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Abstract. Let V be an asymptotically cylindrical Kähler manifold with asymptotic
cross-section D. Let ED be a stable Higgs bundle over D, and E a Higgs bundle over
V which is asymptotic to ED. In this paper, using the continuity method of Uhlenbeck
and Yau, we prove that there exists an asymptotically translation-invariant Hermitian
projectively Hermitian Yang-Mills metric on E.

1. Introduction

The Yang-Mills theory plays an important role for holomorphic vector bundles over a
compact Kähler manifold. The relation between the existence of Hermitian Yang-Mills
metrics and stable holomorphic vector bundles over compact Kähler manifolds is by now
well understood, due to the work of Narasimhan-Seshadri [27], Donaldson [9], Siu [32],
Uhlenbeck-Yau [31] and others. On the other hand, it was quite fruitful to consider the
correspondences for vector bundles with some additional structures like Higgs field, which
was initiated by Hitchin [13]. Such bundles have a rich structure and play an important
role in many areas including gauge theory, Kähler and hyper-Kähler geometry, group
representations, and nonabelian Hodge theory. Hitchin proved that a Higgs bundle on a
compact Riemann surface admits a Hermitian Yang-Mills metric if and only if it is Higgs
poly-stable. Later, Simpson [30] proved an analogue of the Donaldson-Uhlenbeck-Yau
theorem for the Higgs bundle over higer dimensional Kähler manifolds, influenced by the
work of Hitchin. In the compact case, the Higgs version of Donaldson-Uhlenbeck-Yau has
been extensively studied, see references [1, 2, 3, 6, 7, 14, 18, 19, 24].

There are noncompact version of the theorem of Donaldson-Uhlenbeck-Yau, but it is
not general enough to cover all cases, see references [4, 12, 16, 17, 25, 26, 28, 29, 30, 33].
In a very recent paper, Jacob and Walpuski [16] proved that if E is a reflexive sheaf over
an asymptotically cylindrical Kähler manifold, which is asymptotic to a stable holomor-
phic vector bundle, then it admits an asymptotically translation-invariant projectively
Hermitian Yang-Mills metric. Our aim is to generalize this result to Higgs bundles.
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Let (X,ω) be a compact Kähler manifold, and E a holomorphic vector bundle over X.
The stability of holomorphic vector bundles, in the sense of Mumford-Takemoto, was a
well established concept in algebraic geometry. A holomorphic vector bundle E is called
stable (semi-stable), if for every coherent sub-sheaf E ′ ↪→ E of lower rank, one has

µ(E ′) =
deg E ′

rank E ′
< (≤)µ =

deg E

rank E
,

where µ(E ′) is called the slope of E ′.
A holomorphic bundle (E, ∂̄E) coupled with a Higgs field φ ∈ Ω1,0(End(E)) which

satisfies ∂̄Eφ = 0 and φ∧φ = 0 will be called by a Higgs bundle. A Higgs bundle (E, ∂̄E, φ)
is called stable (semi-stable) if the usual stability condition µ(E ′) < µ(E)(≤)holds for all
proper φ-invariant sub-sheaves. A Hermitian metric H in Higgs bundle (E, ∂̄E, φ) is said
to be projectively Hermitian Yang-Mills (PHYM) if the curvature FH,φ of the Hitchin-
Simpson connection DH,φ = DH + φ+ φ∗H satisfies

KH :=
√
−1ΛwFH,φ −

tr(
√
−1ΛwFH,φ)

rank E
idE = 0,

where DH is the Chern connection induced by H, and φ∗H is the adjoint of φ with respect
to the metric H.

Theorem 1.1. Let V be an asymptotically cylindrical Kähler manifold with asymptotic
cross-section D. Let ED be a stable Higgs bundle over D, and E a Higgs bundle over
V which is asymptotic to ED. Then there exists an asymptotically translation-invariant
projectively Hermitian Yang-Mills metric on E.

