case will be
of two types:
1. the volume with the excess of charged particles relatively to the neutral state with
external volume;
2. the volume with the lack of charged particles relatively to the neutral state with
external volume.

There will be the electromotive force between the volume with the excess of charged
particles and the external volume acting on a free charged particles located in the external
volume and directed from the volume with the excess of charged particles to the external
volume.

There will be the electromotive force between the volume with the lack of charged
particles and the external volume acting on a free charged particles located in the external
volume and directed from the external volume to the volume with the lack of charged
particles.

Therefore, the process of electrification of two volumes of neutral atoms in PPST
is determined by the electromotive force acting on a free charged particle located at the
boundary of contact of two volumes of neutral atoms. This electromotive force is the sum
of four forces: two forces acting from the volumes of neutral atoms, and two forces acting
from the charged particles located inside the volumes of neutral atoms.

24 Interaction between a proton and an electrically

neutral volume of particles

Let us consider the interaction between a proton and an electrically neutral volume of
particles (the numbers of negative and positive charges in the volume are equal) – it can
be either the volume of neutral atoms or the volume of a neutral plasma or the volume
containing both neutral atoms and the neutral plasma. Proceeding from the system of
equations of motion of particles (7), we obtain the equation of motion of the proton
relatively to the mass centre of neutral volume of particles:

Mmp

(M +mp)

dv⃗pc
dt

= e2
N∑

n=1

(
r̂ppn
r2ppn

(
1− b(1−(v⃗pc−v⃗pnc)

2/a2p)
)
− r̂pen

r2pen

(
1− b(1−(v⃗pc−v⃗enc)

2/a2ep)
))

,

(559)
where:
N is the number of electrons equal to the number of protons in the neutral volume of
particles,
M = N (me +mp) is the mass of the neutral volume of particles,
r⃗ppn is the radius vector of position of the proton relatively to a proton No. n of the
neutral volume of particles,
r⃗pen is the radius vector of position of the proton relatively to an electron No. n of the
neutral volume of particles,
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v⃗pc is the velocity of proton relatively to the mass centre of the neutral volume of particles,
v⃗pnc is the velocity of a proton No. n of the neutral volume of particles relatively to the
mass centre of the neutral volume of particles,
v⃗enc is the velocity of an electron No. n of the neutral volume of particles relatively to
the mass centre of the neutral volume of particles.

Let us split the volume occupied by the neutral volume of particles into K of smaller
volumes each of which containing the number of electrons equal to the number of protons
- Nk (

∑K
k=1Nk = N). From the (559) we emphasise the Q⃗pck functions which determines

the signs of forces and unit vectors of forces acting between the proton and a small volume
No. k:

Q⃗pck =
r2pck
Nk

Nk∑
nk=1

(
r̂ppnk

r2ppnk

(
1− b

(
1−(v⃗pc−v⃗pnk

c)
2
/a2p

))
−

r̂penk

r2penk

(
1− b

(
1−(v⃗pc−v⃗enk

c)
2
/a2ep

)))
,

(560)
k = 1, 2, .., K,

where r⃗pck is the radius vector of position of the proton relatively to the mass centre of
the small volume of particles No. k, and v⃗enk

c and v⃗pnk
c are correspondingly the velocity

of an electron No. n and a proton No. n of the volume of particles No. k relatively to
the mass centre of the mutual volume of particles including all K smaller volumes. Let
us determine the dimensions of small volumes so that the maximum distances between
particles in each of K small volumes will be much less than the distances between their
mass centres and the proton. Then we can rewrite the (560) as follows:

Q⃗pck =
1

Nk

Nk∑
nk=1

(
b

(
1−(v⃗pc−v⃗enk

c)
2
/a2ep

)
− b

(
1−(v⃗pc−v⃗pnk

c)
2
/a2p

))
r̂pck , k = 1, 2, .., K. (561)

Using the (561), we rewrite the (559) as follows:

Mmp

(M +mp)

dv⃗pc
dt

=
K∑
k=1

Nke
2

r2pck
Qpck r̂pck , (562)

Qpck =
1

Nk

Nk∑
nk=1

(
b

(
1−(v⃗pc−v⃗enk

c)
2
/a2ep

)
− b

(
1−(v⃗pc−v⃗pnk

c)
2
/a2p

))
, k = 1, .., K. (563)

We presume that the following conditions will fulfil for electrons in each of K small
volumes at any moment of time:

venk
c ̸= 0, nk = 1k, 2k, .., Nk, k = 1, 2, .., K, (564)

and particles in volumes can be grouped so that the following conditions would fulfil as
well:

0 < ve1k cap − vp1k caep ≤ ve2k cap − vp2k caep ≤ ... ≤ veNk
cap − vpNk

caep, (565)

nk = 1k, 2k, .., Nk, k = 1, 2, .., K.

Then conditions at which the proton and small volumes No. k attract will be determined
by the inequalities:

vesk c − vpc

aep
>

vpsk c + vpc

ap
, vesk c > vpc, k = 1, 2, .., K, (566)
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which lead to the following:

vpc <
vesk cap − vpsk caep

aep + ap
, Qpck < 0, k = 1, 2, .., K. (567)

Expressions vesk cap − vpsk caep in the (567) are the certain parts of inequalities of (565)
at which the (567) are fulfilled. In other words, if the following inequalities fulfil for the
(563):

Nk∑
nk=sk

(
b

(
1−(v⃗pc−v⃗enk

c)
2
/a2ep

)
− b

(
1−(v⃗pc−v⃗pnk

c)
2
/a2p

))
< 0, k = 1, 2, .., K,

|
Nk∑

nk=sk

(
b

(
1−(v⃗pc−v⃗enk

c)
2
/a2ep

)
− b

(
1−(v⃗pc−v⃗pnk

c)
2
/a2p

))
| >

> |
sk−1∑
nk=1

(
b

(
1−(v⃗pc−v⃗enk

c)
2
/a2ep

)
− b

(
1−(v⃗pc−v⃗pnk

c)
2
/a2p

))
|,

then the conditions of (567) will also fulfil.
Let us presume that each of K small volumes of particles can be grouped at any

moment of time as we did it for the (565) so that the following conditions would fulfil:

0 < ve1k cap + vp1k caep ≤ ve2k cap + vp2k caep ≤ ... ≤ veNk
cap + vpNk

caep, (568)

nk = 1k, 2k, .., Nk, k = 1, 2, .., K.

(The numbering of particles in the (568) may not match that of the (565)). Then condi-
tions at which the proton and small volumes of particles No. k repel will be determined
by inequalities:

vpc − vplk c

ap
>

vpc + velk c

aep
, vpc > vplk c, k = 1, 2, .., K. (569)

which lead to the following:

vpc >
velk cap + vplk caep

aep − ap
, Qpck > 0, k = 1, 2, .., K. (570)

Expressions velk cap + vplk caep in the (570) are the certain parts of inequalities of (568)
at which the (570) are fulfilled. In other words, if the following inequalities fulfil for the
(563):

lk∑
nk=1

(
b

(
1−(v⃗pc−v⃗enk

c)
2
/a2ep

)
− b

(
1−(v⃗pc−v⃗pnk

c)
2
/a2p

))
> 0, k = 1, 2, .., K,

|
lk∑

nk=1

(
b

(
1−(v⃗pc−v⃗enk

c)
2
/a2ep

)
− b

(
1−(v⃗pc−v⃗pnk

c)
2
/a2p

))
| >
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> |
Nk∑

nk=lk+1

(
b

(
1−(v⃗pc−v⃗enk

c)
2
/a2ep

)
− b

(
1−(v⃗pc−v⃗pnk

c)
2
/a2p

))
|,

then the conditions of (570) will also fulfil.
If vescap − vpscaep is the minimum value of all vesk cap − vpsk caep and velcap + vplcaep is

the maximum value of all velk cap + vpslcaep for all K small volumes in the neutral volume
of particles, then the following conditions will fulfil:

vpc <
vescap − vpscaep

aep + ap
, Qpck < 0, k = 1, 2, .., K. (571)

vpc >
velcap + vplcaep

aep − ap
, Qpck > 0, k = 1, 2, .., K. (572)

Based on the (571) and (572), we conclude the following:
1. All small volumes of particles of the neutral volume of particles will attract the

proton under conditions of (565) if conditions of (571) fulfil.
2. All small volumes of particles of the neutral volume of particles will repel the

proton under conditions of (568) if conditions of (572) fulfil.
3. During the interaction of the proton and the neutral volume of particles under

conditions of (565) and (568), within the following range of values of magnitudes of relative
velocities of the proton and the mass centre of the neutral volume of particles:

vescap − vpscaep
aep + ap

≤ vpc ≤
velcap + vplcaep

aep − ap
, (573)

there will exist the values of magnitudes of relative velocities of the proton and the mass
centre of the neutral volume of particles at which the magnitude of force acting between
them will equal to zero. With the certain value of the magnitude of relative velocity of
the proton and the mass centre of the neutral volume of particles less than these values,
the proton and the neutral volume of particles will attract whereas at the value greater
than these values they will repel.

25 Interaction between neutral atoms

Interaction between neutral atoms at the distances much longer than the radii of atoms
in PPST can be the analogue of the intermolecular interaction.

If the volume of particles which motion is described by the equation (7) is split into
two interacting volumes for each of which the number of protons is equal to the number
of electrons, and presume that the mass centres of volumes are at the distance from one
another which is much greater than the largest value of radii of volumes, then we can find
a function which determines the acceleration of mass centre of the first volume relatively
to the mass centre of the second one:

dv⃗12
dt

=
e2 (M1 +M2)

(mp +me)
2 r212

Q12r̂12, (574)

Q12 =
1

KN

K∑
k=1

N∑
n=1

(
b1−(v⃗12+v⃗ek1−v⃗pn2)

2
/a2ep + b1−(v⃗12+v⃗pk1−v⃗en2)

2
/a2ep

)
−
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− 1

KN

K∑
k=1

N∑
n=1

(
b1−(v⃗12+v⃗ek1−v⃗en2)

2
/a2e + b1−(v⃗12+v⃗pk1−v⃗pn2)

2
/a2p

)
, (575)

where:
K is the number of protons equal to the number of electrons in the first volume,
N is the number of protons equal to the number of electrons in the second volume,
M1 and M2 are the masses of the first and second volumes,
r⃗12 is the radius vector of position of the mass centre of the first volume relatively to the
mass centre of the second volume,
v⃗12 is the velocity of the mass centre of the first volume relatively to the mass centre of
the second volume,
v⃗ek1 is the velocity of an electron No. k of the first volume relatively to the mass centre
of the first volume,
v⃗en2 is the velocity of an electron No. n of the second volume relatively to the mass centre
of the second volume,
v⃗pk1 is the velocity of a proton No. k of the first volume relatively to the mass centre of
the first volume,
v⃗pn2 is the velocity of a proton No. n of the second volume relatively to the mass centre
of the second volume.

Let us determine that all particles of considered volumes are bound into atoms. Each
volume can contain both a single atom and a set of atoms. We will assume that nuclei
of these atoms do not contain neutrons in which the proton and the electron are in the
bound unsteady state when the velocity of proton relatively to the mass centre of atom
is greater than the halved neutral relative velocity of protons. We will also assume that
in the atom of hydrogen as well as in nuclei of all atoms the velocity of proton relatively
to the mass centre of atom is less than the halved neutral relative velocity of protons.

Let us consider the Q12 function at v12 = 0 and at the magnitudes of velocities of
mass centres of all atoms relatively to the mass centres of volumes of atoms equal to
zero, i.e., the case when mass centres of atoms of volumes are motionless relatively to one
another:

Q12 =
1

KN

K∑
k=1

N∑
n=1

(
b1−(v⃗ek1−v⃗pn2)

2
/a2ep + b1−(v⃗pk1−v⃗en2)

2
/a2ep

)
−

− 1

KN

K∑
k=1

N∑
n=1

(
b1−(v⃗ek1−v⃗en2)

2
/a2e + b1−(v⃗pk1−v⃗pn2)

2
/a2p

)
. (576)

Let us write down the sum which determines the sigh of function of (576):

K∑
k=1

N∑
n=1

(
b1−(v⃗ek1−v⃗pn2)

2
/a2ep + b1−(v⃗pk1−v⃗en2)

2
/a2ep − b1−(v⃗ek1−v⃗en2)

2
/a2e − b1−(v⃗pk1−v⃗pn2)

2
/a2p

)
.

(577)
The following statement will be valid for the (577):

If the inequality of (460), i.e., if ae > 2aep + ap, then the sum of (577) is negative.
This statement to be proven as follows:
According to conclusions of Chapter 17:

vek1 > aep + ap/2, ven2 > aep + ap/2, vpk1 < ap/2, vpn2 < ap/2,
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n = 1, 2, ...N, k = 1, 2, ...K, (578)

thus:

b1−(v⃗ek1−v⃗pn2)
2
/a2ep < 1, b1−(v⃗pk1−v⃗en2)

2
/a2ep < 1, b1−(v⃗pk1−v⃗pn2)

2
/a2p > 1,

n = 1, 2, ...N, k = 1, 2, ...K. (579)

Then, if:
vek1 = ven2 = v0, n = 1, 2, ...N, k = 1, 2, ...K, (580)

then, considering the (578) and (580), we will obtain the following inequalities:

(v⃗ek1 − v⃗pn2)
2 > (v0 − ap/2)

2 , (v⃗pk1 − v⃗en2)
2 > (v0 − ap/2)

2 ,

(v⃗ek1 − v⃗en2)
2 ≤ 4v20. (581)

Let us determine the inequality:

v0 − ap/2

aep
>

2v0
ae

. (582)

Let us transform the (582):

v0 >
aeap

2 (ae − 2aep)
. (583)

As follows from the (578), v0 > aep+ap/2. Thus, for the value of v0 less than the minimum
possible, from the (583) we will obtain the inequality:

aep + ap/2 >
aeap

2 (ae − 2aep)
. (584)

The (584) is valid for ae > 2aep + ap. And thus, the inequality of (582) is also valid under
this condition. Based on the (581) and (582), we obtain inequalities:

(v⃗ek1 − v⃗pn2)
2

a2ep
>

(v⃗ek1 − v⃗en2)
2

a2e
,

(v⃗pk1 − v⃗en2)
2

a2ep
>

(v⃗ek1 − v⃗en2)
2

a2e
, vek1 = ven2. (585)

which result to:

b1−(v⃗ek1−v⃗pn2)
2
/a2ep < b1−(v⃗ek1−v⃗en2)

2
/a2e , b1−(v⃗pk1−v⃗en2)

2
/a2ep < b1−(v⃗ek1−v⃗en2)

2
/a2e ,

n = 1, 2, ...N, k = 1, 2, ...K, vek1 = ven2. (586)

We rewrite the (581) as follows:

(v⃗ek1 − v⃗pn2)
2 > (vek1 − ap/2)

2 , (v⃗pk1 − v⃗en2)
2 > (ven2 − ap/2)

2 ,

(v⃗ek1 − v⃗en2)
2 ≤ (vek1 + ven2)

2 , vek1 ̸= ven2. (587)

From the (582) and (587) either the first system of inequalities is following:

vek1 > ven2,
vek1 − ap/2

aep
>

vek1 + ven2
ae

, b1−(v⃗ek1−v⃗pn2)
2
/a2ep < b1−(v⃗ek1−v⃗en2)

2
/a2e , (588)
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or the second:

ven2 > vek1,
ven2 − ap/2

aep
>

vek1 + ven2
ae

, b1−(v⃗pk1−v⃗en2)
2
/a2ep < b1−(v⃗ek1−v⃗en2)

2
/a2e . (589)

As follows from (579), (586), (588) and (589), we can split all parts of the sum (577) into
pairs consisting of one negative and one positive part of the sum, so that the negative parts
of pairs will be greater in moduli than the positive those. It means that the statement for
the sum (577) is valid. Therefore, the value of the Q12 function determined in the (575)
will be negative at v12 = 0 and with magnitudes of velocities of mass centres of all atoms
relatively to the mass centres of volumes of atoms equal to zero.

Let us consider the (575) under the following conditions:

v12 >> vek1, v12 >> ven2, n = 1, 2, ...N, k = 1, 2, ...K. (590)

In the (590), the velocity of electron in the volume will be compounded of the velocity
of motion of electron in the atom and the velocity of motion of atom relatively to the
mass centre of the volume. Therefore, the conditions of (590) should be limited with
the maximum possible magnitudes of velocities of neutral atoms in the volumes at which
atoms do not ionise.
We obtain:

Q12 = 2b1−v212/a
2
ep − b1−v212/a

2
e − b1−v212/a

2
p . (591)

With:
aep >> ap, ae >> ap, v12 >> ap,

the (591) will acquire the following form:

Q12 = b

(
b

ln 2
ln b

− v212
a2ep − b

− v212
a2e

)
. (592)

Proceeding from the (592), we determine and consider the inequality:

v212
a2ep

− ln 2

ln b
>

v212
a2e

, (593)

upon fulfilment of which Q12 < 0. We transform the (593):

v212
a2ep

(
1−

a2ep
a2e

)
>

ln 2

ln b
. (594)

If ae > 2aep, then the value of expression enclosed in parentheses in the (594) can be
limited by the inequality:

3

4
< 1−

a2ep
a2e

< 1. (595)

As follows from conditions of (590), v12 >> aep, thus, with b ≥ 2, the inequality of (594)
is valid. Therefore, under conditions of (590) and with b ≥ 2, Q12 tends to zero from the
side of minus-infinity.

