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Abstract: The well known numerical method of approximating differential

quotients by quotients of differences is used in a novel context. This method

is commonly underestimated, wrongly. The method is explained by an ordinary

differential equation first. Then it is demonstrated how this simple method

proves successful for non-linear field equations with chaotic behaviour. Using

certain discrete values of their integration constants, a behaviour comparable

with Mandelbrot sets is obtained. Instead of solving the differential

equations directly, their convergence behaviour is analyzed. As an example

the Einstein-Maxwell equations are investigated, where discrete particle

quantities are obtained from a continuous theory, which is possible only by this

method. The special set of integration constants contains values identical with

particle characteristics. Known particle values are confirmed, and unknown

values can be predicted. In this paper, supposed neutrino masses are presented.
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1 Introduction

In preceding work of Rainich [1, 2] and, later, Bruchholz [3, 4] the geom-
etry of electromagnetism has been determined by unifying electrodynamics
with Einstein’s theory of general relativity [5]. The Ricci tensor [6] is
constructed from the electromagnetic field in tensor representation. This
geometry is conterminous with the geometry of the V4 of signature 2 in gen-
eral. The singularity problem arising from the equations of this geometry is
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solved geometrically. The geometric equations are formulated numerically,
i.e. as difference equations. The integration constants are parameters in cor-
responding recursion formulae, and take on discrete values. Variation of the
parameters leads to a characteristic convergence behaviour of the numerical
equations. There are points in the parameter space leading to minimal di-
vergence that are taken as their physically relevant values. – The physical
significance of these insights and results is obvious.

In section 2, the theory of the unified field is explained. In the third
section, the numerical method is described. This is applied in sections 5 and 6
with the parameters determined in section 4. The algorithms are discussed
in the sixth section, and some computational results are given in section 7,
in particular for the neutrino masses which have not been determined by any
other theoretical method to date. Section 8 draws some conclusions.

2 The equations

The theory is based on the relativistic tensor equations [3] of Riemannian
(non-Euclidean) geometry (quoted from [7]):

Rik = κ (
1

4
gikFabF

ab − FiaFk
a) , (1)

Fij,k + Fjk,i + Fki,j = 0 , (2)

F ia
;a = 0 , (3)

in which gik are the components of metrics, Rik those of the Ricci tensor
and Fik those of the electromagnetic field tensor. κ is Einstein’s gravita-
tion constant. The partial derivative is denoted by a comma, the covariant
derivative by a semicolon. If we express the field tensor by a vector potential
A with

Fik = Ai,k − Ak,i , (4)

equation (2) is identically fulfilled. Thus, we can base the calculations on
quantities having the character of potentials that are metrics and the electro-
magnetic vector potential.

These equations are known as Einstein-Maxwell equations. The
energy-momentum tensor of electrodynamics is equated to the energy-
momentum tensor of Einstein’s theory [5]. In detail, the homogeneous
Maxwell equations are used. Only these fulfill force equilibrium and

2



conservation of energy and momentum (mathematically expressed by the
Bianchi identities, see also appendix). These equations describe physically
the electrovacuum around a particle and involve geometry described by the
Einstein part (equation (1)) of the equations. It is the geometry of the V4
of signature 2, also called space-time, as long as we do not consider constant
curvature (see [6]), which is linearly superimposed with the fields.

These equations and the involved geometry were found by Rainich al-
ready in the year 1924 [1, 2]. Therefore, we will call the space-time Rainich

space. Bruchholz [3] derived this geometry independently of Rainich in
a different way traced out by Eisenhart [6], with the same result.

The geometric equations yield only 10 independent equations for 14 com-
ponents gik, Ai, what means that the geometry respectively the field is not
completely determined. As well, it will be demonstrated that the omnipresent
quantization in physics has nothing to do with this indeterminacy. The quan-
tization is the consequence from chaotic behaviour of the geometric equations,
even also if we override the indeterminacy with additional conditions.

3 Explanation of the numerical method

For completeness of arguments we repeat in this section what was already
worked out in [7].