Remark 1.2. A PHYM metric H on E is Hermitian Yang-Mills (HYM) if and only
if
√
−1ΛwFH,φ is constant. Every asymptotically translation-invariant Higgs line bundle

over the asymptotically cylindrical Kähler manifold has an HYM metric; however, this
metric will typically not be asymptotically translation invariant. This is a consequence of
Proposition 2.6.

2. Preliminaries

Definition 2.1. Let (D, gD, JD) be a compact Kähler manifold. A Kähler manifold
(V, g, J) is called asymptotically cylindrical with asymptotic cross-section (D, gD, JD) if
there exists a constant δV > 0, a compact subset K ⊂ V and a diffeomorphism π :
V \K → (1,∞)× S1 ×D such that∣∣∇k(π∗g − g∞)

∣∣+
∣∣∇k(π∗J − J∞)

∣∣ = O(e−δV l),

for all k ∈ N, with

g∞ := dl2 ⊕ dθ2 ⊕ gD, J∞ =

(
0 −1
1 0

)
⊕ JD.
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Here (l, θ) are the canonical coordinates on (0,∞) × S1. Moreover, we assume that the
map V \K → (0,∞)× S1 is holomorphic.

In what follows, we suppose an asymptotically cylindrical Kähler manifold V with
asymptotic cross-section D has been fixed. By slight abuse of notation we denote by
l : V → [0,∞) a smooth extension of l ◦ π : V \K → (1,∞) such that l ≤ 1 on K. Given
L > 1, we define the truncated manifold

VL := l−1([0, L]).

Given z = (L, θ) ∈ (1,∞)× S1, we set

Dz := π−1({L, θ} ×D).

Definition 2.2. Let (ED, ∂̄D, φD) be a Higgs bundle over D and (E, ∂̄, φ) a Higgs bundle
over V . We say that E is asymptotic to ED if there exists a bundle isomorphism π̄ : E →
E∞ covering π and a constant δE > 0 such that∣∣∇k(π̄∗∂̄ − ∂̄∞)

∣∣ = O(e−δE l),
∣∣∇k(π̄∗φ− φ∞)

∣∣ = O(e−δE l)

for all k ∈ N. Here (E∞, ∂̄∞, φ∞) is the pullback of (ED, ∂̄D, φD) to (1,∞) × S1 × D;
moreover, we have chosen an auxiliary Hermitian metric on ED and pulled it back to E∞.
We say that (E, ∂̄, φ) is asymptotically translation-invariant if it is asymptotic to some
Higgs bundle over D.

Definition 2.3. Let (E, ∂̄, φ) be a Higgs bundle over V asymptotic to (ED, ∂̄D, φD). Let
HD be a Hermitian metric on ED. We say that a Hermitian metric H on E is asymptotic
to HD if there exist a constant δH > 0 such that∣∣∇k log(H−1∞ π∗H)

∣∣ = O(e−δH l)

for all k ∈ N. Here H∞ is the pullback of HD to E∞. We say that H is asymptotically
translation-invariant if it is asymptotic to some Hermitian metric HD.

Let (E, ∂̄, φ) be a Higgs bundle over V and H a Hermitian metric on E. Then we get
an operator ∂H so that DH = ∂̄ + ∂H is the metric connection on E, and we can define
φ∗H by

〈φu, v〉H = 〈u, φ∗Hv〉H .
Set

D′H = ∂H + φ∗H , D′′ = ∂̄ + φ,

and then
DH,φ = D′H +D′′.

We have the following Kähler identities [30]
√
−1[Λ, D′′] = (D′H)∗,

√
−1[Λ, D′H ] = −(D′′)∗.

Then we have the Weitzenböck formulas

(D′H)∗D′H =
1

2
(D∗H,φDH,φ + [KH , ·]),
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(D′′)∗D′′ =
1

2
(D∗H,φDH,φ − [KH , ·]).

Definition 2.4. A differential operator A : Γ(E1)→ Γ(E2) on sections of tensor bundles
on V is called asymptotically translation-invariant if there is a translation-invariant oper-
ator A∞ on sections of the corresponding bundles on D×S1×Rl such that the difference
between the coefficients of A and A∞ goes to zero in C∞ uniformly as t goes to infinity.