Based on values of function (575) determined hereinabove for the minimum and
maximum values of magnitudes of velocities of mass centres of neutral atoms relatively
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to one another, we determine the properties of forces acting between the neutral atoms in
PPST, proceeding from two possible variants of behaviour of the (575) function, depending
on the magnitude of relative velocity of mass centres of volumes and on magnitudes of
velocities of mass centres of atoms relatively to mass centres of volumes:

First variant is when the Q12 function does not have values equal to zero and its
value is always negative.

Second variant is when the Q12 function has values equal to zero.
As follows from the first variant:
1. With b ≥ 2, neutral atoms being at the distances much longer than their radii

always attract one another. As the magnitude of relative velocity of mass centres of atoms
increases to a certain value, the magnitude of forces acting between them will start to
decrease and approach zero.

2. With b ≥ 2, separated volumes of neutral atoms being at the distances much
longer than the maximum radii of volumes always attract one another. As the magnitude
of relative velocity of mass centres of volumes of atoms or magnitudes of velocities of mass
centres of atoms in volumes increase to certain values at which atoms of volumes do not
ionise, the magnitude of forces acting between them will start to decrease and approach
zero.

As follows from the second variant:
1. With b ≥ 2, neutral atoms being at the distances much longer than their radii

can attract one another, be neutral, or repel one another, depending on the magnitude
of relative velocity of mass centres of atoms. If the magnitude of relative velocity of
mass centres of atoms equals to zero, then atoms attract one another. As the magnitude
of relative velocity of mass centres of atoms increases, the magnitude of forces acting
between them can equal to zero, and the sign of forces can change (attraction can change
to repulsion). As the magnitude of relative velocity of mass centres of atoms increases
to a certain value, atoms will attract, and with the further increase of the magnitude of
their relative velocity the magnitude of attraction forces acting between them will tend
to zero.

2. With b ≥ 2, separated volumes of neutral atoms being at the distances much longer
than their radii can attract one another, be neutral, or repel one another, depending on the
magnitude of relative velocity of mass centres of volumes and on magnitudes of velocities
of mass centres of atoms inside volumes. If the magnitude of relative velocity of mass
centres of volumes and magnitudes of velocities of mass centres of atoms inside volumes
equal to zero, then the volumes attract one another. As the magnitude of relative velocity
of mass centres of volumes and or magnitudes of velocities of mass centres of atoms inside
volumes increase, the magnitude of forces acting between them can equal to zero, and
the sign of forces can change (attraction can change to repulsion). As the magnitude of
relative velocity of mass centres of volumes and or magnitudes of velocities of mass centres
of atoms inside volumes increase to a certain value, the volumes will attract, and with
the further increase of magnitudes of these velocities the magnitude of attraction forces
acting between them will tend to zero.

While determining the properties of interaction of neutral atoms, we did not consider
the interaction of particles at the zero velocity. The interaction at the zero velocity will
additionally contribute into the attraction of neutral atoms at the low values of magnitudes
of relative velocities of atoms since the domains of magnitudes of velocities of protons and
electrons in atoms do not intersect. The interaction of electrons and protons at the zero
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velocity and hence, the repelling contribution into the interaction will be possible at the
magnitudes of relative velocities of mass centres of atoms comparable to magnitudes of
velocities of motion of electrons in atoms.

Let us consider the interaction of neutral atoms of hydrogen with one another at the
distance much longer than their radii and at the following condition:

vp > ap/2,

where vp is the magnitude of velocity of the proton in the atom of hydrogen relatively to
the mass centre of atom.

For the interaction of two atoms of hydrogen at the magnitude of relative velocity of
their mass centres equal to zero, from the (577) we obtain:

b1−(v⃗e1−v⃗p2)
2/a2ep + b1−(v⃗p1−v⃗e2)

2/a2ep − b1−(v⃗e1−v⃗e2)
2/a2e − b1−(v⃗p1−v⃗p2)

2/a2p . (596)

In accordance to the following:

mev⃗e1 +mpv⃗p1 = 0, mev⃗e2 +mpv⃗p2 = 0, (597)

we rewrite the (596) as follows:

b
1−
(
v⃗e1+

me
mp

v⃗e2
)2

/a2ep + b
1−
(
v⃗e2+

me
mp

v⃗e1
)2

/a2ep − b1−(v⃗e1−v⃗e2)
2/a2e − b1−m2

e(v⃗e1−v⃗e2)
2/(mpap)

2

. (598)

Let us write down inequalities which will always fulfil:(
v⃗e1 +

me

mp

v⃗e2

)2

≥
(
ve1 −

me

mp

ve2

)2

,

(
v⃗e2 +

me

mp

v⃗e1

)2

≥
(
ve2 −

me

mp

ve1

)2

,

(v⃗e1 − v⃗e2)
2 ≤ (ve1 + ve2)

2 . (599)

From the (598) and (599) we obtain conditions at which the value of the sum of (598) is
less than zero:

ve1 − me

mp
ve2

aep
>

ve1 + ve2
ae

,
ve2 − me

mp
ve1

aep
>

me (ve1 + ve2)

mpap
,

me

mp

<
ve1
ve2

<
mp

me

. (600)

With mpap = meae, the (600) provides the following two inequalities:

ve1 > ve2
ap + aep
ae − aep

, ve1 < ve2
ae − aep
ap + aep

, (601)

from which we can determine:

ap + aep
ae − aep

<
ve1
ve2

<
ae − aep
ap + aep

. (602)

As follows from the (602), withmpap = meae, with ae > 2aep+ap, and with the magnitude
of relative velocity of mass centres equal to zero, two atoms of hydrogen being at the
distances much longer than the maximum radius of interacting atoms will attract if the
ratio of magnitudes of velocities of electrons of atoms relatively to mass centres of atoms
will lay within the range of (602).
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Let us consider the (596) with mpap < meae. In this case the following inequality
will be valid:

ve1 + ve2
ae

<
me (ve1 + ve2)

mpap
. (603)

Thus, proceeding from the (600), we can determine that with:

ve1 − me

mp
ve2

aep
>

me (ve1 + ve2)

mpap
,

ve2 − me

mp
ve1

aep
>

me (ve1 + ve2)

mpap
,

me

mp

<
ve1
ve2

<
mp

me

, (604)

the sum of (598) will be less than zero. Proceeding from the (604), we obtain the following:

me

mp
(ap + aep)

ap − me

mp
aep

<
ve1
ve2

<
ap − me

mp
aep

me

mp
(ap + aep)

, ap >
2meaep

(mp −me)
. (605)

Therefore, withmpap < meae, with conditions of (605), and with the magnitude of relative
velocity of mass centres equal to zero, two atoms of hydrogen being at the distances much
longer than the maximum radius of interacting atoms will attract if the ratio of magnitudes
of velocities of electrons of atoms relatively to mass centres of atoms will lay within the
range determined by the conditions of (605).

Analogously, for mpap > meae, proceeding from the (600), we will have:

me

mp
ae + aep

ae − aep
<

ve1
ve2

<
ae − aep

me

mp
ae + aep

, ae >
2mpaep

(mp −me)
. (606)

Thus, with mpap > meae, with conditions of (606), and with the magnitude of relative
velocity of mass centres equal to zero, two atoms of hydrogen being at the distances
much longer than the maximum radius of interacting atoms will attract if the ratio of
magnitudes of velocities of electrons of atoms relatively to mass centres of atoms will lay
within the range determined by the conditions of (606).

As follows from (590) - (595), with the magnitude of relative velocity of mass centres
of atoms of hydrogen much greater than the largest magnitude of velocity of electron in
atoms, the atoms of hydrogen will attract.

Conclusions made hereinabove for the interaction of volumes of neutral atoms in
which atoms of hydrogen are in states at which the magnitude of velocity of a proton
relatively the mass centre of an atom of hydrogen is less than the halved neutral relative
velocity of protons will be also valid for the interaction of volumes of atoms of hydrogen
with mpap = meae, with the conditions of (602), with mpap < meae, with the conditions
of (605), with mpap > meae, with the conditions of (606), when magnitudes of velocities
of protons relatively the mass centre of atom of hydrogen are greater than the halved
neutral relative velocity of protons.

26 Interaction between neutral atoms and gravita-

tional forces

Let us rewrite the (574) as follows:

dv⃗12
dt

=
e2 (M1 +M2)

(mp +me)
2 r212

Q12r̂12, (607)
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Let us consider the (607) as the interaction of two bodies with masses of M1 and M2 at
the distances much longer than the maximum radius of these bodies.

Let us represent the Q12 function (575) as follows:

(mp +me)
2

M1M2

K∑
k=1

N∑
n=1

(
b1−(v⃗12+v⃗ek1−v⃗pn2)

2
/a2ep + b1−(v⃗12+v⃗pk1−v⃗en2)

2
/a2ep

)
−

−(mp +me)
2

M1M2

K∑
k=1

N∑
n=1

(
b1−(v⃗12+v⃗ek1−v⃗en2)

2
/a2e + b1−(v⃗12+v⃗pk1−v⃗pn2)

2
/a2p

)
, (608)

where:
(mp +me)

2

M1M2

=
1

NK
.

The function determined in the (608) being finally calculated does not depend on the
masses of interacting volumes and on the quantities of particles in these volumes. This
function determines the sum of four arithmetic means, two positive and two negative,
each of which is obtained by division of the sum of NK parts depending on magnitudes
of relative velocities of particles participating in the interaction by NK. The value of
magnitude of this function will be limited by the following inequality:

0 ≤ |Q12| ≤ 2b. (609)

Using conditions for the conclusion of (574), considering the (608), we can form the
following system of two equations from the system of equations (7):

M1
dv⃗1
dt

=
e2M1M2

(mp +me)
2 r212

Q12r̂12,

M2
dv⃗2
dt

=
e2M2M1

(mp +me)
2 r221

Q12r̂21. (610)

Joining of two equations of (610) into one provides the (607). If we determine the function
for interaction of two neutral atoms as follows:

Gm =
e2Q12

(mp +me)
2 , (611)

then we can rewrite the (610) for the common action of intermolecular and gravitational
forces:

M1
dv⃗1
dt

= −(G−Gm)M1M2

r212
r̂12,

M2
dv⃗2
dt

= −(G−Gm)M2M1

r221
r̂21, (612)

where G is the gravity constant.
If we presume that gravitational forces are manifestations of just intermolecular

forces, then the (612) will look as follows:

M1
dv⃗1
dt

=
GmM1M2

r212
r̂12,
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M2
dv⃗2
dt

=
GmM2M1

r221
r̂21, (613)

where Gm is not constant.
Therefore, the forces acting between neutral atoms and volumes of neutral atoms in

PPST, as analogues of intermolecular forces, either complete the gravitational forces or
are the gravitational forces.

27 Nuclear fusion

A nuclear fusion occurs at rather high values of temperature and density of the plasma.
The main problem of the nuclear fusion if the overcome of Coulomb potential barrier (the
repulsion of positively charged particles at the high values of magnitudes of their relative
velocities). According to the generally accepted theory of nuclear forces, the nuclear
synthesis should occur according to the following scheme:

The counter motion of two high-energetic, positively charged particles results to
their approach to the distance of action of nuclear interaction forces. At that, if nuclear
attraction forces become stronger than Coulomb repulsion forces, the positively charged
particles form a bound pair.

In the point particles states theory, the nuclear fusion will occur according to the
analogous scheme. However, unlike the nuclear forces theory where the change of repul-
sion to attraction depends on the distance between particles, the change of repulsion to
attraction in PPST depends on the magnitude of relative velocity of particles. If the
magnitude of relative velocity of approaching particles and the distance between them
during their interaction with both one another and other particles will satisfy conditions
of bonding of two likely charged particles (414), then the bound pair of particles is forming.

In both cases, initially we have two high-energetic, positively charged particles mow-
ing toward one another. In both cases, as a result of synthesis we obtain the pair of
bound positively charged particles. It is impossible to distinguish these events during the
nuclear fusion since as the distance between two likely charged particles interacting in
accordance with the Coulomb law decrease, the simultaneous decrease of the magnitude
of their relative velocity occurs. Therefore, both the decrease of the distance between
particles and the decrease of the magnitude of their relative velocity can be the cause of
change of the sign of interaction forces between particles.

Thus, the process of nuclear fusion according to the PPST scenario is theoretically
possible.

28 Superconductivity

As the temperature of superconductor decreases and the density of electrons in it increase
to the values at which magnitudes of relative velocities of electrons and average distances
between them begin to satisfy the conditions of (414), electrons bind into pairs forming
the condensate. While the temperature decreases, the process of decrease of magnitudes of
velocities of electrons of the condensate relatively to atoms and ions of superconductor’s
lattice also occurs. As magnitudes of their relative values decrease to a certain value,
atoms and ions of superconductor’s lattice begin to repel electrons of the condensate
(please refer to Chapter 21). With the further decrease of the temperature the condensate
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will be extruded to the surface of superconductor and to zones in which the common
action of inertia forces and repulsion forces of electrons by ions and atoms of
the lattice tends to the zero value (zones of the least action of forces). Later
on we will talk about interaction between the electron condensate and ions of the lattice,
referring to it as to the interaction with both ions and neutral atoms.

The motion of electron condensate with no resistance occurs both at the surface of
superconductor and at surfaces formed inside the superconductor by zones of the least
action of forces; at that, the attraction of bound pairs of electrons to one another does
not allow separate pairs of electrons for leaving both the surface of superconductor and
zones of the least action of forces.

The destruction of the state of superconductivity should occur in the following cases:
1. Under the increase of magnitudes of relative velocities of electrons of the conden-

sate, or under the increase of average distance between them, when electrons begin to
turn into the free state and scatter during the interaction with ions of the lattice once the
condition of bonding (414) is violated.

2. Under the increase of magnitudes of velocities of electrons of the condensate
relatively to ions of the lattice, when the repulsion of electrons of the condensate by ions
of the lattice changes to the attraction (please refer to Chapter 21).

3. Under the localisation of the electron condensate in certain zones of the supercon-
ductor during the compression of electron condensate by external magnetic field (please
refer to Chapter 14).

4. Under the affection of the radiation determined in Chapter 20 on the electron
condensate, when the electron condensate evaporates during the interaction of electrons
of the condensate at the zero velocity with particles of the source of radiation.

Therefore, initiation of superconductivity in PPST is the two processes occurring
simultaneously:

The first one is the formation of the electron condensate from bound pairs of electrons.
The second one is the extrusion of the electron condensate to the surface of super-

conductor and to zones of the least action of forces.
Effects of attraction of electrons with one another and repulsion of electrons by

neutral atoms are observable in the process of formation of ”electron bubbles” in the
superfluid helium [10] and in the liquid hydrogen [11].

The existence of energy pseudo-gap in high-temperature superconductors [27] is most
likely related to the first process, the formation of the electron condensate from bound
pairs of electrons. The condensate is forming but it flows with resistance. With the further
decrease of the temperature the second process, the extrusion of the electron condensate
to the surface of superconductor and to zones of the least action of forces, begins to
realise. And only after that the superconductivity state arises. In superconductors where
the pseudo-gap does not appear the second process (the extrusion of free electrons to the
surface of superconductor and to zones of the least action of forces) is realised first as the
temperature decreases, and then the first one (the formation of the electron condensate
from bound pairs of electrons). In this case the energy gap appears simultaneously with
the state of superconductivity. As the pressure upon the conductor or the temperature
of it is changing, if in the conductor during the process of extrusion of free electrons to
the surface of superconductor and to zones of the least action of forces the dynamics of
change of both the density of electrons and the temperature of the conductor will be
so that conditions of (414) fail to fulfil, then electrons will not bind into pairs and the
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superconductivity will not appear. The presence of pseudo-gap has been detected in the
substance which is not a high-temperature superconductor [28]. Most likely, in this case
free electrons initially localise in potential wells formed by strong repulsion forces and the
structure of crystal lattice so that in order to maintain the flow of electron condensate
formed due to the further decrease of the temperature, the permanent income of the
energy is required, forcing the condensate to leave the potential well. Thus, the current
in the conductor will experience the resistance, and with a certain minimum of voltage
it will disappear. This minimum of voltage should correspond to the potential barrier of
the condensate locked in the conductor.

29 Motion of a particle flow through the volume of

particles

A group motion of a cylindrical volume of particles similar to the flow of a liquid, with the
unit vector of velocity of motion of this cylindrical volume parallel to the axis of cylinder,
will be referred to as a motion of particle flow.

In PPST we can determine conditions of motion of particle flow through the volume
of particles at which this process will have a property similar to that of superconductors,
namely, the transmission of particle flows through their volume with low resistance to the
motion of the flow. According to PPST, this property should be possessed by both liquids,
and gases, and the plasma, and volumes of like particles, not just by crystal bodies. This
process should be determined by velocities of motion of particles in the flow relatively to
one another, by velocities of motion of particles in the volume relatively to one another,
and by the velocity of motion of the flow relatively to the volume.

Let us consider the volume of like particles fast relatively to one another (please
refer to Chapter 14), either protons or electrons, being under a certain pressure created
by external forces. If a continuous flow of the same like particles slow relatively to one
another (please refer to Chapter 14) will move along the straight line through this volume
of particles, then this flow of particles will be able to move under the weak resistance to its
motion from the side of particles of the volume. It will be possible in the case if particles
in the flow will attract one another and repel particles of the volume through which the
flow is moving. Hence, velocities of particles of the volume relatively to particles of the
flow should be faster than their neutral relative velocity, whereas velocities of particles
of the flow relatively one another should be slower than their neutral relative velocity.
As a result of repulsion of particles of the volume by particles of the flow, the flow will
be compressed crosswise, and a rarefaction of particles of the volume (a cylindrical area
of lower pressure along which axis particles of the flow will be able to move with the
weak resistance to their motion) will be formed around the flow. The external pressure of
particles of the volume will form a cylindrical area of higher pressure around the area of
lower pressure. With a certain sum of moments of momenta of particles in the cylindrical
area of higher pressure, a circular motion of particles of the volume around the cylindrical
area of lower pressure will appear. Therefore, there will be a channel formed in the volume
of like particles along which the flow of particles same as those of the volume is moving
with the weak resistance to its motion.