In direct numerical solutions of differential equations the differential quo-
tient is replaced by a quotient of finite differences. This leads to recursion
rules on the calculational grid. In the following we will derive a scheme of dif-
ferences which is suitable for the type of problems we will solve in section 6.
We consider a differential equation of the form

f ′′(x, cν) + F (x, f ′(x), cν) = 0 (5)

where F is a function of the derivative of the function f(x) to be found. F

and f depend on a set of constants cν . With difference quotients

∂f

∂x

∣

∣

∣

xn

=
fn+1 − fn−1

2 ∆x
(6)

and for the second derivative

∂2f

∂x2

∣

∣

∣

xn

=
fn+2 − 2fn + fn−2

(2 ∆x)2
(7)
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we obtain a recursion formula for the discrete function value of f at xn+2:

fn+2 = 2fn − fn−2 − (2 ∆x)2Fn(cν) (8)

or, rewritten,

f(x+2 ∆x) = 2f(x)− f(x−2 ∆x)− (2 ∆x)2F (x−∆x, x, x+∆x, cν) . (9)

We have chosen a difference of two grid points for the second derivative
in order to obtain a simple recursion formula. The parameters cν denote the
integration constants of the differential equations and are part of the initial
conditions. The latter are obtained from appropriate approximations of f in
the initial range of x. For real-valued x and cν this iteration formula is able
to behave in a chaotic manner, in dependence of the parameters cν . These
results can be generalized for systems of partial differential equations with
many variables. In definition regions where the functions have diverging so-
lutions, we obtain a map of the “degree of divergence” which can be graphed
in a plane if we have two parameters c1 and c2 for example. All this is in
analogy to the well known Mandelbrot sets familiar from chaos theory
[8, 9].

We shall see from the Einstein-Maxwell equations that different val-
ues of the integration constants (as parameters) lead to a varying divergence
behaviour. While f immediately diverges in most cases, there are discrete
values of the parameters c where f diverges at a relatively sharply defined
x value which stands for the radius here. (Further details are given in sec-
tion 6.) These special values of the parameters perform a special set leading
to a kind of “semi-stable” solutions of f . – In practice, this behaviour will
be smeared over due to rounding errors. (Otherwise, we would not find the
relevant discrete values.)

4 Determination of the parameters

Differential equations of the discussed type result with first approximation
in wave equations

2f = 0 . (10)

The integration constants from the wave equations are the parameters of
the corresponding recursion formulae, named in section 3. It is detailedly
explained in [4] how to compare the wave equations with corresponding
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Poisson equations, which have an additional source term. The integration
constants of the wave equations then replace the sources of the Poisson

equations. Concrete terms for the Einstein-Maxwell equations can be
seen in section 6.

5 The singularity problem and its solution

According to a theorem of Einstein and Pauli [10], analytic solutions of
equations (1,3,4) lead commonly to singularities. There are two types of sin-
gularities. The first type is a singularity inferred by assuming for example
point masses and point charges in order to simplify the equations so that
analytical solutions are feasible. This is often considered as a deficit when
comparing a calculation with the situation in reality. However, in our cal-
culations, these formal singularities are placed into the inner of the particle
(according to observer’s coordinates) which is not subject of calculation. The
reason is as follows:
The observer uses coordinates in a tangent (asymptotic) space around the
particle (with the singularity). The coordinates of the observer are projected
onto the Rainich space around the particle. We have a physically irrelevant
region where this projection is not possible. The physically irrelevant regions
are “behind” a geometric limit, which is the limit for this projection. Geo-
metric limit means, at least one physical metrical component (explained in
section 6) takes on an absolute value of 1. With spherical coordinates, the
formal singularity is at the centre.