Even if A is elliptic, we can not expect A to induce a Fredholm operator on ordinary
Hölder or Sobolev spaces since V is noncompact. To fix this, it is helpful to introduce
Hölder norms with exponential weights.

Definition 2.5. For k ∈ N, α ∈ (0, 1) and δ ∈ R, define

Ck,α
δ := {f ∈ Ck,α :‖ f ‖Ck,αδ <∞},

with
‖ · ‖Ck,αδ :=‖ eδl· ‖Ck,α ,

and set
C∞δ (V ) :=

⋂
k∈N

Ck,α
δ (V ).

Similarly, we define Ck,α
δ (V,

√
−1su(E,H)) and C∞δ (V,

√
−1su(E,H)). Here

√
−1su(E,H)

denotes the traceless endomorphisms of E and such endomorphisms are self-adjoint with
respect to H.

Proposition 2.6 ([16, Proposition 2.7]). For 0 < δ �D 1, the linear map Ck+2,α
δ (V ) ⊕

R→ Ck,α
δ (V ) defined by

(f, A) 7−→ ∆f − A∆l1

is an isomorphism.

Proposition 2.7. If (ED, ∂̄D, φD) is stable and
∣∣δ∣∣�D 1, the linear operator D∗H0,φ

DH0,φ :

Ck+2,α
δ (V,

√
−1su(E,H))→ Ck,α

δ (V,
√
−1su(E,H)) is Fredholm of index zero.

Proof. Since (ED, ∂̄D, φD) is stable, there is a PHYM metric HD on ED. The linear
operator D∗H0,φ

DH0,φ is asymptotic to the translation-invariant linear operator

−∂2l − ∂2θ +D∗HD,φD
DHD,φD

acting on the sections of
√
−1su(E∞, H∞), where DHD,φD is the Hitchin-Simspon connec-

tion on ED associated to the metric HD. Since HD is PHYM, the Weitzenböck formulas
imply

1

2
D∗HD,φD

DHD,φD = (D′HD
)∗D′HD

= (D′′ED
)∗D′′ED

.

If 0 ∈ Spec{D∗HD,φD
DHD,φD}, then there exists nonzero section s such that

D∗HD,φD
DHD,φDs = 0,

1Throughout this paper, we denote ∆ = d∗d.
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equivalently,
D′′ED

s = 0,

which together with the stability of ED gives s = 0.
Consequently, the spectrum of −∂2θ + D∗HD,φD

DHD,φD is contained in [λD,∞), for some
λD > 0.

We say that δ ∈ R is a critical weight of −∂2l − ∂2θ +D∗HD,φD
DHD,φD if there is a τ ∈ C

with
Im τ = δ

and a non-zero section of E polynomial in l, say u, such that

(−∂2l − ∂2θ +D∗HD,φD
DHD,φD)(e

√
−1τlu) = 0.

We can expand u in eigen-sections of−∂2θ+D∗HD,φD
DHD,φD . Therefore if the above equation

has a solution, we can find a non-zero real polynomial in l, say p(l), and a non-zero section
u with

(−∂2θ +D∗HD,φD
DHD,φD)u = λu

for some λ ∈ [λD,∞) such that

(−∂2l − ∂2θ +D∗HD,φD
DHD,φD)(e

√
−1τlp(l)u) = 0.

Then

(2.1) (τ 2 + λ)p(l)− 2
√
−1τp′(l) + p′′(l) = 0.

Considering the leading order term in l,

τ 2 + λ = 0,

which means
δ = ±

√
λ.

This implies the Fredholm property for
∣∣δ∣∣ < √λD by [15, Proposition 2.4].