The processes will develop in the same way under the motion of:
- the flow of electron condensate, or electrons slow relatively to one another, through
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the volume of proton condensate, or through the volume of protons slow relatively to
one another, if velocities of electrons relatively to protons will be slower than the neutral
relative velocity of the electron and the proton,
- the flow of proton condensate, or protons slow relatively to one another, through the
volume of electron condensate, or through the volume of electrons slow relatively to one
another, if velocities of protons relatively to electrons will be slower than the neutral
relative velocity of the electron and the proton,
- the flow of electron condensate, or electrons slow relatively to one another, through the
volume of neutral atoms, if velocities of electrons relatively to the volume will be less than
a certain value (please refer to Chapter 21),
- the flow of neutral atoms which relative velocities are so that atoms in the flow attract
one another (please refer to Chapter 25) through the volume of electron condensate, or
through the volume of electrons slow relatively to one another, if velocities of electrons of
the volume relatively to atoms of the flow will be less than a certain value (please refer
to Chapter 21),
- the flow of proton condensate, or protons slow relatively to one another, through the
neutral volume of particles (either the volume of neutral atoms or the volume of the
neutral plasma), if velocities of protons relatively to the neutral volume of particles will
be greater than a certain value (please refer to Chapter 24).
- the flow of neutral atoms which relative velocities are so that atoms in the flow attract
one another (please refer to Chapter 25) through the volume of protons, if velocities of
protons of the volume relatively to atoms of the flow will be greater than a certain value
(please refer to Chapter 24).

30 PPST and magnetic interaction between particles

Forces acting in PPST between the moving electric charges either should complete forces of
magnetic interaction of electric charges or should be the forces of magnetic interaction. It
arises from conclusions in Chapter 14 concerning the interaction of volumes of condensates
and from the following argumentation:

If the magnetic interaction of two flows of condensate of like particles during their
motion along parallel channels exists, then with the magnitude of relative velocities of
condensate flows greater than a certain value, forces acting in PPST will contribute some
repulsion into the magnetic interaction of channels. If the magnitude of relative velocities
of condensate flows will be less than a certain value, the attraction will be added to the
magnetic interaction.

If the magnetic interaction of two flows of different condensates, the proton and the
electron ones, each of which moves along its channel and channels are parallel, exists,
then with the magnitude of relative velocities of condensate flows less than a certain
value, forces acting in PPST will contribute some repulsion into the magnetic interaction
of channels. If the magnitude of relative velocities of condensate flows will be greater than
a certain value, the attraction will be added to the magnetic interaction.

All these contributions into strengthening or weakening of magnetic interaction of
channels will not depend on condensate flow directions in the preferred coordinate system.
The magnitude of relative velocities of condensate flows will be important here.

The interaction forces between the channels in which the condensate flows of like
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particles have equal magnitudes of velocities, and unit vectors of velocities can be either
parallel or antiparallel, can be described by an equation including both magnetic interac-
tion and forces acting in PPST, if it is assumed that magnitudes of relative velocities of
particles inside flows are much less than their neutral relative velocity:

F = −µ0I
2L cosϕ12

2πr
+

C2
12

r

(
1− b1−2v2(1−cosϕ12)/a2

)
, v >> a. (614)

Here:
I is a current strength in a single channel;
L is a length of a single channel;
r is a distance between channels;
π is the pi constant;
µ0 is the magnetic constant;
C2

12 is the interaction constant of channels in PPST;
v is the magnitude of velocity of condensate flows;
a is the neutral relative velocity of either protons or electrons;
ϕ12 is an angle between the unit vectors of velocities of condensate flows. It can equal
either to 0 or to π.

The first, negative item in the (614) is the magnetic interaction of channels analogous
to the interaction of parallel wires under the current. The second one is the interaction
of channels in PPST. If we remove the expression enclosed in parentheses from the (614),
then the C2

12/r expression will determine the repulsion of like particles of two channels
according to Coulomb law, and the (614), ignoring forces acting in PPST, will acquire
the following form:

F = −µ0I
2L cosϕ12

2πr
+

C2
12

r
. (615)

We obtain from the (614):

ϕ12 = 0, F = −µ0I
2L

2πr
− C2

12

r
(b− 1) . (616)

ϕ12 = π, F =
µ0I

2L

2πr
+

C2
12

r
. (617)

We obtain from the (615):

ϕ12 = 0, F = −µ0I
2L

2πr
+

C2
12

r
. (618)

ϕ12 = π, F =
µ0I

2L

2πr
+

C2
12

r
. (619)

The (616, 617) and the (618, 619) demonstrate that the forces acting in PPST between two
channels of condensate flows of like particles under certain conditions match the forces
of magnetic interaction of these channels (617 and 619), but there is also a difference
(616 and 618). Proceeding from the (614), ignoring the forces of magnetic interaction of
channels of condensate flows, we obtain the following:

ϕ12 = 0, F = −C2
12

r
(b− 1) . (620)
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ϕ12 = π, F =
C2

12

r
. (621)

Therefore, we can conclude that the forces acting in PPST between two channels of
condensate flows of like particles either are the forces of magnetic interaction (620 and
621) or change them (616 and 617).

If there are two parallel conductors in the plasma with electric currents flowing in
the same direction, then the wires will attract. A current sheet will form between them,
and the current will flow in it oppositely to the current in the wires. The electric current
of the current sheet prevents the wires from the approach [29].

The forces acting in PPST and depending on the magnitude of relative velocity of
motion of flows of like particles will also have a certain impact on the formation of the
current sheet in the plasma. If the currents in two wires located in the plasma will be
caused by two flows of electrons which electrons are slow relatively to one another, then
the flows will attract, and both electrons of the plasma fast relatively to electrons of flows
and protons of the plasma slow relatively to electrons of flows will be extruded from the
plasma towards the current sheet. Electrons of the plasma slow relatively to electrons
of flows and protons of the plasma fast relatively to electrons of flows will be removed
from the current sheet. Therefore, the current sheet will be a surface of zero action of
repulsion forces of electrons of the plasma fast and protons of the plasma slow relatively to
electrons of flows by electrons of flows. The bulk of electrons in the current sheet will move
oppositely to the unit vectors of velocities of flows relatively to the plasma, whereas the
bulk of protons in the current sheet will move in the same direction as the unit vectors of
velocities of flows relatively to the plasma. Thus, the electric current oppositely to electric
currents in the wires will appear in the current sheet. Electrons of the current sheet will
start to repel electrons of flows since they are fast relatively to electrons of flows. Protons
of the current sheet will also repel electrons of flows since they are slow relatively to them.

The interaction of flows of protons with one another and with protons and electrons
of the plasma will also develop under the analogous scenario. The proton condensate
flows will attract if protons of these flows will be slow relatively to one another; at that,
protons fast and electrons slow relatively to protons of flows will be extruded from the
plasma towards the current sheet. In this case the current sheet with the electric current
oppositely to those of the proton condensate will also be formed. Protons and electrons
of the current sheet will also repel the flows of the proton condensate. All these effects
will mostly strengthen the magnetic interaction of condensate flows if this interaction is
considered as the magnetic interaction of wires with the current located in the plasma as
described hereinabove.

The role of forces which depend on magnitudes of relative velocities of charged par-
ticles in PPST can be significant both in the formation of the pinch effect, or the com-
pression of an electrically conducting filament in the plasma by magnetic forces induced
by the current itself, and in the self-focusing of beams of likely charged particles. If mag-
nitudes of relative velocities of electrons in the conducting channel decrease to a certain
value with their forced rectilinear motion under the external electric field, then electrons
will start to attract and compress the electronic component of the conducting channel
(please refer to Chapter 14). Ions of the conducting channel will move oppositely to the
motion of electrons, and if they will be fast relatively to electrons, then they will attract
by the electronic component of the conducting channel. Therefore, the compression of
the conducting channel will begin.
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If magnitudes of relative velocities of motion of likely charged particles in the con-
ducting channel will approach zero, then the value of the SsN function (413) for these
particles will approach one, and hence, their mass interaction at the zero velocity will
occur, which will result to abrupt compression of the conducting channel, both crosswise
and lengthwise.

Let us consider the interaction of a charged particle, either electron or proton, with
a rotating ring of like particles having the linear density of charge equal to Q/ (2πRc)
where Rc is the radius of the ring rotating with the angular velocity vc/Rc. We superpose

the origin of the coordinate system with the pivot of the ring, and the plane X⃗, Y⃗ with
the rotation plane of the ring. If we presume that at initial moment the particle is in the
centre of the ring, the unit vector of its velocity lays within the rotation plane of the ring,
and this vector is directed along the +X⃗ axis and the ring rotates counter-clockwise, then
we can determine the force acting on the particle at this moment of time:

m
dv⃗

dt
= − qQ

2πR2
c

∫ 2π

0

(x̂ cos (ϕ) + ŷ sin (ϕ))
(
1− b1−(v

2+v2c+2vvc sin (ϕ))/a2
)
dϕ, (622)

where v⃗ and m are the velocity and the mass of particle interacting with the charged ring,
q is its charge, ϕ is the angle between the +X⃗ axis and a vector outgoing from the origin
of coordinates to the centre of an arbitrary section of the ring. Derivation of the (622)
presumed that the radius of the section of the ring is much less than the radius of rotation
of the ring.

From the (622) we obtain:

m
d2x

dt2
=

qQ

2πR2
c

∫ 2π

0

b1−(v
2+v2c+2vvc sin (ϕ))/a2 cos (ϕ)dϕ, (623)

m
d2y

dt2
=

qQ

2πR2
c

∫ 2π

0

b1−(v
2+v2c+2vvc sin (ϕ))/a2 sin (ϕ)dϕ. (624)

The (623) and (624) provide the following:

d2x

dt2
= 0,

d2y

dt2
̸= 0, (625)

which means that there will be a force normal to the unit vector of particle’s velocity
and acting on the particle. If the radius of the area of localisation of the trajectory of
particle’s motion will be much less than Rc, then the particle will rotate with the constant
magnitude of velocity, with the constant radius of rotation around a certain point.

Let us consider the (624). We write it down as follows:

m
d2y

dt2
=

qQ

2πR2
c

b1−(v
2+v2c)/a2Σ(N,∆ϕ), (626)

where the definite integral is transformed into the sum:

Σ(N,∆ϕ) =

N/2∑
n=0

b−
2vvc
a2

sin (n∆ϕ) sin (n∆ϕ)∆ϕ+
N∑

n=N/2

b−
2vvc
a2

sin (n∆ϕ) sin (n∆ϕ)∆ϕ, (627)

ϕ = n∆ϕ, N∆ϕ = 2π, N → ∞, ∆ϕ → 0.
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Or:

Σ(N,∆ϕ) =

N/2∑
n=0

(
b−

2vvc
a2

sin (n∆ϕ) − b
2vvc
a2

sin (n∆ϕ)
)
sin (n∆ϕ)∆ϕ. (628)

As follows from the (628), Σ(N,∆ϕ) ≤ 0.
Using the (626) and (628), we can conclude the following: if the ring is formed by

electrons, the electron interacting with the ring will rotate oppositely to the ring rotation
while the proton interacting with the ring will rotate in the same direction as the ring; if
the ring is formed by protons, the proton interacting with the ring will rotate oppositely
to the ring rotation while the electron interacting with the ring will rotate in the same
direction as the ring. If the magnitude of velocity of the particle or magnitude of rotation
velocity of the ring will equal to zero, then the force acting on the particle from the side
of the charged ring will equal to zero as well.

Therefore, in PPST there is a force analogous of that of Lorentz, acting on the
charged particle in the constant magnetic field.

From this chapter we can conclude the following: forces acting in PPST between the
moving electric charges either can complete the magnetic interaction of electric charges
or can be the forces of magnetic interaction.

31 Dynamic system of bound condensates (DSBC)

Figure 26: Dynamic system of bound condensates

Within the frame of the point particles states theory, let us obtain a theory of dynamic
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system of bound condensates. The DSBC theory to be constructed in assumption that
conclusions of PPST concerning the existence of free separated volumes of electron and
proton condensates are correct.

Figure 26 demonstrates a dynamic system formed by electron and proton conden-
sates. For illustrative purposes the system is demonstrated in cross-section (a half of it).
The system consists of a hollow torus of electron condensate formed by bound pairs of
electrons (yellow with black arrows) and internal ring of proton condensate formed by
bound pairs of protons (reddish with red arrow). Arrows show directions of velocities
of flows of condensates. The bound state of condensates of dynamic system should be
determined by the values of magnitude of relative velocity of flows of condensates and the
distance between them. With the magnitude of relative velocity of flows of condensates
greater than a certain value, condensates will attract as oppositely charged fluids (please
refer to conclusions at the end of Chapter 14). The positively charged ring is attracted
by the negatively charged centre of torus. Inertia forces of rotation of the ring (the flow
of condensate) are compensated by attraction forces of protons in the condensate and
attraction forces of the centre of torus. In turn, attraction forces of the shell of torus by
the ring are compensated by inertia forces of vortex rotation of the electron condensate
around the proton condensate. The electron condensate flows into the ring from the one
side and flows out from another. Getting around the ring along toroidal surfaces, it flows
into the ring again. Therefore, two closed circuits appear, one of them is with the elec-
tron current, another is with the proton one, where currents have no resistance. In other
words, the dynamic system of bound condensates can be represented as a toroidal vortex
of the electron condensate which is held in the stable condition by the internal ring of the
proton condensate.

Based on the conclusion at the end of Chapter 14, we can expect that the DSBC will
possess rather high stability to dynamic destruction in collision with a substance formed
by neutral atoms.

As follows from assumptions made in Chapter 21, the DSBC interacting with volumes
of neutral atoms can repel from them. It should occur if the minimum magnitude of
velocity of protons in the ring of proton condensate of DSBC relatively the mass centre
of DSBC is greater than a certain value while the maximum magnitude of velocity of
electrons in the shell of electron condensate relatively the mass centre of DSBC is less
than a certain value.

If we consider the interaction of volumes of like particles with neutral atoms anal-
ogously to intermolecular forces (please refer to Chapter 25 and Chapter 26), then the
interaction of DSBC in the state determined hereinabove with bodies formed by neutral
atoms will possibly either weaken the gravitational attraction of these objects or will be
the gravitational interaction with the plus sign – i.e., the DSBC and the body will repel.
In this case, as the magnitude of velocity of protons in the ring of protons decreases and
the magnitude of velocity of electrons in the shell of electrons increases to certain values,
the DSBC and the body will attract, i.e., the gravitational repulsion will change to the
gravitational attraction.
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Figure 27: Magnetic fields of DSBC

32 Magnetic fields of DSBC

Closed circuits of the electron and proton currents in the DSBC generate three types
of magnetic fields (Figure 27). First type is poloidal (marked with blue at Figure 27),
generated by rotation of the ring of proton condensate. Second and third types are
toroidal, normal to the first one, generated by the toroidal flow of electron condensate in
the external shell. The second field (marked with purple at Figure 27) is locked inside
the torus formed by the external shell. The third one (marked with green at Figure 27)
is the magnetic field outside the external shell of the DSBC.

While the magnitude and direction of angular rotation velocity of the toroidal shell of
electron condensate around the axis of rotation of the ring of proton condensate changes,
the magnetic field generated by the ring of proton condensate will either strengthen or
weaken, and the poloidal magnetic field of DSBC will be able to change its direction and
have the value of magnitude equal to zero.

33 Nuclear synthesis in DSBC

Possibility of the process of nuclear synthesis to occur in DSBC is conditioned by presence
of bound pairs of protons in the proton condensate. During the evaporation of electron
condensate of toroidal shell, an electron being trapped in the ring of the proton condensate
binds to a bound pair of protons. Being bound, two protons and electron form a deuteron.
Turning into the bound state, deuterons form alpha particles. Being turned into the
bound state both with deuterons and with one another, alpha particles form nuclei of
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atoms. Therefore, along with the nuclear fusion, a condensate process of nuclear synthesis
is also possible in PPST. The process of nuclear synthesis via condensation should be
accompanied by stratification of condensates inside the ring under the action of inertia
forces on condensates of nuclei synthesised. The nuclear condensate will be formed from
the proton one.

Binding free electrons which enter the ring during the process of evaporation of
electron condensate, atomic nuclei form neutral atoms. Neutral atoms are also formed
when protons and nuclei enter the electron condensate while condensates in the ring
evaporate. Thus, the DSBC should synthesise various elements, starting from hydrogen.