The basic idea of calculation is as follows. The equations (1,3,4) are
evaluated on a radial grid from outer to inner and so one approaches the un-
known inner area successively. At a certain radius, the calculation starts to
diverge because the central singularity becomes predominant. It is important
to notice that this radius of divergence is clearly separated from the central
singularity so a second type of singularity here appears. Eckardt called
the second type a “numerical singularity” [7]. Schmutzer told that the
(formal) singularity is displaced due to the chaos in the recursion formulae 3.
However, also the numerical singularity is always “behind” the geometric
limit and, therefore, in the physically irrelevant region. – So neither the
numerical singularity nor the formal singularity are a problem for geometric
equations. The geometric limit will be revealed to be a boundary at the

3private information by Ernst Schmutzer, formerly Univ. Jena
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conjectural particle radius with numerical simulations according to the Ein-

stein-Maxwell equations.
The geometric limit is the mathematical reason for the existence of dis-

crete “semi-stable” (explained in section 3) solutions. Here a mix from chaos
(see [4] and previous sections) and marginal-problems is acting. – These dis-
crete solutions involve discrete values of the integration constants, which are
also called eigenvalues in context with the marginal-problems. We shall see
that the Rainich space is able to produce such eigenvalues, and that the
eigenvalues represent a set identical with the entirety of the particle charac-
teristics.

6 Numerical simulations

In order to gain eigenvalues, one has to do lots of tests, because the particle
quantities are integration constants and have to be inserted into the initial
conditions (for more details see [4]), which are defined for the electrovacuum
around the particle.

As already mentioned, the basis for computations are equations (1,3,4).
For the sake of simplicity, we restrict equations (1,3,4) to time independence
and rotational symmetry. That results, with spherical coordinates

x1 = r , x2 = ϑ , x3 = ϕ , x4 = jct ,

in 6 independent equations for 8 components with character of a potential,
A3, A4, g11, g12, g22, g33, g34, g44, the other vanish. In order to override the
indeterminacy by the two missing equations, we define

g12 = 0 (and, consequently, g12 = 0) (11)

and
g = det|gik| = r4 sin2 ϑ . (12)

These conditions are arbitrary, in which the second is taken from the free-
field Minkowski metric. They are in combination leading to reasonable
results. Important to notice: The integration constants do not change with
arbitrary conditions like equations (11), (12).

The integration constants from equations (1,3,4) result from a series ex-
pansion. The first coefficients of expansion are the input for the simulations
and are inserted into the initial conditions [4]. The output is the number of
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grid points along the radius until divergence occurs, which is a measure for
the stability of the solution.

The first coefficients (integration constants) are

c1 = −
κ m

4π
=⇒

κ m

4π
(13)

(mass),

c2 = j
κ s

4πc
=⇒

κ s

4πc
(14)

(spin),

c3 = −j
µ◦

1

2 Q

4π
=⇒

κ
1

2 µ◦

1

2 Q

4π
(15)

(charge), and

c4 = −
ε◦

1

2 M

4π
=⇒

κ
1

2 ε◦
1

2 M

4π
(16)

(magnetic moment).
As explained, these follow from a comparison of series expansion from
the Einstein-Maxwell equations (homogeneous Maxwell equations)
with the solutions of corresponding inhomogeneous equations, see [4]. The
dimensionless terms after the arrow are taken for computation, and have
positive values. The imaginary unit has been eliminated. The unit radius
(r = 1) corresponds to 10−15m. By this, the initial conditions become, using
T = π

2
− ϑ,

g11 = 1 +
c1

r
−

1

2
(
c3

r
)2 +

( c4
r2 )

2(1 + cos2 T )

10
, (17)

g22 = r2{1 + (
c4

r2
)2(

1

3
cos2 T −

3

10
)} , (18)

g33 = r2 cos2 T{1 + (
c4

r2
)2(

cos2 T

15
−

3

10
)} , (19)

g44 = 1 −
c1

r
+

1

2
{(

c3

r
)2 + (

c4

r2
)2 sin2 T} , (20)

g34 = r cos2 T (
c2

r2
−

1

2

c3c4

r3
) , (21)

A3 = r cos2 T
c4

r2
, (22)

A4 =
c3

r
. (23)
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The physically relevant parts of the metrical components are called phys-
ical metric components. These are the complement to unity in equations
(17-20). Denoting the complements by g(11) etc. the above equations read

g11 = 1 + g(11) , (24)

g22 = r2 (1 + g(22)) , (25)

g33 = r2 sin2 ϑ (1 + g(33)) , (26)

g44 = 1 + g(44) . (27)

The physical metric components have a magnitude of ca 10−40 or smaller
at the unit radius. Since several components contain unities, the physical
components would have no effect due to lack of numerical precision during
computation. Therefore, the actual computation is done with quantities
performed from these physical components, with the consequence that the
unity summands in the equations are eliminated.