On the other hand, D∗HD,φD
DHD,φD is formally self-adjoint and 0 is not a critical weight,

then the index is zero [20, Theorem 7.4]. �

3. The Donaldson functional

Let (X, g, J) be a compact Kähler manifold and E a Higgs bundle over X. Given metric
H0 and s ∈ C∞(X,

√
−1su(E,H0)), the value of Donaldson functional at (H0, H0e

s) is
[30]

M(H0, H0e
s) :=

∫
X

tr(s
√
−1ΛFH0,φ) + 〈Ψ(s)(D′′s), D′′s〉H0 ,

where

Ψ(x, y) =

{
(x− y)−2(ey−x − (y − x)− 1) x 6= y,
1
2

x = y.
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The above integral is equivalent to

M(H0, H0e
s) :=

∫ 1

0

∫
X

〈s,Ad(e
us
2 )KH0eus〉dvolgdu.

More details can be found in a recent paper [8].

Proposition 3.1 ([10, Lemma 24], [30, Proposition 5.3]). If H0 is PHYM, then

‖ s ‖L1 −1 .M(H0, H0e
s).

Proposition 3.2 ([30, Proposition 5.1]). We have

M(H0, H2) =M(H0, H1) +M(H1, H2).

4. The Uhlenbeck-Yau continuity method

We will use the continuity method initiated by Uhlenbeck-Yau [31] (see also Lübke and
Teleman’s books [21, 22]).

At first, we fix some

0 < δ < min{δV , δE,
√
λD}

and will shortly construct a background Hermitian metric H0 on E which is asymptotically
translation-invariant and satisfies

KH0 ∈ C∞δ (V,
√
−1su(E,H0)).

Given such an H0, we define a map

L : C∞δ (V,
√
−1su(E,H0))× [0, 1]→ C∞δ (V,

√
−1su(E,H0))

by
L(s, t) := Ad(e

s
2 )KH0es + ts.

Set
I := {t ∈ [0, 1] : L(s, t) = 0 for some s ∈ C∞δ (V,

√
−1su(E,H0))}

By Simpson’s theorem, there exists a PHYM metricHD on ED. One can easily construct
a Hermitian metric H−1 asymptotic to HD which satisfies

κ := KH−1 ∈ C∞δ (V,
√
−1su(E,H−1)).

The Hermitian metric H0 := H−1e
κ is asymptotic to HD and

L(−κ, 1) = Ad(e−
κ
2 )KH−1,φ − κ = 0.

Then 1 ∈ I.
Then we need to show that I

⋂
(0, 1] is open and I is closed; hence, I = [0, 1]. Since

L(s, 0) = 0 precisely means that H = H0e
s satisfies the PHYM equation, this will prove

Theorem 1.1.
To prove I is closed, the first step is to show that ‖ s ‖C0 is bounded by a constant

depending only on H0. Then by an argument of Bando and Siu [5], ‖ s ‖Ck is bounded
by a constant depending only on H0 and k. The second step is a decay estimate. And
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we will omit the second one since it is very similar to [16]. Then the closedness is an
immediate consequence of Arzelà-Ascoli.

5. Linearising of the perturbed equation

One can extend L(s, t) to a smooth map

L : C2,α
δ (V,

√
−1su(E,H0))× [0, 1]→ C0,α

δ (V,
√
−1su(E,H0)).

The fact that I
⋂

(0, 1] is an immediate consequence of the following two propositions
and the implicit function theorem for Banach spaces.

Proposition 5.1. If (s, t) ∈ C2,α
δ (V,

√
−1su(E,H0)) × [0, 1] is a solution of L(s, t) = 0,

then s ∈ C∞δ (V,
√
−1su(E,H0)).

Proof. Fix a Hermitian metric H0. Set

H := H0e
s and D̃s = e

s
2
∗DH,φ = e

s
2 ◦DH,φ ◦ e−

s
2 .

We set

R(s) := Ad(e
s
2 )KH0es .