34 Formation of DSBC

The process of formation of DSBC can develop in the presence of protons slow relatively
to one another in a certain volume where initially there is no electrons. Slow protons will
attract compressing the volume and extruding outside protons fast relatively to them. If
the magnitude of the sum of moments of momenta of protons slow relatively to one another
regarding the mass centre of the volume will have a certain value, then a circular motion
of protons of the volume during its compression will begin. Conditions for formation of
condensate of protons will appear in the ring of the circular motion, as well as during the
motion of like particles in a beam along the closed trajectory (please refer to chapter 14).
The ring will expand and contract until the equilibrium between attraction forces of bound
pairs of protons in the condensate, centrifugal forces of inertia and repulsion-attraction
forces of opposite flows of condensate of rotating ring appears. The ring will start to
oscillate around the equilibrium point. If magnitudes of relative velocities of protons in
the opposite zones of the ring will be less than the neutral relative velocity of protons, then
protons of the opposite zones of the ring will attract, and if at that the ring will contract,
then, due to conservation of the sum of moments of momenta of protons relatively to the
centre of the ring, the velocity of rotation of the ring will increase. Once magnitudes of
relative velocities of protons in the opposite zones of the ring become greater than the
neutral relative velocity of protons, forces of repulsion of protons of the opposite zones of
the ring will add to centrifugal forces of inertia, and the ring will begin to expand. While
the ring is expanding, its rotation velocity will decrease, and the process of expansion
will change to that of contraction. Further on, as other particles enter the zone of force
interaction with the ring, protons of rotating ring will repel electrons slow relatively to
them and protons fast relatively to them and attract protons slow relatively to them and
electrons fast relatively to them. In this case, if a toroidal shell of electron condensate
appears around the ring of proton condensate, the DSBC is formed.

The ring of proton condensate can form one of two types of DSBC. Both DSBC-A
and DSBC-B are shown at Figure 28. They differ by the opposite rotation of vortices of
electron condensate relatively to direction of rotation of rings of proton condensate. The
synthesis of DSBC can also occur as a process of self-organisation of two DSBCs. Being
in the plasma consisting of electrons and protons, DSBC-A and DSBC-B or two similar
DSBCs can synthesise the third DSBC on their own.

We will consider the interaction of two DSBCs (DSBC-A and DSBC-B) resulting to
formation of the third DSBC in the frame of PPST without analysing these processes
as those related to the existence of magnetic fields of DSBC (please refer to Chapter
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Figure 28: DSBC-A and DSBC-B

32). As it was shown in Chapter 30 and will be shown later, the processes occurring in
DSBC either strengthen the magnetic interaction of moving charged particles or are that
interaction themselves.

Figure 29: Interaction of DSBC-A and DSBC-B in the plasma

Figure 29 demonstrates one of variants of interaction of DSBC-A and DSBC-B at
which a new DSBC can form. The legend of this figure, with pointers (purple lines),
contains the following definitions:
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Pa is the ring of proton condensate of DSBC-A and its direction of rotation;
Pb is the ring of proton condensate of DSBC-B and its direction of rotation;
Ea is the outer shell of electron condensate of DSBC-A;
Eb is the outer shell of electron condensate of DSBC-B;
Pp is a volume of plasma saturated with protons;
Jp is a direction of rotation of the volume of plasma saturated with protons;
Os is an axis of rotation of rings of DSBCs;
Np is a ring of the zone of zero action of forces of repulsion of protons of plasma by
protons of two DSBCs (marked with blue);
Nc is a point of zero action of forces of repulsion of particles of plasma by particles of two
DSBCs.

Let us determine the following characteristics of a dynamic system that consists
of interacting DSBC-A and DSBC-B (the system of two DSBCs) which provide a
possibility of formation of a new DSBC:

All geometrical parameters of DSBC-A and DSBC-B coincide one another. Rotation
velocities of rings are equal. Rotation axes and directions coincide each other. The
number of protons in the proton ring of DSBC-A is equal to that in the ring of DSBC-B.
The number of electrons in electron shells is less than the number of protons in the rings
(both DSBCs possess equal positive charges). All electrons of electron shells are fast
relatively to protons of condensate rings. The value of maximum magnitude of velocities
of electrons in the system of two DSBCs relatively to the mass centre of the system is less
than the halved value of neutral relative velocity of electrons. The value of the maximum
magnitude of velocities of protons of the rings relatively to the mass centre of the system
are less than the halved neutral relative velocity of protons.

Being in the plasma formed by electrons and protons, being located relatively one
another as demonstrated at Fig. 29, DSBC-A and DSBC-B will attract and approach
each other. The attraction will be determined by the following:

First, all protons of the system are slow relatively to one another (all protons of the
system attract each other) since the maximum magnitudes of velocities of protons of the
rings relatively the mass centre of the system are less than the halved value of neutral
relative velocity of protons.

Second, electrons of the system are fast relatively to all protons (all electrons of the
system attract all protons of the system).

Third, all electrons of the system are slow relatively to one another (all electrons of
the system attract each other) since the value of maximum magnitudes of velocities of
electrons in the system of two DSBCs relatively to the mass centre of the system is less
than the halved value of neutral relative velocity of electrons.

Protons and electrons of the plasma magnitudes of which velocities lay within certain
ranges of values and which have certain directions of unit vectors of their velocities in the
coordinate system linked to the mass centre of interacting DSBCs will be extruded from
the plasma located between DSBC-A and DSBC-B approaching one another to a plane,
which is formed by forces of repulsion of the plasma particles by particles of
the system of two DSBCs, where the forces acting on particles and normal to
the plane are lacking, and which will lay midway between DSBCs approaching
one another (the plane of zero normal action).

The overall electric charge of each DSBC is positive. Positive charge of protons will
be located compact in the rings of proton condensate. Negative charge of electrons will be
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distributed over the whole volume of toroidal shells of DSBC. Hence, we should estimate
that protons of rings will mainly act to force particles of plasma in and out of zone of
interaction of two DSBCs. Therefore, most of extruded protons of plasma should be fast
relatively to protons of rings of DSBCs while most of extruded electrons of plasma should
be slow relatively to protons of rings of DSBCs. Electrons of shells of DSBCs will also
affect particles of plasma; however, taking into account the distribution of charges in
the system and a certain difference in the quantities of charges of rings and shells and
hence considering this affection insignificant compared to the action of protons of rings of
DSBCs, we can determine conditions of formation of ring-shaped zones of zero action of
forces of repulsion of protons and electrons of plasma by protons of two DSBCs. These
conditions are determined in Appendix 1 (Chapter 44).

Electrons and protons of plasma are fast relatively to protons of rings of DSBCs,
hence, mainly protons of plasma will be extruded to the plane of zero normal action. One
part of these protons of plasma located outside the ring-shaped zone of zero action of
forces of repulsion of protons of plasma by protons of two DSBCs (Np) will be extruded
from the area of approach of two DSBCs. Another part of protons of plasma located inside
the ring-shaped zone will be intruded deep inside the ring-shaped zone, to its centre, i.e.,
to the point of zero action of forces of repulsion of particles of plasma by particles of two
DSBCs (Nc). This will be a result of common action of protons of two DSBCs on protons
of plasma. Therefore, there will be a certain volume of the plasma saturated by protons,
formed within the plane of zero normal action, inside the rung-shaped zone of zero action
of forces of repulsion of protons of plasma by protons of two DSBCs. This volume will
be forming under the action of centripetal forces appearing due to the action of forces of
repulsion of protons of plasma by proton rings of two DSBCs to the area of point of zero
action of forces of repulsion of particles of plasma by particles of two DSBCs, under the
action of forces extruding protons of plasma to the plane of zero normal action, under
the action of inertia forces appearing during the motion of protons of plasma within the
limited volume, and under the action of forces of interaction of protons inside the volume.

This process can be represented graphically by consideration of summarised action of
forces of repulsion by protons of two rings of DSBCs on a proton of plasma fast relatively
to them (Figure 30).

We will consider the action of forces within the plane of a cut of the system of two
DSBCs passing through the axis of rotation of the rings of DSBCs (Os). The legend of
Figure 30 includes the following definitions:
Os is the axis of rotation of the rings of DSBCs;
Nl is a line of intersection of the plane of zero normal action and the plane of the cut of
the system of two DSBCs;
Pa1 is a zone of summarised forces of action of protons of the ring of DSBC-A located to
the left from the plane to which Nl is normal and which is passing through the point of
location of the proton of plasma on which these forces are acting;
Pa2 is a zone of summarised forces of action of protons of the ring of DSBC-A located to
the right from the plane to which Nl is normal and which is passing through the point of
location of the proton of plasma on which these forces are acting;
Pb1 is a zone of summarised forces of action of protons of the ring of DSBC-B located to
the left from the plane to which Nl is normal and which is passing through the point of
location of the proton of plasma on which these forces are acting;
Pb2 is a zone of summarised forces of action of protons of the ring of DSBC-B located to
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Figure 30: Action of protons of the rings of two DSBCs on the proton of plasma fast
relatively to them

the right from the plane to which Nl is normal and which is passing through the point of
location of the proton of plasma on which these forces are acting;
Fa1 is a force of action of the Pa1 zone;
Fa2 is a force of action of the Pa2 zone;
Fb1 is a force of action of the Pb1 zone;
Fb2 is a force of action of the Pb2 zone;
Npk is an intersection point of the plane of the cut of the system of two DSBCs and the
ring-shaped zone of zero action of forces of repulsion of protons of plasma by protons of
rings of two DSBCs;
Nc is the point of zero action of forces of repulsion of particles of plasma by particles of
two DSBCs;
Fn is a force of repulsion of the proton of plasma by protons of rings of the system of two
DSBCs which extrudes the proton of plasma outside the zone of zero action of forces of
repulsion of protons of plasma by protons of two DSBCs;
Fv is a force of repulsion of the proton of plasma by protons of rings of the system of
two DSBCs which intrudes the proton of plasma inside the zone of zero action of forces
of repulsion of protons of plasma by protons of two DSBCs.

In the sector A (Fig. 30) the sum of Fa1, Fa2, Fb1 and Fb2 forces acting on the
proton of plasma located at the Nc point equals to zero. In the sector B (Fig. 30) the
sum of Fa1, Fa2, Fb1 and Fb2 forces acting on the proton of plasma located at the Npk
point also equals to zero. In the sector C (Fig. 30) the Fn force is the sum of Fa1, Fa2,
Fb1 and Fb2 forces acting on the proton of plasma, it is not equal to zero and directed to
the left from the Npk point, i.e., to infinity from the Npk point. In the sector D (Fig. 30)
the Fv force is the sum of Fa1, Fa2, Fb1 and Fb2 forces acting on the proton of plasma,
it is also not equal to zero and directed to the right from the Npk point, i.e., to the Nc
point.

156



While DSBC-A and DSBC-B approach, the pressure upon the localised volume of
plasma saturated with protons will increase. Compression of volume, with the presence
of a certain sum of moments of momenta of particles in it, will result to the formation of
a rotating ring (the new ring) produced by this volume. According to conclusion from
Chapter 14, protons inside the new ring can attract both along circular trajectories and
crosswise them. If the density of protons in the new proton ring reaches a certain value,
then the formation of the proton condensate in it will become possible.

Along with the increase of the number of protons coming from the plasma into the
new ring where the proton condensate is formed, and while the distance between DSBC-
A and DSBC-B decreases, the forces of repulsion of DSBC-A and DSBC-B by the new
ring will strengthen. Once the repulsion forces become stronger than those of attraction
between two DSBCs so that DSBC-A and DSBC-B begin to scatter (i.e., the distance
between them starts to increase), centripetal forces acting in the new ring will start to
weaken. The new ring of the proton condensate will start to expand under the action
of centrifugal forces. The velocity of rotation of the new ring will begin to slow down.
If protons of this ring will be able to turn into the bound unsteady state as protons of
the ring formed by protons slow relatively to one another (the process is described at the
beginning of this chapter), then the new ring attracting electrons fast relatively to itself
will be able to form a new DSBC.

The process of formation of the new ring as described hereinabove is similar to
the process of formation of the current sheet by magnetic fields in the plasma. The
difference between the formation of the current sheet and the formation of the new ring
in PPST is that the current sheet is forming on surfaces of zero values of magnetic fields
generated by the motion of charged particles in the plasma, whereas the new ring of the
proton condensate should be formed inside the ring-shaped zone of zero action of forces of
repulsion of protons of plasma by protons of the system of two DSBCs. As follows from
Chapter 30, in other respects the processes are similar.

35 Interaction between two DSBCs without forma-

tion of a new DSBC

The process of formation of the dynamic system of bound condensates during the inter-
action of two DSBCs considered in the previous chapter is greatly simplified, not taking
into account many factors which can affect this process negatively.

Let us consider the situation when DSBC-A and DSBC-B having characteristics and
interaction conditions as determined hereinabove approach surrounded by the plasma
consisting of protons and electrons, then halt and begin to scatter under the action of
forces of repulsion of the new ring by the plasma saturated with protons without formation
of a new DSBC. In this case the increase of the distance between DSBC-A and DSBC-B
will result to the decrease of magnitude of centripetal forces acting of particles of plasma
of the new ring, and if centrifugal forces of inertia allow the plasma of the new ring
saturated with protons to displace from the internal area of the ring-shaped zone of zero
action of forces to its external area, then in the external area the plasma of the new ring
will leave the system under the action of inertia forces, repulsion forces between protons of
plasma and forces of repulsion by protons of two DSBCs. The process of bremsstrahlung
of emitting particles of the new ring during their slowing down in the plasma surrounding
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the system of two DSBCs will begin. Emitting particles will interact with particles of
electron and proton condensates of the system of two DSBCs at the zero velocity. The
process of evaporation of condensates will begin (please refer to Chapter 14) and the
ejection of protons and electrons from condensates will occur. Then, after ejection of
plasma of the new ring and particles during the evaporation of condensates, DSBC-A
and DSBC-B will start to approach again. These processes will repeat until either one of
DSBCs disintegrates or DSBCs scatter turning into the free state. DSBCs can also merge
into one or form the bound system of two DSBCs.

If DSBC-A and DSBC-B will have the moment of momentum relatively their mutual
mass centre so that centrifugal forces of inertia will prevent their approach but DSBCs
will not turn into the free state, then DSBCs can form the system of two bound DSBCs.
In case of termination of the plasma inflow into the zone of approach of DSBC-A and
DSBC-B at the moment when DSBC-A and DSBC-B start to approach after scattering
again and inertia forces in the new ring will be unable to eject the plasma of the new ring
outside the ring-shaped zone of zero action of repulsion forces, DSBCs will start to rotate
relatively to their mutual mass centre, and if their state will not be steady, they will
begin the oscillatory motion relatively the new ring, i.e., their approach will be changing
to scattering and vice versa. If the new ring will be pushed outside the zone of interaction
of two DSBCs, DSBCs will begin to rotate relatively to one another under the action of
attraction forces and inertia forces without participation of the new ring. Therefore, two
DSBCs can form the system of two bound DSBCs either with the new ring or without it.

The process of PPST of ejection of plasma of new rings saturated with protons by
two DSBCs from the zone of their interaction is similar to the process of plasma ejection
during the magnetic reconnection. The qualitative description of the process of magnetic
reconnection with ejection of plasma agrees with the qualitative description of the process
of plasma ejection in PPST during the interaction of condensate flows having a certain
curvature of their trajectories both between themselves and with particles of plasma.

36 The system of two bound DSBCs

Figure 31 demonstrates the internal structure of the system formed by two DSBCs. Here:
1 is DSBC-A; 5 is DSBC-B; 4 are the rings of proton condensates (marked with red); 6
are toroidal shells of electron condensates (marked with yellow); 8 is the neutral plasma
(marked with pink); 2 is the liquid melt (marked with blue); 3 is the crystalline shell
(marked with black); 7 is either the zone of the new ring or the zone which structure is
close to crystalline (marked with grey).

The model of the system of two bound DSBCs is created upon the assumption that
DSBC-A and DSBC-B having the characteristics and conditions of interaction as deter-
mined in Chapter 34, being initially joined in the presence of a certain amount of the
plasma, begin to rotate relatively to one another and make oscillatory motion around the
equilibrium point without any additional income of the plasma to the area of the new
ring (please refer to Chapter 35).

During the process of motion of the system of two bound DSBCs in the outer space,
the electron condensate due to interaction of particles presented in the space will start
to evaporate. The process of evaporation of electron condensate launches the process of
nuclear synthesis of various chemical elements in the rings of proton condensate (please
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Figure 31: Internal structure of the system of two bound DSBCs

Figure 32: The cut of the spatial model of the system of two bound DSBCs
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refer to Chapter 33). Obtained nuclei and atoms along with the cosmic dust form the
neutral plasma, liquid melt and crystalline shell around the system of two bound DSBCs.
It will be possible if magnitudes of velocities of protons in both DSBCs relatively to the
mass centre of the system of two bound DSBCs will not exceed a certain value while
magnitudes of velocities of electrons in both DSBCs relatively to the mass centre of the
system of two bound DSBCs will be greater than a certain value, when DSBCs attract
neutral atoms (please refer to Chapter 21).

Being under the action of inertia forces, nuclei of various chemical elements synthe-
sised in the proton rings will get to the electron shells of DSBCs, forming neutral atoms,
and then will be extruded to the surface of the system. Heavy elements will begin to
increase the thickness of the crystalline shell whereas light elements being in the gaseous
state will leave the system through cracks and pores which they will produce. The process
of formation of the crystalline shell of the system of two bound DSBCs is analogous to
the process of formation of a planetary crust where volcanoes erupting lava, gases and
ashes exist, forming mountains and cracks of the crust.

If during the formation of the system the new ring remains inside the system, then
the zone 7 at Fig. 31 will be the zone of the new ring. If the ring leaves the system
or disintegrates inside it, the zone 7 will have the structure close to crystalline. Once a
crystalline partition between two DSBCs is formed in the zone 7, oscillations of DSBCs
relatively to one another will become the minimum. The surface of the crystalline partition
will differ from the rest surface of the crystalline shell of the system of two bound DSBCs.
There should be less signs of volcanic activity since inertia forces in the proton rings
eject synthesised nuclei mainly within the plane of rotation of the rings, and inertia forces
arising due to rotation of DSBCs relatively to one another will remove synthesised nuclei
away from the crystalline partition.

The magnetic field around the system of two bound DSBCs allows for detection
whether there are active DSBCs inside the crystalline shell or not. If the magnetic field
exists, then either one or two active DSBCs are there. If there is no magnetic field,
then both DSBCs have been disintegrated, and the system will be a porous crystalline
formation with caves inside.