We have to insert the values of the integration constants into the
modified initial conditions (with physical components), see program in
the data package (available at the author’s website4). The conversion of
physical into normalized (dimensionless) values and vice versa is described
in detail in [4]. Table 1 shows some values with radius unit of 10−15m. These
examples allow for convenient conversion.

physical value norm. value

proton mass 1.672 × 10−24g 2.48 × 10−39

electr. mass 0.911 × 10−27g 1.35 × 10−42

h̄ 1.054 × 10−27cm2g/s 5.20 × 10−40

elem. charge 1.602 × 10−19As 1.95 × 10−21

µB 1.165 × 10−27Vs cm 3.70 × 10−19

Table 1: Physical and normalized values for conversion

4http://www.bruchholz-acoustics.de/physics/neutrino data.tar.gz
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Higher moments are missing in the equations because of lack of knowledge,
their influence is estimated to be rather small. In the results section we
will insert known values and values deviating from them, and compare the
results.

The algorithm for evaluating the equations requires numerical differentia-
tion. We do this by separating the quantity with highest radius index at the
left-hand side as described in section 3. All previously evaluated quantities
are at the right-hand side. These quantities come from equations (1) and
(3) using (4). For example when we calculate spherical shells from outside
to inside, the new quantity is fm+2,n. In the following difference equations f

stands for any potential-like quantity:

∂f

∂r

∣

∣

∣

rm,Tn

=
fm−1,n − fm+1,n

2 ∆r
, (28)

∂2f

∂r2

∣

∣

∣

rm,Tn

=
fm+2,n − 2fm,n + fm−2,n

(2 ∆r)2
, (29)

∂f

∂T

∣

∣

∣

rm,Tn

=
fm,n+1 − fm,n−1

2 ∆T
, (30)

∂2f

∂T 2

∣

∣

∣

rm,Tn

=
fm,n+1 − 2fm,n + fm,n−1

∆T 2
. (31)

From equation (29), and secondarily from equations (28), (30), (31), we
obtain recursion formulae of the kind

fm+2,n = 2fm,n − fm−2,n − (2 ∆r)2Fm,n(cν) , (32)

see also section 3. The Fm,n are very complex, and contain the non-linearities
of the Einstein-Maxwell equations. Detailed formulae are available in the
Pascal code (see author’s web site above). This method is made possible by
the fact that 2nd derivatives in the tensor equations appear always linearly.
Therefore the doubled difference in equation (29) was introduced.

When the program runs, the values of the several components are suc-
cessively quantified in one spherical shell after the other. The computation
is done for all components along the inclination (ϑ values) at a given radius,
and along the radius (with all inclination values) from outside to inside step
by step until geometric limits are reached. After starting the procedure, we
get the values as expected from the initial conditions. Suddenly, the val-
ues grow over all limits. At this point geometric limits are reached and the
calculation is stopped.
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The step count (number of iterations) up to the first geometric limit of
a metrical component (where the absolute value of the “physical” component
becomes unity) depends on the inserted values of the integration constants.
A relatively coarse grid reflects strong dependencies, however, the referring
values of the integration constants are imprecise. Computations with finer
grid lead to smaller contrast of the step counts, but the values are more
precise.

The resulting eigenvalues of the integration constants are obtained where
the step count until divergence is at maximum. Round-off errors have to be
respected because these can be in the order of step count differences for the
formulae.

In order to see the eigenvalues, lots of tests were run with parameters
more and less deviating from reference values. The output parameter (used
for the plots discussed in the results section) is the mentioned step count. In
order to make visible the differences, the step count above a “threshold” is
depicted in resulting figures by a more or less fat “point”.