Since D′H0es
= D′H0

+ e−sD′H0
es, we have

D̃′s := e
s
2 ◦D′H0es

◦ e−
s
2

= e
s
2 ◦ (D′H0

+ e−sD′H0
es) ◦ e−

s
2

= D′H0
+ e−

s
2 (D′H0

e
s
2 )

= D′H0
+

1

2
Υ(−s

2
)D′H0

s,

where Υ(s) ∈ End(gl(E)) is given by

Υ(s) :=
eads − id

ads
.

On the other hand,

D̃′′s := e
s
2 ◦D′′ ◦ e−

s
2 = D′′ − 1

2
Υ(
s

2
)D′′s,

which means

D̃s = D̃0 +
1

2
Υ(−s

2
)D′H0

s− 1

2
Υ(
s

2
)D′′s.
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Then by the Kähler identities as well as the Weitzenböck formulas we have

R(s) = (3− 2cosh(ad s
2
))KH0 +

1

4
(Υ(

s

2
) + Υ(−s

2
))D∗H0,φ

DH0,φ

+

√
−1

2
Λ(D′′Υ(−s

2
) ∧D′H0

s)−
√
−1

2
Λ(D′H0

Υ(
s

2
) ∧D′′s)

−
√
−1

4
Λ(Υ(−s

2
)D′H0

s ∧Υ(
s

2
)D′′s+ Υ(

s

2
)D′′s ∧Υ(−s

2
)D′H0

s),

here we heavily used

tr
√
−1ΛFD̃s = tr

√
−1ΛFH0,φ.

Hence the equation L(s, t) = 0 is equivalent to

(
1

2
D∗H0,φ

DH0,φ + t)s+B(DH0,φs⊗DH0,φs) = C(KH0),

where B and C are linear with coefficients depending on s, but not on its derivatives.
The result now follows from a standard elliptic bootstrapping procedure.

�

Proposition 5.2. If (s, t) ∈ C2,α
δ (V,

√
−1su(E,H0)) × (0, 1] is a solution of L(s, t) = 0,

then the linearisation

Ls,t :=
dL

ds
(s, t) : C2,α

δ (V,
√
−1su(E,H0))→ C0,α

δ (V,
√
−1su(E,H0))

is invertible.

Proof. If σt satisfies

es+tŝ = esAd(e−
s
2 )eσt ,

then
d

dt |t=0

σt = Ad(e
s
2 )Υ(−s)ŝ,

here we used dxexp(y) = (Υ(x)y)ex = ex(Υ(−x)y).
Using the above fact, we have

d

dt |t=0
D̃′s =

1

2
(e−

s
2D′H0

(e
s
2 Ad(e−

s
2 )Υ(

s

2
)ŝ)− (Ad(e−

s
2 )Υ(

s

2
)ŝ)e−

s
2D′H0

e
s
2 )

=
1

2
(D′H0

(Ad(e−
s
2 )Υ(

s

2
)ŝ) + [e−

s
2D′H0

e
s
2 ,Ad(e−

s
2 )Υ(

s

2
)ŝ])

=
1

2
D̃′sAd(e−

s
2 )Υ(

s

2
)ŝ.

Similarly,
d

dt |t=0
D̃′′s = −1

2
D̃′′sΥ(

s

2
)ŝ.
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Therefore,

d

dt |t=0

√
−1ΛFD̃s+tŝ =

√
−1ΛD̃s(

d

dt |t=0
D̃s)

=
1

4
D̃∗sD̃s(id + Ad(e−

s
2 ))Υ(

s

2
)ŝ

− 1

4
[R(s), (id− Ad(e−

s
2 ))Υ(

s

2
)ŝ].

To see that ŝ takes values in
√
−1su(E,H0), observe that one can identify the tangent

space of
√
−1su(E,H0) as itself. Hence, one can easily verify that

tr(
d

dt |t=0

√
−1ΛFD̃s+tŝ) = 0,

which means
d

dt |t=0
R(s+ tŝ) =

d

dt |t=0

√
−1ΛFD̃s+tŝ .

Hence the linear operator Ls,t is given by

Ls,tŝ =
1

4
D̃∗sD̃s(id + Ad(e−

s
2 )Υ(

s

2
))ŝ+ t(

ads
4

(1− Ad(e−
s
2 ))Υ(

s

2
) + id)ŝ.