Figure 33 demonstrates a photograph of a comet which is more relevant to description
of the bound system of DSBCs. Figure 34 shows the Itokawa asteroid which matches the
description of crystalline shell inside which the DSBCs have been disintegrated. As it
turned out [30], the density of the substance inside the asteroid is varying from 1.75 to
2.85 grams per cubic centimetre. These two characteristic values of density relate to two
different parts of the asteroid. However, as it was discovered by the Japanese scientists
who researched the samples delivered to the Earth from the surface of asteroid, Itokawa
can be considered as a source of ordinary chondrites which density varies from 2 to 3.7
grams per cubic centimetre. This shows that caves and pores inside the Itokawa asteroid
can be distributed unevenly.

The MD 2011 asteroid can also be a former comet. Studying this asteroid using the
Spitzer orbital telescope, the US National Aeronautics and Space Administration found
that the diameter of the asteroid is six metres and its mass is about 100 tons. Due to
peculiarities of the structure, the density of asteroid is rather small. Scientists presume
that either there are big caves inside the MD 2011 or asteroid consists of discrete rocks
held together by the gravity force [31].

Based on the theory of DSBC and the theory of the system of two bound DSBCs,
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Figure 33: The photograph of the 103P/Hartley comet from November 4th, 2010

Figure 34: The Itokawa asteroid. Photo by NASA
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one can presume that condensates of DSBCs are the main threat during collisions of
such objects with the Earth. If we find a way of neutralisation of condensates before
collision with the Earth, then only the debris of the crystalline shell can reach the Earth.
It concerns active DSBCs but not the case of the Itokawa asteroid. Although asteroids
similar to Itokawa, consisting of the crystalline shell with no active DSBCs inside, should
disintegrate in the atmosphere of the Earth to rather small debris.

Such debris rather often collides with the Earth. It happens as the Earth passes
orbits of comets. Most likely the disintegration of crystalline shells of comets occurs when
they pass close to the Sun, entering its atmosphere. The alteration of luminosity of the
ISON comet while it approached the Sun in the middle of November, 2013, can be an
example of this event (Figure 35).

Figure 35: The ISON comet

For a single DSBC moving in the outer space all processes will be analogous to those
for the bound system of two DSBCs. Processes related to the new ring will be lacking in
the single DSBC.

37 Free volume of the proton condensate

If a certain volume of the proton condensate would exist in the outer space, then in
theory it could form the liquid melt and the crystalline shell at its surface. For doing
that, it has to accept cosmic electrons which should participate in nuclear synthesis and
formation of neutral atoms. If formed nuclei and neutral atoms will be slow relatively
to protons of the condensate, then they will attract both the volume of condensate and
each other, forming the liquid melt and the crystalline shell. The free volume of the
proton condensate surrounded with crystalline shell and formed as a result of this process
can have some magnetic field generated by flows of condensate. The free volume of the
proton condensate surrounded with crystalline shell will have an excess of slow protons.
Free volumes of condensates can be bound. If protons of volumes will be slow relatively to
one another, then volumes will attract, having a possibility to turn into the bound state.
Hence, comets similar to 103P/Harley (see Figure 33) can be the systems of two bound
volumes of the proton condensate.
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38 The system of two bound DSBCs in the atmo-

sphere of Earth

What processes happen if a system of two bound DSBCs would enter the Earth’s atmo-
sphere at the speed typical for bodies of the Solar System? Based on the theory of the
system of two bound DSBCs considered in Chapters 35, 36 and 37, let us determine these
processes.

First is heating and destruction of the crystalline shell.
Second is dispersion of liquid melt and plasma in the atmosphere.
Third is interaction between electron condensate of toroidal shells and the atmo-

sphere, and, as a consequence, formation of atmospheric plasma, evaporation of conden-
sates, nuclear synthesis.

Fourth is formation of the new ring consisting of ions of atmospheric plasma and
vapours of condensates.

Fifth is ejection of particles of the new ring from the zone of interaction of two
DSBCs.

Sixth is bremsstrahlung of particles of the new ring in the atmospheric plasma.
Seventh is ejection of electrons, protons and nuclei during the evaporation of conden-

sates, and, as a consequence, the bremsstrahlung of electrons, protons and nuclei in the
atmosphere.

Eighth is repetition of processes from the third to the seventh inclusive.
What can be observed during occurrence of these processes?
1. The change of visible spectrum of object glow along the trajectory.
It appears as a result of the succession of processes: first – second – eighth. Initiation

of glow will be determined by the spectrum of radiation during the heating and destruction
of the crystalline shell in the atmosphere of the Earth. The second stage of glow is related
to dispersion of the liquid melt. The third one is related to the radiation during the
ejection of electrons, protons and ions to the atmosphere. And the fourth stage is related
to the radiation due to the burning of gases being formed.

2. Coherent radiation.
This is a consequence of the sixth and the seventh processes. The coherent

bremsstrahlung appears during the deceleration of electron beams by counter beams of
ions [32]. Electrons and protons of evaporating condensates as well as the plasma particles
of the new ring can produce the coherent bremsstrahlung on ions in the atmosphere.

3. Pulsing glow of the object.
Appears as a consequence of repetition of the eighth process.
4. Ejections of plasma followed by the decrease of radiation energy of the object.
This is a consequence of the seventh process.
5. Force interaction of isolated objects formed due to all processes.
Attraction and repulsion between DSBCs. Interaction of non-evaporated volumes of

condensates remained after the disintegration of DSBCs.
6. Radiation within the radio frequency range which can be registered at the acoustic

frequencies (20 Hz – 20 kHz) during the motion of the object.
This phenomenon is analogous to the observation of low-frequency radio waves during

either the motion of flows of charged particles or at the moment of appearance of electric
discharges in the atmosphere [33], [34]. The ejection of charged particles of the new rings
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and vapours of condensates into the atmosphere is the process similar both to the motion
of flows of charged particles and to atmospheric electric discharges.

7. UV radiation during the glow of the object.
It is related to the bremsstrahlung of fast charged particles in the atmosphere during

the ejection of particles of the new rings and particles during the evaporation of conden-
sates.

8. Flows of energetic charged particles.
This is a consequence of evaporation of condensates of DSBCs.
What happens after the completion of these processes?
1. Fallout of debris of a certain mass and size and their certain distribution at the

Earth’s surface relatively to the flight trajectory and areas of glow along the trajectory.
The destruction of the crystalline shell should occur along cracks and caves through

which the synthesised gas has been flown out. Due to the fragility and taking into account
the average speed of bodies of the Solar System, the destruction of the crystalline shell
should occur rather quickly and at high altitudes above the Earth’s surface. The size of
large fragments should correspond to the thickness of the crystalline shell. The formation
of larger debris is possible within the zone of crystallised new rings.

Knowing parameters of motion, the motion trajectory and coordinates of the point
of destruction of the crystalline shell, using formulas and methods described in Appendix
2 (Chapter 45) at the end of this study, one can determine the maximum distances which
the debris of a certain mass will cover from the point of destruction.

2. Formation of a dust cloud at the altitude of dispersion of the liquid melt.
Once the crystalline shell is destroyed, the liquid melt and the plasma will begin to

disperse under the action of the counter atmospheric airflow. Crystallisation of dispersed
liquid melt will form a dust tail which will spread along the trajectory below the altitude
of destruction of the crystalline shell and above the starting point of mass ejection of
charged particles into the atmosphere.

3. A two-component constituent of dropped fragments and a thin layer of debris’
coating.

The existence of two types of dropped fragments is the result of the presence of the
crystal structure formed before the shell has been destroyed and formed by the liquid melt
after the destruction of the crystalline shell.

The debris of the crystalline shell should be coated with the thin layer of hardened
liquid melt during their flight through the liquid melt dispersed by the atmosphere. This
coating layer should be lacking in the ruptures appeared after the fragments flew through
the liquid melt.

4. Ionospheric changes after the flight of the object.
Ionospheric processes should be periodic. The periodicity is the result of repetition

of the eighth process. Probably the periodic process of evaporation of electron and proton
condensates will mostly impact ionospheric layers. During the evaporation of condensates
due to the action of radiation of a certain energy appearing upon the ejection of parti-
cles of the new rings into the atmosphere the velocity of evaporating electrons will be
faster than the velocity of evaporating protons. Fast electrons will be the first to enter
the Earth’s atmosphere. They will form a negative volume charge. Fast protons will
enter the atmosphere after electrons, forming a positive volume charge. Electromagnetic
pulses appearing during this process will impact the ionosphere in a certain way. The
bremsstrahlung within the continuous spectrum from the UV range to the radio range
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appearing during the motion of charged particles through the atmosphere also contributes
into ionospheric phenomena [35].

5. The process of burning and burst of the gas in the trail of the object resulting to
formation of the water vapour.

The trail of the object in the Earth’s atmosphere below the zone of dispersion of the
liquid melt and the plasma of the system of bound DSBCs will be the plasma mainly con-
sisting of nitrogen and oxygen (i.e., the components of the Earth’s atmosphere), hydrogen
(protons of the condensate of the rings of DSBCs) and ions of chemical elements which
nuclei have been synthesised in the proton-nuclear condensate of DSBCs. Depending on
the concentration of oxygen and hydrogen, either burning or bursts will occur in the var-
ious zones of the trail. The final product of this process is the water vapour. Therefore,
the trail of such event below the dust cloud will consist of water vapour, compounds of
nitrogen with hydrogen and compounds with the presence of elements synthesised by the
pair of bound DSBCs.

6. Formation of zones of increased temperature in the trail of the object in the
atmosphere.

As a result of periodic processes of formation and ejection of the new rings followed
by evaporations of condensates and ejections of charged energetic particles, some sections
of trajectory at which these processes occur will have a higher temperature. As a con-
sequence, these sections of trajectory will have a brighter luminosity compared to that
of sections between them. Therefore, the trajectory beyond the dust trail should be an
alternation of bright and dark sections.

7. Blast waves from many sources along the flight trajectory.
The blast waves should be generated by the following processes:
1. ejection of electrons, protons and atomic nuclei into the atmosphere during the

ejection of the new rings and evaporation of condensates;
2. bursts of the gas (a mixture of hydrogen and oxygen) formed in the trail.
Due to periodicity of ejection of charged particles, the sources of bursts will be located

at certain distances from one another along the trajectory of motion of the object. Bursts
will occur at some certain intervals of time. Thus, one can observe a lot of acoustic effects
from bursts following one another, occurring at different points of the trajectory, some
discrete blast waves at a certain distance from the burst epicentres and infrasonic waves
generated by these bursts and outgoing from the moving source.

Only three processes would be realised during the entry of a single DSBC into the
Earth’s atmosphere:

First is heating and destruction of the crystalline shell.
Second is dispersion of liquid melt and plasma in the atmosphere.
Third is interaction between electron and proton condensates and the atmosphere,

and, as a consequence, formation of atmospheric plasma, evaporation of condensates,
nuclear synthesis.

What would happen during the motion of the free volume of the proton condensate
in the atmosphere of the Earth?

First, the crystalline shell will be destroyed.
Second, the liquid melt will be dispersed.
Third, the evaporation of the proton condensate during its interaction with the at-

mosphere will begin as well as the nuclear synthesis at the surface of the condensate as
electrons enter it.
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Further on, if the velocity of motion of the proton condensate relatively the at-
mosphere will be quite slow, then the condensate will be uniformly heated and evenly
evaporated. However, if due to the fast velocity of the volume of condensate during
its interaction with the Earth’s atmosphere the mass process of evaporation of the pro-
ton condensate begins at its surface and a deep surface layer of vaporised condensate is
formed, then the condensate can start evaporating impulsively. The volume of condensate
will eject free protons fast relatively to the condensate from its surface. The expanding
sphere of fast protons will enter the atmosphere, simultaneously compressing the volume
of remained condensate. If due to compression and radiation caused by fast protons in
the atmosphere the temperature of the surface layer of the volume of proton condensate
reaches the critical value, the second ejection of condensate will follow the first, the third
ejection will follow the second, etc. This pulsed process of evaporation of condensate can
be analogous to the process of appearance of the Bragg peak of ionisation of atoms during
the transition of the beam of protons through the volume of these atoms (please refer to
Chapter 18). Once the magnitude of velocity of first beams of protons relatively the mass
centre of remaining condensate due to its deceleration in the atmosphere becomes less
than the halved neutral relative velocity of protons, the mass interaction of protons of
beams with protons of condensate at the zero velocity will occur, and the new impulse
of evaporation will follow. Explosive processes and the counter atmospheric flow can
split the condensate into smaller volumes which will attract and fly in groups evaporating
either gradually or impulsively.

Therefore, we can conclude the following:
The processes occurring during the motion of the system of two bound DSBCs, or

the single DSBC, or the free volume of the proton condensate will result to the same
consequences differing very little from one another. Thus, the most complete list of signs
of the motion of such objects in the Earth’s atmosphere is presented in the analysis
of events occurring during the motion of the system of two bound DSBCs. Then the
comparison of motion of a space object through the atmosphere of Earth to the theory
of the system of two bound DSBCs will also include the comparison to the theory of the
single DSBC and to the theory of the free volume of the proton condensate.

According to PPST, in nuclei of atoms there are protons slow relatively to one another
and electrons slow relatively to one another. In other words, nuclei of atoms consist of the
proton and the electron condensates. During the nuclear blast the evaporation of both
proton and electron condensates occurs. Thus, instruments and methods of observation
of atmospheric nuclear blasts will be applicable for the observation of processes related to
entrance of DSBCs and free volumes of proton condensates into the Earth’s atmosphere.

39 Phenomenon of ”Chelyabinsk meteor”

Destruction of an object from outer space occurred on 15 February 2013 over Chelyabinsk
is the first event in the history of mankind which manifestation has been observed and
registered almost fully. In order to study this event, we will compare the information
obtained from observations and conclusions based on this information to the theoretical
conclusions of Chapter 38.

What has been observed during the motion of the object through the atmosphere of
Earth?
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1. The change of the visible spectrum of glow of the object along the trajectory.
Figure 36 represents two snapshots of a footage [36] which demonstrate the change

of luminosity after the crystalline shell of the pair of two bound DSBCs has been de-
stroyed. Based on this footage, we can conclude that the destruction of the shell occurred
approximately at a height of about 50 to 40 kilometres.

Figure 36: The change of luminosity after the destruction of the crystalline shell

2. Coherent radiation.
Figure 37 demonstrates a snapshot of a footage [37] and Figure 38 shows two snap-

shots of a footage [38].
These two footages have been taken in two different parts of Chelyabinsk City.

Perhaps the provided shots captured the interference at car windscreens of coherent
bremsstrahlung of beams of electrons or protons during the ejection of particles of the new
rings or particles of evaporating condensate in the ionised atmosphere. Various colours
of coherent bremsstrahlung (purple and green) can be the consequence of the presence of
atoms and molecules of nitrogen and oxygen in the atmosphere of Earth which electrons’
perturbation has been registered by video recorders during the interaction of electrons of
atoms at the zero velocity with beams of charged particles.

3. Pulsing glow of the object.
As it will be shown later, the intervals between the bursts are very short. Almost all

video recorders react differently on the change of glow. Therefore, the detection of this
event is quite difficult. However, it is visible at a footage [39].

4. Ejections of the plasma with the further decrease of the radiation energy of the
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Figure 37: The interference at the car windscreen
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Figure 38: The interference at the car windscreen
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object.
The largest ejection of the plasma after which the glow of the object has been inter-

rupted is demonstrated at Figure 39 (a snapshot of a footage [40]).

Figure 39: Ejection of the plasma

Two dark spots at the snapshot are the consequence of shading of light spots (i.e.,
the brightest zones) by the video recorder. The first, large spot continues its motion while
the small one remains where it is, gradually dying down.

5. Force interaction of isolated objects formed due to all processes.
This phenomenon is visible at the large number of footages. Figure 40 demonstrates

two snapshots of a footage [41]. As is seen on the snapshots, one object overtakes another.
Then they fly along, not outrunning each other. Another snapshot of this footage (Figure
41) shows that later on the objects have split up. Figure 42 demonstrates four snapshots
of a footage [42]. Here one can also observe the force approach of objects 5 and 6 (Fig.
42) and their further motion in a pair. Other objects, 1-2 and 3–4, also fly in pairs despite
their relative dimensions (one of them is bigger than another). The termination of glow
of objects most likely means the completion of the process of evaporation of condensates.

6. Radiation in the radio frequency range which can be registered at the acoustic
frequencies (20 Hz – 20 kHz) during the motion of the object.

Figure 43 demonstrates the frequency characteristics of two tracks of a stereophonic
audio record (horizontal axis is time in seconds, vertical axis is frequency from 0 to 20
kHz, intensity of radiation is marked with colour) extracted from a video file [43].

Figure 44 shows a cutting from the upper track of audio record. This part of audio file
contains outbursts of radio radiation during the glow of object. Figure 45 demonstrates
the enlarged cutting of the central part of this radiation. The second channel of the
stereophonic record taken by the video recorder contains all sounds whereas the first
channel contains the radio noise only. Most likely the microphone of the first channel was
defective and worked only as a radio antenna, not as a microphone. Radio interference
registered onto the first track presents at the second as well but it is overlapped by
audio record. Superposition of audio record from the first track on video records taken
by other recorders demonstrates that radio outbursts correspond to periods of glow, to
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Figure 40: Interaction of objects
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Figure 41: Interaction of objects
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Figure 42: Interaction of objects
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Figure 43: Stereophonic audio record taken by a video recorder

Figure 44: Acoustic frequencies of radio radiation

Figure 45: Acoustic frequencies of radio radiation
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interruptions of glow, and to termination of glow of objects formed during the process
of destruction of the main object. Probably radio outbursts coincide with the moments
of bursts of radiation from the object along the trajectory. Time periods between radio
outbursts fluctuate from 0.03 to 0.08 seconds average. This is a reason why it is quite
difficult to detect the pulsing radiation. The first radio outburst follows the termination
of the process of dispersion of the liquid melt.