Though neutrinos are uncharged, one has to use always the full Einstein-

Maxwell equations (with zero charge and magnetic moments) to account
for the inherent non-linearity. Because the information is in the entire field
outside the geometric boundary, one has to do so even if charge and mag-
netic moment are zero. Higher moments exist anyway and are included in
the calculation. Only in the (outer) initial conditions (when starting the
calculations) they are neglected.

7 Computational results

7.1 Spins, electric charges, magnetic moments

Tests including parameters different from mass had to be run with an initial
radius close to the conjectural particle radius. Here, the influences of the
four relevant parameters onto the metric (about 10−40) are comparable.

The best result has been achieved with the free electron, see [4]. The
magnetic moment of the electron arises specially sharply, due to the dominant
influence.

Unfortunately, the mass gets lost in the “noise” from rounding errors.
Only cases with charge and mass together can be made visible in exceptional
cases, see for example [4, 11].
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7.2 Masses

Masses of nuclei
The influence of mass on metrics prevails in a certain distance from the

conjectural particle or nucleus radius, respectively. It proves being possible
to set the remaining parameters to zero. Figs. 1 and 2 show related tests,
with possible assignment of maxima in the figures to nuclei [11].

It was necessary in the tests according to Figs. 1, 2 to “pile up” the data.
For this purpose, several test series with slightly different parameters (mostly
initial radius) have been run, and the related step counts (the output) have
been added. So the “noise” from rounding errors is successively suppressed.
With 80 bit floating point registers, the rounding error is in the 20th decimal.
As well, the relative deviation of difference quotients from related differential
quotients in the first step is roughly 10−20 – that is the limit, where the onset
of chaotic behaviour can be seen. Consequently, simulations with only 64 bit
(double) lead to no meaningful results.

One can see certain patterns in the figures, which could arise from errors
by neglecting other parameters.

Masses of leptons
It is principally possible to deduce the masses of all free particles, if

they are stable to some extent. Since the electron mass is relatively small,
one needs an initial radius of about 4 × 10−13 m in order to be able to
neglect the influence of spin, charge, magnetic moment to some extent, see
Fig. 3 [7]. One step count maximum (piled) appears fairly correctly at the
experimental value, flanked by adjoining maxima, possibly caused by the
neglected parameters.

The success in detecting known masses gives us confidence for trying
a prediction of neutrino masses. That implies that neutrinos are stationary
particles, i.e. have rest mass at all. Then they can never reach light speed.

The Particle Data Group [12] commented in the year 2002:
There is now compelling evidence that neutrinos have nonzero mass from the
observation of neutrino flavor change, both from the study of atmospheric
neutrino fluxes by SuperKamiokande, and from the combined study of so-
lar neutrino cross sections by SNO (charged and neutral currents) and Su-
perKamiokande (elastic scattering).

The neutrino has the advantage of being electromagnetically neutral. As
well, the spin does not perceptibly influence other components of metrics
than those for the spin itself. So we can unscrupulously neglect the spin, and
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search for quite tiny masses.
Quoting the Particle Data Group (in 2002) again [12]:

Mass5 m < 3 eV.
Interpretation of tritium beta decay experiments is complicated by anomalies
near the endpoint, and the limits are not without ambiguity.
Newer experiments re-verify this ambiguity, just providing multiple mass
bounds.

Ten plausible maxima have been found in our calculations for the electron
neutrino, see Figs. 4, 5, 6, 7, 8, (quoted from [7]) and the supplementary data.
Obtained values are 0.068 eV, 0.095 eV, 0.155 eV, 0.25 eV, 0.31 eV, 0.39 eV,
0.56 eV, 1.63 eV, 2.88 eV, 5.7 eV. Smaller values are less convincing.

The mentioned ambiguity gets along with the fact that multiple mass val-
ues have been detected. It could be possible that the set of values is reduced
by computation with spin. The precision with 80 bit registers is not sufficient
for such calculations. However, it could well be possible interpreting some
values as composites from smaller values. Here we could have comparable
circumstances like in nuclei so that there is no reason for the assumption
that only one value can exist. This conclusion is supported by multiple ex-
perimental mass bound values.

Many mass values are integer multiples of ∼ 0.08 eV, within the tolerances
of the method. At the place of this value there is a hole in the figure, flanked
by maxima at 0.068 eV and 0.095 eV. This could be:
1) a methodical error, or an effect of overdriving, known from electrical en-
gineering,
2) both values are a kind of basic values, where the other values are compos-
ites from.
Other interpretations cannot be precluded.

8 Conclusion

It has been shown in this paper that the singularity problem is irrelevant
for geometric equations, just for those of the Rainich space, the known
Einstein-Maxwell equations. So these equations can be numerically
solved. Even more, the discrete values of particle quantities, for exam-
ple neutrino masses, can be predicted by numerical calculations based on
Einstein-Maxwell theory. Starting from a finite difference scheme for

5of electron neutrino
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differential equations, chaos properties of these equations were investigated
in dependence of parameters being integration constants of the theory.

The resulting masses for supposed electron neutrinos come out to lie in
the range being known by experiments. This is probably the first time that
neutrino masses are predicted by a theory based on first principles.
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Appendix: Basic formulae of general relativity

The tensor calculus is a lot more clear than conventional vector analysis so
that the formalism of the general theory of relativity [5] is reduced to few
formulae:
The Bianchi identities [6]

(Rk
i −

1

2
Rδk

i );k = 0

are always fulfilled by
Rik = 0 .

Therefore, only 6 independent equations exist for 10 components gik . If we
set (Einstein and Grossmann [5])

Rik −
1

2
Rgik = −κTik ,

the divergences of the energy tensor must vanish

T k
i ;k = 0 ,

as dictated by nature. For the variables in the energy tensor, separate condi-
tions follow, which do not take the place of the lacking conditions in metrics.

The divergences of the energy tensor of distributed mass

T ik = σ
dxi

ds

dxk

ds
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with the mass density σ are
T ik

;k = σki

with the (space-like) curvature vector k. One can see the equivalence prin-
ciple [5] in the curvature vector, because the curvature vector consists of
accelerated motion and the gravitational field. - Since the curvature vector
of any time-like curve in space-time is different from zero in general, σ must
be zero everywhere. Distributed mass does not exist.

There is an exception when we start from discrete masses (which can only
be integration constants). The force onto a body with the mass m then were

Ki = mki .

For force equilibrium it must be ki = 0 . That results in four equations of
motion. The curve described by the body in space-time is a geodesic.

The electromagnetic energy tensor (Lorentz, see Einstein [5])

Tik = FiaFk
a −

1

4
gikFabF

ab

would result in a force density (Lorentz force)

T ik
;k = F i

aS
a ,

i. e. S must be zero. That means, there are no distributed charges and
currents. Discrete charges are analogous to discrete masses. Equations of
motions result together with the mass (the curves are no geodesics then).

From this we see:
1) Complete determinacy is not given.
2) There are no distributed charges and masses (sources).
3) Only the electromagnetic energy tensor is applicable in Einstein’s grav-
itational equation.
4) In order to calculate fields (gravitational and electromagnetic), we have
to deal with integration constants instead of sources.
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Figures

Figure 1: Tests for nuclei with mass numbers up to 8. Initial radius 4, 400
values, 4 times piled (1600 tests)

Figure 2: Tests for nuclei with mass numbers from 8 to 16. Initial radius 5,
400 values, 5 times piled (2000 tests)
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Figure 3: Tests for the free electron. Initial radius 400, 51 values, 9 times
piled (459 tests)

Figure 4: Tests for the electron neutrino, masses < 0.11 eV. Initial radius 5,
100 values, 9 times piled (900 tests)
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Figure 5: Tests for the electron neutrino, masses < 0.4 eV. Initial radius 5,
100 values, 9 times piled (900 tests)

Figure 6: Tests for the electron neutrino, masses < 1 eV. Initial radius 5, 99
values, 9 times piled (891 tests)
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Figure 7: Tests for the electron neutrino, masses < 4 eV. Initial radius 5, 99
values, 9 times piled (891 tests)

Figure 8: Tests for the electron neutrino, masses < 11 eV. Initial radius 5,
100 values, 9 times piled (900 tests)
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