Analysing frequencies of radio outbursts presented at Figure 45, one can conclude
that the spectrum of this radiation is discrete to a certain extent. The decrease of band-
widths of radiation frequencies while the frequency increases attracts attention. Perhaps
in the range of higher frequencies which have not been registered by the video recorder
bands are narrow, similar to those in the spectra of radiation of atoms. On the other
hand, such discreteness can be either a consequence of absorption of certain frequencies
in continuous spectrum of bremsstrahlung of particles or a consequence of some peculiar-
ities of receiver of radiation (audio recording system of the video recorder). If we ascribe
outbursts and discreteness of the radio radiation at acoustic frequencies during the flight
of the object to its glow, then we can ascribe the discreteness of spectrum of this radia-
tion either to processes of emission or absorption upon the transition of bound pairs of
like particles of condensates during their evaporation into the free state or to the radio
radiation by protons of neutrons of atoms of atmosphere upon the transition of protons
and electrons of these neutrons into the unsteady state during the interaction of beams
of particles of evaporating condensates (please refer to Chapters 18 - 20).

Another object which trigger of radio radiation is the radiation of glowing object on
higher frequencies could also be the source of radiation outbursts.

Perhaps it is just an accidental coincidence of two different processes. There is a
probability this radio interference has another origin. However, the probability of it to be
a result of glow of the object over Chelyabinsk is very high.

7. UV radiation during the glow of the object.
Some eyewitness accounts indicate the impact of the UV radiation and its conse-

quences. Somebody felt a fierce heating, many people were flushed with heat, some of
them have got insignificant sunburns. There is no data about registration of the UV
radiation instrumentally or by sensors.

8. Flows of energetic charged particles.
On 15 February 2013 some flows of heavy charged particles which characteristics

differed from those of the background radiation have been registered 1-3 hours before
and after the meteoroid exploded. Sources which could emit these flows have not been
detected. The probability of fortuitousness of this event is evaluated equal to 9 per cent
[44].

What happened after the completion of these processes?
1. Fallout of debris of a certain mass and size and their certain distribution at the

Earth’s surface relatively to the flight trajectory and areas of glow along the trajectory.
A map demonstrated at Figure 46 is one of the most complete maps of debris fallout

locations [45]. Figure 47 illustrates the theoretical calculation of locations of the maximum
fallout of fragments of certain masses. It is meant that a fragment of a certain mass could
not fly farther than the circle indicating this mass. Red circles are settlements according to
the map. Yellow circles illustrate the calculation for instant destruction at the altitude of
50 km. Magenta circles are the results of calculation for instant destruction at the height
of 40 km. The calculation was performed based on the formulas (674-683) of Appendix 2
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Figure 46: Debris fallout map

Figure 47: Theoretical calculation of fallout of debris
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(Chapter 45) under the following values of constants:
v0 = 19 km/s which is an initial velocity of a fragment;
Cd = 0.3 which is the drag coefficient;
P0 = 1.225 kg/m3 which is a density of the atmosphere at the Earth’s surface level;
H = 7500 km which is a characteristic scale of altitudes;
Pm = 3.3 g/cm3 which is a density of the fragment;
C0 = 18.5 deg. which is an angle between the trajectory and the Earth’s surface.

The altitude of trajectory over Yemanzhelinka village is 23 kilometres. The projection
of trajectory on the Earth’s plane is directed from Yemanzhelinka to Lake Chebarkul.

Comparison of the data according to the map (Figure 46) and results of calculation
(Figure 47) does not allow for unambiguous conclusion about the altitude at which the
destruction of the crystalline shell had occurred. Calculations of debris fallout after
the theoretical destruction of the shell at the height of 50 and 40 kilometres generally
correspond to the data of the map. Judging from the size of fragments being found, the
thickness of the crystalline shell was not more than 0.2 metres.

2. Formation of the dust cloud at the altitude of dispersion of the liquid melt.
As a result of Chelyabinsk event, a sustainable aerosol cloud has been formed at the

height of 34–38 km, consisting of fragments of meteor substance before ignition during the
entry into the dense atmosphere [44]. Three photographs (Figure 48) taken by MTSAT-2
satellite on 15 February 2013 at 3:32am UTC, at 5:01am UTC and at 6:32am UTC in
the visible spectral range allow to see the formation and displacement of an aerosol cloud
in the stratosphere and mesosphere which has developed from the initial part of object’s
trail [46]. This cloud of dust can be a consequence of dispersion of the liquid melt by the
atmosphere of Earth after the crystalline shell has been destroyed.

Figure 48: Displacement of a dust cloud in the stratosphere and mesosphere registered
by MTSAT-2 satellite (0.73 µm visible) on 15 February 2013 at 3:32am UTC, at 5:01am
UTC and at 6:32am UTC

3. The two-component constituent of dropped fragments and a thin layer of debris’
coating.

As is written in the statement [47], the most of researched fragments of Chelyabinsk
meteorite have the light colour of the central part and a dark crust. Authors have investi-
gated one sample different from others. This fragment is characterised with the dark grey
colour of the central part, macroscopically visible difference between the coarse-grained
(primary) and fine-grained (recrystallized) aggregates and the presence of multiple spher-
ical caves (bubbles) in the fine-grained aggregate. It gave authors a reason to mark out a
specific type (intensively melted) for the fragments of Chelyabinsk meteor. “Intensively
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melted” debris could also be formed during the crystallisation of the liquid melt.
The surface of dropped meteorite debris is coated with a black glassy substance with

pores and drop-shaped inclusions of sulphides and metals [48]. This coating could appear
due to dispersion of the liquid melt and passage of debris of the crystalline shell through
it.

4. Ionospheric changes after the flight of the object.
Observations of ionospheric changes have been described in the work [44]. Based on

them, two conclusions were made:
- Narrow beams of perturbations have been detected on the vertical cuts of ionosphere

over the European part of Russia few hours after the blast (Figure 49). One can presume

Figure 49: Restored cuts of the ionosphere from 15 February 2013

that the ionospheric perturbation related to the entry of meteoroid have spread in the
form of waves similar to narrow beams gradually expanding westward within the solid
angle equal to 15◦–17◦. The direction of their displacement corresponded to prolonged
trajectory of motion of meteoroid before the moment of its blast;

- An effect of regional drawdown of the ionosphere has been registered at the altitudes
up to 250 km few hours after the blast of meteoroid.

Narrow beams of perturbations on the vertical cuts of ionosphere can be the result of
periodic processes of ejection of charged particles during the evaporation of condensates.

5. The process of burning and burst of the gas in the trail of the object resulting to
formation of the water vapour.

After 15 February 2013, an increased concentration of water vapour has been reg-
istered at the altitudes of 700 km which was confirmed by various types of observations
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(satellite observations: in the absorption band of water vapour (6.8 µm) and also using
the radio frequency mass spectrometer). As authors of the study mention, the detection
of traces of molecules of water is the evidence of that the origin of meteoroid can be
cometary [44].

Figure 50: Burning of gases in the trail

Figure 51: The raise of the heated gas after its burning and explosion

The process of burning and explosion of gas can be observed on many footages and
photographs (e.g., Figure 50). Locations of explosions and burning of gas along the
trajectory can be detected by raising of gas clouds (Figure 51). Based on the analysis of
photographs (Figure 52 and Figure 53) taken by FY-2D satellite ten minutes after the
entry of the object into the troposphere [49], we can conclude that the main cloud of water
vapour has been formed during the brightest burst after which the glow of the object has
been interrupted. This cloud is also visible at the photograph (Figure 51).

6. Formation of zones of increased temperature in the trail of the object in the
atmosphere.

Formation of zones of increased temperature in the trail of the Chelyabinsk event is
visible at Figur 54 (snapshots of a footage [36]) and at Figure 55 (snapshots of a footage
[41]). Figure 56 demonstrates snapshots of a footage [50] which recorded an atmospheric
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Figure 52: The cloud of water vapour (6.8 µm) above the point of major blast registered
by FY-2D satellite on 15 February 2013 at 3:30am UTC

Figure 53: The trail of object (0.73 µm visible) registered by FY-2D satellite on 15
February 2013 at 3:30am UTC
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Figure 54: Zones of increased temperatures in the trail of the Chelyabinsk event

Figure 55: Zones of increased temperatures in the trail of the Chelyabinsk event
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Figure 56: Zones of increased temperatures in the trail of the Crimea event

Figure 57: Zones of increased temperatures in the trail of the Murmansk event
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trail of the Crimea event (21 November 2013), Figure 57 presents snapshots of a footage
[51] of the Murmansk event (19 April 2014).

Glowing zones in the trails of all three objects are almost identical. The zones of
increased temperature in the trails of the Crimea and Murmansk events are visible more
clearly in the night sky. The processes of glow and destruction of all three objects are
similar. Time intervals between the flashes forming the glowing zones are about 0.03–0.08
seconds for all these events.

7. Blast waves from many sources along the flight trajectory.
A nuclear blast in the atmosphere generates low-frequency acoustic oscillations (in-

frasonic waves). Nuclear test detecting stations have registered the source of infrasonic
waves around Chelyabinsk on 15 February 2013. The source of infrasound was transient,
not stationary [52], [53]. The stationary nuclear blast generates a broad spectrum of pres-
sure waves which frequencies cover the ranges from the audible sound to 0.02 Hz. Waves
are spreading from their source at about the speed of sound in the air. At the distance
of a thousand kilometres and more the spectrum becomes much more narrow and the
highest distinct frequency is only about 0.03 Hz [54], [55].

It is most likely that the process generating the low-frequency acoustic waves is the
process of pulsing evaporation of condensates, both during the nuclear blast and during
the destruction of DSBC in the Earth’s atmosphere or during the evaporation of the free
volume of proton condensate.

The frequencies of formation of flashes during the Chelyabinsk, Crimea and Mur-
mansk events lay within the range from 12 Hz to 33 Hz. It is very probably that par-
ticularly this frequency of bursts during the Chelyabinsk event formed the low-frequency
acoustic waves which have been registered by nuclear blast detecting stations as waves
from the transient source. And the audio record of radio interference captured by a video
recorder of a car during the Chelyabinsk event can be the real-time record of bursts since
the frequencies of formation of flashes and frequencies of pulsations of the radio noise lay
within the same range.

Correspondence of flashes to outbursts of radio radiation during the Chelyabinsk
event can be detected on two photographs at Figure 58: the upper image is a snapshot
of a footage [41]; the lower one is a cut of the time-frequency characteristics of the audio
file extracted from the footage [43]. Glowing zones 1, 2, 3 at the upper photograph can
correspond to three radio outbursts 1, 2, 3 at the lower image. A big gap 4 between
radio outbursts at the lower photograph can correspond to the interrupted glow 4 at the
upper picture. The brightest flash formed the glowing zone 3 and after that the longest
interruption in formation of flashes occurred while the longest gap between the radio
outbursts appeared.

Audio effects and blast waves from the sequence of bursts have been registered by
cameras which have been located close to the epicentres of bursts. A reflection of blast
waves following one another from the surface of earth is observable as double waves on
the footage recorded at the height of a column crane [56]. One can detect the presence
of small bursts before the formation of the most powerful blast from the soundtrack of a
footage [57].

From this chapter we will conclude the following:
Comparison of theoretical presumptions about the process of entry of the system

of two bound DSBCs into the atmosphere of Earth and real events (Chelyabinsk on 15
February 2013, Crimea on 21 November 2013, Murmansk on 19 April 2014) provides a
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Figure 58: Correspondence of flashes to radio outbursts
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high degree of probability that the objects caused these events were either the systems
two bound DSBCs or the single DSBCs or the free volumes of proton condensate.

40 Processes at the Sun and in the solar atmosphere

Periods of solar activity while magnetic fields of the Sun are changing can be considered
using the theory of the system of two bound DSBCs and presuming that the core of the Sun
is a system of two bound DSBCs. Periods of oscillation of rings of proton condensate of two
DSBCs relatively to the new ring (convergence and divergence) with the changing of the
Solar magnetic field will correspond in this case to periods of solar activity. Appearance
and disappearance of sunspots can be a consequence of displacement of proton rings of
two DSBCs relatively one another and their activity resulting to ejection of the proton
condensate to the surface of the Sun. The decreased temperature in the sunspots should
be a result of extrusion of the proton condensate to the surface as the temperature of
condensate is less than that of the Solar surface. The process of evaporation of condensate
into the atmosphere of the Sun should cause the increase of the temperature of atmosphere
above the Solar surface forming the solar corona. Therefore, the temperature inside the
Sun should generally match the temperature of the proton condensate. Then, there should
exist an area with the temperature equal to that of evaporation of condensate, an area
of increased temperature containing high-energy particles of vaporised condensate should
lay above it.

Ejections of large volumes of plasma by the Sun can be related to ejection of either
fragments of the new ring or fragments of proton rings during the mass evaporation of the
condensate. If we presume that the process of formation of the solar wind after the Sun
has ejected its protons into its atmosphere is generally determined by the process of PPST,
i.e., the process of interaction of the proton and the electrically neutral volume of particles
(please refer to Chapter 24), then the solar wind should consist of protons with magnitudes
of their velocities relatively to the mass centre of the Sun greater than a certain value at
which protons of the solar wind and the volume of protons and electrons of the Sun (if we
consider it electrically neutral) are in the neutral state. Protons with the neutral velocity
which value is the minimum in the flow of the solar wind will be neither attracted nor
repelled by the Sun. Protons which velocities are faster than this neutral velocity will
be repelled by the volume of particles of the Sun, forming the Solar atmosphere which is
expanding along the radial direction. And protons with slower velocities will be attracted
by the Sun.

The synthesis of deuterium, helium and other elements presenting at the Sun can
occur both in the rings of proton-nuclear condensates of DSBCs and in the proton con-
densate extruded from these rings to the surface of the Sun.

Flares on the Sun can be considered within the frame of PPST if a separate solar arc
is pretended as a DSBC not formed yet. It will be a flow of either proton condensate or
protons slow relatively to one another; the flow is moving along the ring-shaped trajectory
through a channel formed in the plasma of the solar atmosphere (please refer to Chapter
29) and partly submerged beneath the surface of the Sun. Protons of the flow slow
relatively to one another will attract each other and repel the neutral plasma of the solar
atmosphere which surrounds the flow if the magnitude of velocity of the flow of protons
relatively to the plasma of the solar atmosphere will be greater than a certain value (please
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refer to Chapter 24). As a result, the flow of the proton condensate will move along the
channel of rarefied plasma where the resistance to its motion from the side of fast protons
and ions of the plasma will be the minimum. Therefore, the ring of the proton condensate
will exist in the plasma environment within a certain period of time. The interaction of
two solar arcs will occur according to scenario of interaction of two DSBCs (please refer
to Chapter 34 and 35). During the process of approach and halts of interacting arcs
without formation of a new arc by them, the new rings of protons of solar plasma will be
forming with the further ejection of the plasma formed by the new rings from the zone
of interaction of arcs. As a result, the pulsing radiation with ejection of the plasma and
a flow of high-energy charged particles will be registered, where the particles of the flow
mostly will be the protons of the proton condensate of rings of arcs and those of the new
ring since free protons after the evaporation of condensate in arcs and in the new rings
will repel from the zone of evaporation with the force proportional to the quantity of the
proton condensate in the zone of evaporation.

41 The Sun and the formation of planetary cores and

cometary nuclei

It is very likely that the solar arc formed by the ring of proton condensate surrounded
by fast electrons can create a DSBC. Then, if these formed DSBCs could leave the Sun
during the solar bursts, they in turn would be able to form cometary nuclei and cores of
planets of the Solar System. Formation of cometary nuclei and planetary cores is also
possible during the process of ejection by the Sun of a free volume of proton condensate
or a volume of protons slow relatively to one another which then will form either a free
volume of the proton condensate or a DSBC (please refer to Chapter 34).

Therefore, along with the process of formation of planets by the gravitational con-
traction, the secondary process of formation of these objects in the space is possible in
PPST. The matter of injection of formed cometary nuclei and planetary cores into el-
liptical orbits relatively to the Sun needs to be reviewed separately. Comets hitting the
Sun can be the objects completed the first turn (i.e., returned to where they flew from).
Comets “grazing” the Sun (the sun-grazing comets) can change their orbit at the first turn
and pass by the Sun, later on gradually increasing perihelia of their orbits. Intermolec-
ular forces which connection to gravity forces was described in Chapter 26 will probably
participate this process. A comet moving relatively the Sun will change its velocity and
temperature, which in accordance to PPST will result to changing of attraction force
between the comet and the Sun. This effect along with the complex interaction between
the comet and bodies of the Solar system, the solar wind and the solar radiation can allow
some comets to increase the maximum distances of their motion trajectories relatively to
the centre of the Sun while returning to the Sun. The 2P/Encke comet which has the
shortest known orbital period can be such comet; parameters of its circumsolar trajectory
are permanently changing [58].
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42 Processes in the atmosphere of Earth, in the

earth’s crust, in the mantle and in the circum-

terrestrial space

The highest temperature at which the phenomenon of superconductivity at high pressure
has been registered is 203K (–70◦C) [59]. If we go back to Chapter 28 (“Superconduc-
tivity”) and Chapter 14 (“Formation and evaporation of condensate consisting of bound
pairs of like particles”), then, based on the (419), we can presume the following:

The temperature of a substance in which the repulsion of free electrons between one
another changes to attraction is higher than 203K.

The temperature in the Earth’s atmosphere can drop down below 203K. Thus,
the atmosphere can acquire some properties of superconductors, e.g., electrons in the
atmosphere can attract one another and repel from neutral atoms and ions (please refer
to Chapter 21). It can explain the fast concentration of electric charges in the large
volumes of atmosphere.

Interaction between two volumes of electron condensate located in the atmosphere
should occur according to the following scenario:

A small volume of condensate will accelerate toward a bigger one until a certain
magnitude of velocity relatively to the mass centre of the large volume is reached, which
will be less than the velocity of the neutral state of small and large volumes of conden-
sate. It will simultaneously decelerate due to interaction with atoms of the atmosphere.
Being braked, the condensate will start to accelerate again. As a result, its motion will
occur impulsively, jerkily, until attracted condensate either evaporates or combines with
attracting volume. This process can determine the dynamics of lightning leaders in PPST.

Interaction between volumes of electrons slow relatively to one another and a volume
of atoms which contains a large number of ions will be determined by the following
dynamics:

If velocities of electrons slow relatively to one another in regard to the volume of ions
will be less than a certain value, then volumes will repel and the charges will be separated.
If velocities of electrons slow relatively to one another in regard to the volume of ions will
be greater than a certain value, then the volume of ions will attract electrons, and they
will accelerate towards the volume of ions, i.e., an electric discharge will occur. In this
case the discharge should be mainly continuous, without any lightning leaders, since while
accelerating towards the volume saturated with ions, starting from the certain value of
magnitude of velocity relatively to the volume of ions, electrons will start to accelerate
continuously according to the Coulomb law. Electrons fast relatively to the volume of
electrons which are slow relatively to one another can also accelerate continuously while
repelling from it according to the Coulomb law. This process can describe a secondary
lightning discharge from the Earth to the atmosphere. Once the flow of electrons slow
relatively to one another, which propagates downward from the atmosphere to the Earth
following lightning leaders, forms a channel of plasma to the large volume of slow electrons
at the Earth, the large volume of slow electrons at the Earth will eject electrons of the
channel fast relatively to this volume upward to the atmosphere along the channel being
formed, and these electrons will continuously accelerate upward.

Gradients of the temperature in the atmosphere created by flows, storm-clouds, dust,
solar radiation, etc., should generate electromotive forces acting on charged particles of
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the atmosphere during the electrification of volumes of neutral atoms of the atmosphere
(please refer to Chapter 23) between which atmospheric discharges will occur. In this
case electrons of the discharge will move from the volume of neutral atoms of atmosphere
which has the excess of electrons to the volume of neutral atoms with the shortage of
electrons.

In the previous chapter we presumed that the Earth’s core can be either a DSBC or
a bound pair of DSBCs or a free volume of the proton condensate. If this presumption
represents the facts, then electric charges between the volumes of atmospheric conden-
sates and condensates of the Earth’s core should occur in the points of the least electric
resistance of the Earth’s crust and mantle. Such charges often occur during volcanic
eruptions and earthquakes. Explosions of large volumes of condensate of likely charged
particles in the mantle, beneath the Earth’s crust and in the crust can accompany ejec-
tions of such volumes from the Earth’s core. Therefore, based on PPST, we can presume
that certain types of earthquakes (e.g., deep-focus earthquakes) can be the consequences
of fast evaporation of volumes of condensates of likely charged particles ejected from the
Earth’s core. Powerful explosive volcanic eruptions can also be the results of extrusion
to the surface of Earth and further fast evaporation of large volumes of condensates of
charged particles.

Electrons magnitudes of which velocities relatively to the Earth are less than a certain
value and protons magnitudes of which velocities relatively to the Earth are greater than
a certain value will be repelled by the mass of neutral atoms of Earth into the upper
atmosphere while electrons with greater magnitudes of velocities and protons with lesser
magnitudes of velocities will attract to Earth (please refer to Chapter 21). It is very
probably that large volumes of atmospheric electrons fast relatively to neutral atoms of
Earth, while being focused by the Earth’s magnetic field and attracted by neutral atoms
of Earth, concentrate at the surface around the North and South Poles. At that, while
electrons fall down onto the poles, they interact at the zero velocity with electrons of
atoms of the atmosphere producing aurorae polaris. Losing their kinetic energy during
this process and decreasing their temperature after the interaction with the cold surface
of the poles, electrons form volumes of electrons slow relatively to one another and begin
to move from the cold areas of the Earth’s crust toward the hot zones of it (please
refer to Chapter 22) producing the lack of electrons (Chapter 23) on the poles which
is compensated by the inflow of electrons from the atmosphere. Therefore, the thermo-
current of electrons in the Earth’s crust appears from the poles to the equator and to the
hot surface of the Earth’s mantle. The electromotive force in the Earth’s crust is directed
to faults of the Earth’s crust where the extrusion of mantle increases the temperature.
Thus, the flows of electron condensate will encounter in the faults of the Earth’s crust
and in the local zones of increased temperature. Electric discharges and bursts during the
evaporation of large volumes of condensate can occur in these zones and can be registered
either as earthquakes or as lightnings during volcanic eruptions.

The process of formation of a whirlwind and its dynamics can be explained by ejec-
tion of electrons slow relatively to one another by the volume of neutral atoms of Earth
into the atmosphere. Whirlwind and other similar atmospheric phenomena can be the
manifestation of superconductive properties of the Earth’s atmosphere. When a large
enough volume of electrons slow relatively to one another and slow relatively to neutral
atoms of Earth begins to outflow from the surface of Earth upward to the atmosphere, the
flow of electrons forms a channel in which electrons attract one another and repel neutral
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atoms of Earth and the atmosphere (please refer to Chapter 29). At that, as electrons
leave the surface of Earth repelling from atoms of its volume, they provide momenta to
neutral atoms located at the surface of Earth and in its atmosphere upward from Earth
and across the flow formed by electrons. At that, the maximum possible velocity of the
flow of electrons relatively to Earth will be slower than that of the neutral state of the
flow of electrons slow relatively to one another and the volume of neutral atoms of Earth.
The repulsion of atoms of atmosphere by the flow of electrons results to the rarefaction of
the atmosphere. The atmospheric pressure compresses the area surrounding the channel.
Due to the presence of a certain moment of momentum of atoms in the volume of atmo-
sphere being compressed, the rotation of atoms of atmosphere and atoms ejected from
the surface of Earth begins around the rarefied area of channel along which the flow of
electrons moves with the small resistance to its motion, like the current in a supercon-
ductor. Formation of the whirlwind can be initiated by the large volume of slow electrons
located in the atmosphere above the surface of Earth which will attract the volume of
slow electrons of Earth and pull it out from Earth. The motion of slow electrons can also
occur downward, from the atmosphere to Earth, if a large volume of slow electrons which
is able to pull towards itself the flow out from the atmospheric volume of slow electrons
is formed at the surface of Earth. Formation of atmospheric whirlwinds above the water
sheet can start from the thermo-current of electrons during the generation of electromo-
tive force acting on electrons from the volumes of cold water toward the volumes of warm
water (please refer to Chapter 22), i.e., bottom-up, from the bottom of water body to its
surface.

Simultaneous appearance of a large number of powerful atmospheric whirlwinds (tor-
nadoes) in the so-called Tornado Alley in the USA can be explained within the frame of
PPST by the presence of currents of electrons slow relatively to one another in the Earth’s
crust. Perhaps in this area, close to the surface of Earth, there are some channels along
which large volumes of electron condensate are moving. The electron condensate of storm-
clouds pulls the condensate of these currents out from Earth to the surface while Earth
extrudes it to the atmosphere, creating a tornado. High currents of electrons slow rela-

Figure 59: The map of earthquake epicentres in 1963–1998. Black dots are epicentres of
earthquakes [60]. Red arrows are presumed flows of volumes of slow electrons.
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tively to one another in the earth’s crust of the North America can be the thermo-currents
from the North Pole to the areas of seismic activity, i.e., zones of increased temperatures
in the faults of the earth’s crust on the west and south of the North American continent.
One can see at Figure 59 that there is no seismically active zones on the way of this
thermo-current which could neutralise the volumes of electron condensate by evaporating
it and preventing it from transition to the zone of formation of tornado.

Therefore, both whirlwind and atmospheric discharge can arise from the motion of
electrons in group. The difference of these atmospheric phenomena is in the velocities of
motion of flows of electrons relatively to atoms of the atmosphere. If the velocity of motion
of the flow of electrons slow relatively to one another regarding atoms of the atmosphere
will be less than a certain value then a whirlwind will form; if this velocity is greater than a
certain value then either a weak electric discharge or a lightning occurs. Snapshots (Figure
60 and Figure 61) extracted from a footage [61] demonstrate the transient state of an
atmospheric phenomenon: the whirlwind and the lightning (the weak electric discharge).

Figure 60: The transient state: the whirlwind and the lightning

Figure 61: The transient state: the whirlwind and the lightning
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Analogous to whirlwinds, there can be two types of discharges occurring between
Earth and the atmosphere, striking upward and downward. If a discharge is formed as
a result of interaction of two volumes of slow electrons, then the direction of lightning
will be determined, first, by masses and quantities of charges in the volumes (electrons
of the small volume move toward the large), and second, by the shapes of volumes (the
extraction of electrons from an extended part of the large volume is possible).

Protons flying from the side of the Sun should decelerate while approaching Earth if
magnitudes of their velocities relatively to Earth will be greater than a certain value when
the neutral volume of particles of Earth repels protons (please refer to Chapter 24). This
process will result to deceleration and scattering of solar protons having a certain kinetic
energy at a certain distance from Earth. Formation of a frontal shock wave between Earth
and the Sun created by the solar wind can start from this process. As follows from the
presumption that deceleration of solar protons by the volume of neutral atoms of Earth is
one reason why the shockwave between Earth and the Sun starts forming, all bodies of the
Solar System, either consisting of neutral atoms or having equal numbers of positive and
negative charges, being under the action of the solar wind, which has a certain density of
protons and a certain velocity relatively to these bodies, should provide conditions for the
formation of a frontal shock wave between themselves and the Sun analogous to the wave
between Earth and the Sun. Processes similar to those occurring in the frontal shockwave
between Earth and the Sun occur between the Moon and the Sun at the distance about
10,000 km from the Moon [62].

If we consider parameters of the solar wind coming to the Earth and Moon as the
same and both Earth and the Moon as neutral volumes of particles (they can be either
the volumes of neutral atoms or the volumes of neutral plasma or the volumes of con-
taining both neutral atoms and the neutral plasma) which decelerate solar protons, then,
based on the following argumentation, we can determine the distance at which the frontal
shockwave between the Moon and the Sun should form:

If parameters of dynamics of solar protons, e.g., their density and velocity relatively
to Earth and the Moon, will be the same, then distances from Earth and from the Moon at
which frontal shockwaves are forming will be determined by the equality of forces acting
on solar protons both from the side of Earth and from the side of the Moon.

Let us rewrite the equation (559) of interaction between the proton and the neutral
volume of particles:

Mmp

(M +mp)

dv⃗pc
dt

= e2
N∑

n=1

(
r̂ppn
r2ppn

(
1− b(1−(v⃗pc−v⃗pnc)

2/a2p)
)
− r̂pen

r2pen

(
1− b(1−(v⃗pc−v⃗enc)

2/a2ep)
))

,

(629)
where:
N is the number of electrons equal to the number of protons in the neutral volume of
particles,
M = N (me +mp) is the mass of the neutral volume of particles,
r⃗ppn is the radius vector of position of the proton relatively to a proton No. n of the
neutral volume of particles,
r⃗pen is the radius vector of position of the proton relatively to an electron No. n of the
neutral volume of particles,
v⃗pc is the velocity of proton relatively to the mass centre of the neutral volume of particles,
v⃗pnc is the velocity of a proton No. n of the neutral volume of particles relatively to the
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mass centre of the neutral volume of particles,
v⃗enc is the velocity of an electron No. n of the neutral volume of particles relatively to
the mass centre of the neutral volume of particles.

If we assume the existence of the following approximate equalities:

r⃗ppn ≈ r⃗pc, r⃗pen ≈ r⃗pc, n = 1, 2, .., N, (630)

where r⃗pc is the radius vector of position of the proton relatively to the mass centre of the
neutral volume of particles. Then the (629) can be determined as follows:

Mmp

(M +mp)

dv⃗pc
dt

=
Ne2

r2pc
Qpcr⃗pc, (631)

Qpc =
1

N

N∑
n=1

(
b(1−(v⃗pc−v⃗enc)

2/a2ep) − b(1−(v⃗pc−v⃗pnc)
2/a2p)

)
. (632)

Using (631), (632) and presumption of equality of forces which provide conditions for the
formation of frontal shockwaves near Earth and the Moon, taking into account that:

M >> mp,
Mmp

(M +mp)
≈ mp,

we can write down the equation for determination of the distance from the Moon to its
frontal shockwave:

Mz

r2pcz
Qpcz =

Ml

r2pcl
Qpcl , (633)

where:
Mz is the mass of the neutral volume of particles of Earth,
Ml is the mass of the neutral volume of particles of the Moon,
rpcz is the distance from the proton in the frontal shockwave of Earth to the mass centre
of Earth,
rpcl is the distance from the proton in the frontal shockwave of the Moon to the mass
centre of the Moon,
Qpcz is the function (632) for interaction between the proton and the neutral volume of
particles of Earth,
Qpcl is the function (632) for interaction between the proton and the neutral volume of
particles of the Moon.

As follows from the presumption that Earth and the Moon repel solar protons with
the same values of velocities relatively to themselves, and greater to a certain value in
moduli:

Qpcz > 0, Qpcl > 0.

Then, if we presume that average velocities of electrons and protons in the volumes of
Earth and the Moon relatively to their mass centres coincide, then we can determine an
approximate equality:

Qpcz ≈ Qpcl . (634)

Using (634) and (633), we obtain the approximate value of distance from the mass centre
of the Moon to the location of formation by the solar wind of frontal shockwave near the
Moon:

rpcl ≈ rpcz

(
Ml

Mz

)1/2

. (635)
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Using the value rpcz ≈ 14rz from [63], where rz is the radius of the Earth, we will obtain
rpcl ≈ 9908 km which, considering the approximate nature of calculation, corresponds
quite good with the value in [62] (10,000 km).

Therefore, frontal shockwaves formed by the Solar wind near Earth and near the
Moon, can begin from the process of PPST, i.e., deceleration and scattering of solar
protons by the neutral volume of particles.

43 Conclusion

The point particles states theory is a falsifiable theory. Nowadays there are technologies
which can help test experimentally conclusions and predictions of PPST.

The set of physical phenomena which modelling can be performed using the point
particles states theory and the theory of dynamic system of bound condensates based on
it, is rather wide. Let us draw a list of phenomena which links to PPST were denoted in
this work:

1. Formation and evaporation of condensates of bound pairs of like particles.
2. Processes occurring in the condensate of bound pairs of like particles in the

external magnetic field.
3. The nucleus and electron shells of atoms.
4. Chemical bonds of atoms in molecules.
5. Emission and absorption of the energy quanta by particles.
6. Decay of a free neutron and decay of a neutron in the atomic nucleus.
7. Neutron emission.
8. The two-proton decay.
9. Radiation of atoms.
10. Bremsstrahlung of particles.
11. Scattering of particles and atoms in the substance.
12. Interaction of Rydberg atoms.
13. Correlation of gamma radiation, radio radiation and the flow of neutrons during

the atmospheric and artificial electric discharges.
14. Sources and receivers of the terahertz radiation.
15. The Bragg peak of ionisation of atoms during the transition of a beam of heavy

charged particles through a volume of atoms and molecules.
16. Explosive destruction of conductors by electric current.
17. The Ramsauer effect.
18. Thermo-electrical phenomena.
19. Electrification of volumes of neutral atoms.
20. Intermolecular interaction.
21. Gravitational interaction.
22. Magnetic interaction of flows of particles.
23. The Lorentz force acting on a charged particle in the constant magnetic field.
24. Formation of current sheets in the plasma.
25. The plasma ejection during the magnetic reconnection.
26. Nuclear fusion.
27. Superconductivity.
28. Cometary nuclei and planetary cores.
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29. Motion of comets in the atmosphere of Earth.
30. The core of the Sun and processes in the solar atmosphere.
31. Solar flares.
32. Atmospheric discharges.
33. Earthquakes.
34. Explosive volcanic eruptions.
35. Formation and dynamics of the atmospheric whirlwind.
36. The solar wind.
37. Frontal shockwaves formed by the flow of positively charged particles during the

interaction of celestial bodies.
If the hypothesis of properties of modified Coulomb forces is confirmed, then the

theoretical study of all these phenomena within the frame of PPST will be possible at the
definition of exact form of equations (7) and at the determination values of all constants
included in these equations. Therefore, all mathematic conclusions provided in this work
should be considered only as examples of what can be obtained within the frame of the
point particles states theory and how it can be done.

The main criterion of consistency or inconsistency of the point particles states theory
should be either proof or disproof of existence of neutral relative velocities of particles
ap, aep, ae, since PPST is based on the hypothesis of existence of these velocities.

44 Appendix 1

Figure 62: Interaction of a particle of the plasma and protons of rings of the system of
two DSBCs

Figure 62 demonstrates the interaction of a particle of the plasma and protons of
rings of the system of two DSBCs without considering the forces acting from the side
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of electron shells of DSBCs. Dynamical and geometrical parameters of interaction are
analogous to those determined in Chapter 34. Here are the following definitions:
m is a particle of the plasma, either a proton or an electron;
Pa is the ring of the proton condensate of DSBC-A;
Pb is the ring of the proton condensate of DSBC-B;
Fa is a surface on which unit vectors of forces of action of protons of the ring of DSBC-A
on a particle of the plasma are laying;
Fb is a surface on which unit vectors of forces of action of protons of the ring of DSBC-B
on a particle of the plasma are laying.

We will assume that forces acting from the side of proton rings of the system of two
DSBCs on the particle of the plasma are coming from the circles formed by centres of
infinite set of cross-sections of the proton rings (the circular cross-sections of rings are the

same). The axes of the X⃗ and Y⃗ coordinate system in which the interaction is reviewed
are laying in the plane of zero normal action (please refer to Chapter 34). The positive

axis Z⃗ is coming from the projection point of rotation axis of proton rings to the plane
of zero normal action and directed toward the DSBC-A. Coordinates of the centre of
the circle of the ring of DSBC-A are (0, 0, h) (the coordinate definition order is (x, y, z)).
Coordinates of the centre of the circle of the ring of DSBC-B are (0, 0,−h). Coordinates
of the location of the particle of plasma are (xm, ym, zm).

In order to determine the equation of forces acting on the particle of the plasma in
the system, we will use the following variables and constants:
m is the mass of a particle of the plasma, either a proton or an electron;
R⃗m is the radius vector of position of the particle of plasma;
r⃗m = x⃗m + y⃗m;
q is an electric charge of the particle of plasma (either a proton or an electron);
Q is a cumulative electric charge of one proton ring;
b is a constant of interaction of either protons or the proton and the electron;
a is the neutral relative velocity of either protons or the proton and the electron;
v⃗m is a velocity of the particle of the plasma (either the proton or the electron) in the

X⃗, Y⃗ , Z⃗ coordinate system;
R⃗a0 is a vector coming from the centre of the circle formed by centres of infinite set of
cross-sections of the proton ring of DSBC-A to the point on this circle;
R⃗b0 is a vector coming from the centre of the circle formed by centres of infinite set of
cross-sections of the proton ring of DSBC-B to the point on this circle;
Ra0 = Rb0 = R0;
R⃗ma is a vector issued from the point of the circle formed by centres of infinite set of
cross-sections of the proton ring of DSBC-A and where the R⃗a0 vector comes to, to the
point of location of the particle of plasma;
R⃗mb is a vector issued from the point of the circle formed by centres of infinite set of
cross-sections of the proton ring of DSBC-B and where the R⃗b0 vector comes to, to the
point of location of the particle of plasma;
αa is an angle between the vectors −Z⃗ and R⃗ma;
αb is an angle between the vectors Z⃗ and R⃗mb;
γa is an angle between the vectors r⃗m and R⃗a0;
γb is an angle between the vectors r⃗m and R⃗b0;
βa is an angle between the projection of the −R⃗ma vector to the X⃗, Y⃗ plane and the r⃗m
vector;
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βb is an angle between the projection of the −R⃗mb vector to the X⃗, Y⃗ plane and the r⃗m
vector;
ω⃗m is an angular rotation velocity of r⃗m;

Let us consider the modifying function:

Υms = 1− b1−(v⃗m−v⃗s)
2/a2 , (636)

where v⃗s is the velocity of an arbitrary proton of the proton rings in the X⃗, Y⃗ , Z⃗ coordinate
system. Then components depending on the magnitude of relative velocity of the proton
of plasma and the proton of the ring for the function of forces acting on the proton of
plasma from the side of each proton of the rings at the following conditions:

vs < ap/2, vm >> ap, (637)

will be expressed by the function:

Υm = 1− b1−v2m/a2p , Υm > 0. (638)

Components depending on the magnitude of relative velocity of the electron of plasma
and the proton of the ring for the function of forces acting on the electron of plasma from
the side of each proton of the rings at the following conditions:

vs < ap/2, ap << vm < aep, (639)

will be expressed by the function:

Υm = 1− b1−v2m/a2ep , Υm < 0. (640)

Then we will consider the interaction of particles of plasma and protons of rings of
the system of two DSBCs at the conditions of (637) - (640).

In order to review forces acting on the particle of plasma from the side of proton rings
of the system of two DSBCs as forces coming from circles formed by centres of infinite set
of cross-sections of the proton rings, the compliance to the conditions of Rma >> rs and
Rmb >> rs is necessary, where rs is the radius of the cross-section of the proton ring.

Using the system of equations (7), let us write down the equation of a force acting
on the particle of plasma from the side of proton rings of the system of two DSBCs:

m
d2R⃗m

dt2
=

qQΥm

2π

∫ 2π

0

R⃗ma

R3
ma

dγa +
qQΥm

2π

∫ 2π

0

R⃗mb

R3
mb

dγb, (641)

where:
R⃗ma = r⃗m + z⃗m − R⃗a0 − hẑ, R⃗mb = r⃗m + z⃗m − R⃗b0 + hẑ. (642)

Integration in the (641) is performed with respect to γa and γb variables with the

constants R0, R⃗m, h, and variables R⃗ma, R⃗mb, αa, αb, βa, βb.
Geometry of interaction of the proton rings and the particle of plasma provides two

systems of equations.
The first one is:

Rma cos (αa) = h− z, Rma sin (αa) sin (βa) = R0 sin (γa),
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Rma sin (αa) cos (βa) = R0 cos (γa)− rm. (643)

The second one is:

Rmb cos (αb) = h+ z, Rmb sin (αb) sin (βb) = R0 sin (γb),

Rmb sin (αb) cos (βb) = R0 cos (γb)− rm. (644)

Proceeding from the system of equations (643), we obtain:

sin (γa) = fa sin (βa),
R2

ma

R2
0

= k2
a + f 2

a . (645)

fa =
(
1− g2 sin2 (βa)

)1/2 − g
(
1− sin2 (βa)

)1/2
, −π/2 ≤ βa ≤ π/2. (646)

fa =
(
1− g2 sin2 (βa)

)1/2
+ g

(
1− sin2 (βa)

)1/2
, π/2 ≤ βa ≤ 3π/2. (647)

g =
rm
R0

, ka =
h− z

R0

, | sin (βa)| ≤
R0

rm
. (648)

And proceeding from the system of equations (644), we obtain:

sin (γb) = fb sin (βb),
R2

mb

R2
0

= k2
b + f 2

b . (649)

fb =
(
1− g2 sin2 (βb)

)1/2 − g
(
1− sin2 (βb)

)1/2
, −π/2 ≤ βb ≤ π/2. (650)

fb =
(
1− g2 sin2 (βb)

)1/2
+ g

(
1− sin2 (βb)

)1/2
, π/2 ≤ βb ≤ 3π/2. (651)

kb =
h+ z

R0

, | sin (βb)| ≤
R0

rm
. (652)

Different values of fa and fb functions are because of |
(
1− sin2 (β)

)1/2 | = | cos (β)|
but if β is changing, cos (β) is changing its sign while

(
1− sin2 (β)

)1/2
is not.

Let us split the force (641) into three components:

m

(
d2R⃗m

dt2
· r⃗m

)
=

qQΥm

2π

∫ 2π

0

(
R⃗ma · r⃗m

)
R3

ma

dγa +
qQΥm

2π

∫ 2π

0

(
R⃗mb · r⃗m

)
R3

mb

dγb. (653)

m

(
d2R⃗m

dt2
· z⃗m

)
=

qQΥm

2π

∫ 2π

0

(
R⃗ma · z⃗m

)
R3

ma

dγa +
qQΥm

2π

∫ 2π

0

(
R⃗mb · z⃗m

)
R3

mb

dγb. (654)

m

(
d2R⃗m

dt2
× r⃗m

)
=

qQΥm

2π

∫ 2π

0

(
R⃗ma × r⃗m

)
R3

ma

dγa +
qQΥm

2π

∫ 2π

0

(
R⃗mb × r⃗m

)
R3

mb

dγb. (655)

Let us consider the (653) - (655) under the following conditions:

zm = 0,
dz⃗m
dt

= 0,
d2z⃗m
dt2

= 0. (656)
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Being converted, the (653) - (655) with respect to the (656) provide the following:

1

2

d2r2m
dt2

−
(
dr⃗m
dt

)2

=
qQΥmrm

πm

∫ 2π

0

(rm −R0 cos (γ))

R3
dγ. (657)

d (r2mωm)

dt
= −qQΥmrm

πm

∫ 2π

0

R0 sin (γ)

R3
dγ. (658)

In the (657) and (658):

Rma = Rmb = R, γa = γb = γ, αa = αb = α, βa = βb = β. (659)

Proceeding from the (643) and (644), under conditions of (656) and (659), we obtain
the following:

R =
(
R2

0 + h2 + r2m − 2R0rm cos (γ)
)1/2

. (660)

Using the (660), we convert the (658):

d (r2mωm)

dt
= −qQΥmrm

πm

∫ 2π

0

R0 sin (γ)

(R2
0 + h2 + r2m − 2R0rm cos (γ))

3/2
dγ. (661)

Integrating the (661), we obtain:

r2mωm = Const. (662)

Thus, under conditions of (656) the proton and the electron of plasma in the reviewed
dynamic system will be affected by a central force coming from the centre of coordinate
system under the action of which moments of momenta of particles relatively to the origin
of coordinates will be constant.

Let us represent the (657) as follows:

1

2

d2r2m
dt2

−
(
dr⃗m
dt

)2

= −qQΥmrm
πmR2

0

(∫ 1

−1

Θ1(u)du−
∫ 1

−1

Θ2(u)du

)
. (663)

The following functions and variables are introduced into the (663) by using the (643)
- (652):

u = sin (β), ka = kb = k =
h

R0

, (664)

Θ1(u) =
f1 (1− u2)

1/2 (
f1 + u∂f1

∂u

)
(k2 + f 2

1 )
3/2

(1− u2f 2
1 )

1/2
, f1 =

(
1− g2u2

)1/2 − g
(
1− u2

)1/2
, (665)

Θ2(u) =
f2 (1− u2)

1/2 (
f2 + u∂f2

∂u

)
(k2 + f 2

2 )
3/2

(1− u2f 2
2 )

1/2
, f2 =

(
1− g2u2

)1/2
+ g

(
1− u2

)1/2
. (666)

Let us consider a definite integral:

I =

∫ 1

−1

F(u)du. (667)
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Let us expand the F(u) function into the Maclaurin series with respect to the u variable:

F(u) =
∞∑
n=0

F
(n)
(0)

n!
un, F

(n)
(0) =

∂nF(u)

∂un
(u = 0) . (668)

Then the (667) will acquire the following form:

I =

∫ 1

−1

∞∑
n=0

F
(n)
(0)

n!
undu. (669)

Integration of the (669) provides the following:

I =
∞∑
n=0

2F
(2n)
(0)

(2n+ 1)!
, (670)

when the sum of terms of the series in the right part of (670) is convergent.
Based on the (663) and taking into account the (664) - (670), we obtain the following:

1

2

d2r2m
dt2

−
(
dr⃗m
dt

)2

= −2qQΥmrm
πmR2

0

N∑
n=0

(
Θ

(2n)
1(0) −Θ

(2n)
2(0)

)
(2n+ 1)!

, N → ∞, (671)

where:
Θ

(2n)
1(0) is the value of derivative No. 2n of the Θ1(u) function with respect to u and with

u = 0;
Θ

(2n)
2(0) is the value of derivative No. 2n of the Θ2(u) function with respect to u and with

u = 0.
Let us introduce the following function:

Ω(g,k,q,vm) = − qΥm

e|Υm|

N∑
n=0

(
Θ

(2n)
1(0) −Θ

(2n)
2(0)

)
(2n+ 1)!

, N → ∞, (672)

which will determine conditions of existence of ring-shaped zones of zero action of forces
of repulsion of particles of plasma by protons of rings (please refer to Chapter 34). Under
conditions for magnitudes of velocities of protons and electrons of the plasma determined
in the (637) - (640), the ring-shaped zones of zero action of forces of repulsion of protons
and electrons of plasma by protons of rings will coincide and their existence will be
determined by the negative range of the function:

Ω(g,k) = −
N∑

n=0

(
Θ

(2n)
1(0) −Θ

(2n)
2(0)

)
(2n+ 1)!

, N → ∞. (673)

The calculation of the values of Ω(g,k) function in the ranges of values of variables
0 ≤ g ≤ 1 and k > 0 allows for presumption that function is convergent in the specified
ranges of values of variables. And at the value of N > 5 the values of function are changing
to small quantities.
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Figure 63: The graph of the Ω(g,k) function at N = 5, k = 0.6 and with 0 ≤ g ≤ 1
(horizontally)
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Figure 64: The graph of the Ω(g,k) function at N = 5, k = 0.1 and with 0 ≤ g ≤ 1
(horizontally)
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A graph of the Ω(g,k) function (673) at N = 5, k = 0.6 and with 0 ≤ g ≤ 1 is plotted
at Figure 63.

A graph of the Ω(g,k) function (673) at N = 5, k = 0.1 and with 0 ≤ g ≤ 1 is plotted
at Figure 64.

Negative values of the function at the presented graphs correspond to the attraction of
particles of the plasma by the central force whereas positive values relate to the repulsion.
Zero values of the function provide the values of g at which there is a point of zero action
of forces of repulsion of particles of the plasma by particles of two DSBCs (g = 0) and the
ring-shaped zone of zero action of forces of repulsion of particles of the plasma by protons
of the rings. Calculations also demonstrate that yet with k > 0.8 the Ω(g,k) function at
0 ≤ g ≤ 1 is always positive and has only one null at g = 0. Thus, at the distances
between two DSBCs which are determined by these values of k the system of proton rings
of two DSBCs will be unable to form the ring-shaped zone of zero action of forces of
repulsion of particles of the plasma, and particles of the plasma will move off from the
zone of interaction of the proton rings of two DSBCs.

In the common case, the force acting on the particle of plasma from the side of two
proton rings in the system of two DSBCs is not the central. The central force stands
within the limits when it is presumed that the Υms function (636) is constant and does
not depend on variables with respect to which the (641) is integrated. The analogue of
the Lorentz force reviewed in the Chapter 30 is an example of the non-central force in
PPST.

45 Appendix 2

Let us use the theory and formulas of ballistics of a meteor body in the atmosphere of
Earth [64] for calculation of fallout locations of debris of a certain mass and size along the
trajectory of flight and destruction of the crystalline body. We presume that the surface
of Earth is flat. We will consider the shape of all fragments as spherical. We will review
all equations without taking into account the ablation and the gravity of Earth:

M
dv

dt
= −CdSmidPx

2
v2, (674)

Px = P0e
− x

H , M =
4

3
πr3mPm, Smid = πr2m, (675)

v =
dl

dt
, x = x0 − l sin (ϕ0) , y = l cos (ϕ0) , (676)

where:
l is a distance passed by a fragment along its trajectory (the trajectory is assumed to be
straight) after it is separated from the crystalline shell.
x is an altitude of the fragment above the surface of Earth.
y is a projection of the distance passed by the fragment onto the surface of Earth.
M is a mass of the fragment.
Smid is a mid-section of the fragment.
Cd is the drag coefficient.
Px is a density of the atmosphere at the height of x.
P0 is a density of the atmosphere at the surface of Earth.
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x0 is an initial altitude above the surface of Earth at the moment of separation of the
fragment from the crystalline shell.
H is the characteristic scale of altitudes.
Pm is a density of the fragment.
rm is a radius of the fragment.
ϕ0 is an angle between the trajectory and the surface of Earth.
e is the Euler’s number.

From the (674-676) we obtain the following:

d2l

dt2
= − 3CdP0

8Pmrm
e

l sin(ϕ0)−x0
H

(
dl

dt

)2

. (677)

For short we will introduce the following value:

Px0 = P0e
−x0

H . (678)

Proceeding from the (677) and taking into account the (678), we will obtain the
following:

dv

v
= −3CdPx0

8Pmrm
e

sin(ϕ0)
H

ldl, (679)

Let us integrate the (679) and, introducing the values:

w =
3CdPx0

8Pmrmα
, α =

sin (ϕ0)

H
, sin (ϕ0) ̸= 0, (680)

we will have the dependence of the magnitude of velocity of the fragment on the distance
being passed:

v = v0e
−w(eαl−1), l0 = 0, (681)

where v0 is the magnitude of velocity of the fragment at the height of x0.
From the (681) we will find the dependence of the fragment’s flight time on the

distance being passed:

eweαl

dl = v0e
wdt, eweαl

=
∞∑
n=0

wn

n!
enαl (682)

t =
e−w

v0

(
l +

1

α

∞∑
n=1

wn

n (n!)

(
enαl − 1

))
, t0 = 0. (683)

when t is the time it takes the fragment to pass the distance l.
In order to make the picture complete, we need to know the size of the crystalline

shell and angular velocities of its rotation relatively to the mass centre. These parameters
influence on the value of solid angle within which the debris is scattering.

In order to determine an approximate coordinate y where the fragment dropped, the
graphs of dependence of the magnitude of velocity v on the distance being passed l and
those of dependence of time t on the distance l to be plotted. The first graph is used for
determination of the value of l at which v tends to zero. The second graph is used for
determination of the value of l at which t tends to infinity. These values of l will match
each other. The coinciding value will be the maximum distance which the fragment can
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fly over the trajectory. If with the value of l in the point of intersection of the trajectory
and the surface of Earth the values of v and t have some certain values (v does not tend to
zero and t does not tend to infinity), then these values will be the magnitude of velocity
and the time of collision of the fragment with the surface of Earth (as the gravity of Earth
is ignored).
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