Since s ∈ C2,α
δ (V,

√
−1su(E,H0)), the linear operator Ls,t can be joined to

1

2
D∗H0,φ

DH0,φ + t

by a path of bounded linear operators which are asymptotic to

1

2
(−∂2l − ∂2θ +D∗HD,φD

DHD,φD + 2t).

The argument in the proof of Proposition 2.7 shows that this is a path of Fredholm
operators. Therefore, the index of Ls,t vanishes. To see that Ls,t has trivial kernel and
thus is invertible, observe that∫

V

〈Ls,tŝ, (id + Ad(e−
s
2 ))Υ(

s

2
)ŝ〉 ≥ 2t

∫
V

∣∣ŝ∣∣2.
More details about Fredholm theory can be found in the Appendix A in [23].

�

6. C0-estimate and stability

Proposition 6.1. If (s, t) ∈ C∞δ (V,
√
−1su(E,H0)) × [0, 1] is a solution of L(s, t) = 0,

then

‖ s ‖C0≤ c.
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Proof. We denote by c > 0 a generic constant, which depends only on V,E, and the
reference metric H0 constructed in Section 4. We write x . y for x ≤ cy and x � y for
c−1y ≤ x ≤ cy.

Fix L0 � 1 and set

N :=‖ s ‖L∞(V ) and M :=‖ s ‖L∞(V \VL0
) .

Step 1. We have

N −M . L0 + 1.

First we have

〈R(s)−KH0 , s〉 = 〈
√
−1ΛD′′(e−sD′H0

es), s〉
= 〈
√
−1ΛD′′(Υ(−s)D′H0

s), s〉

=
1

4
∆
∣∣s∣∣2 +

1

2

∣∣√Υ(−s)DH0,φs
∣∣2,

which together with L(s, t) = 0 gives

(6.1) ∆
∣∣s∣∣2 + 4t

∣∣s∣∣2 ≤ −4〈KH0 , s〉.

Therefore,

∆
∣∣s∣∣2 ≤ 4N

∣∣KH0

∣∣.
From Proposition 2.6, one can denote by f ∈ C2,α

δ (V ) and A > 0 the unique solution to

∆(f − Al) = 4
∣∣KH0

∣∣.
We can assume that

∣∣s∣∣ achieves its maximum at x0 ∈ VL0 . Applying the maximum

principle to
∣∣s∣∣2 −N(f − Al) on VL0 we have the desired estimate.

Step 2. We have

M .‖ KH0es|Dz ‖L2(V \VL0
),

where z = (L, θ) ∈ (L0,∞)× S1.

Step 2.1. Suppose x0 ∈ V \VL0 satisfies
∣∣s∣∣(x0) = M , then for all L ≥ l(x0) we have

l(x0)− L .‖ s ‖L∞(∂VL) −
1

2
M.

By the maximum principle applied to
∣∣s∣∣2−N(f−Al) on VL we have the desired estimate.

Here we assume that M ≥ 8 ‖ f ‖L∞(V \VL0
) and N ≤ 2M because otherwise we are already

done.
Step 2.2. There are L0 ≤ L1 < L2 with L2 − L1 �M such that

M2 .
∫
VL2
\VL1

∣∣s∣∣.
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By Step 2.1 we have M .‖ s ‖L∞(∂VL) for 0 ≤ L − l(x0) � M . Having in mind

∆
∣∣s∣∣2 ≤ 8M

∣∣KH0

∣∣, then by the mean value inequality [11, Theorem 9.20] we have

M .
∫
VL+1\VL−1

∣∣s∣∣.
Summing over L− l(x0) = 1, · · · , k (with k �M) yields the asserted inequality.

Step 2.3. We have

‖ s ‖L1(Dz) −
1

2
.M ‖ KH0es|Dz ‖L2(Dz) .

Since L0 � 1 and ED is stable, EDz is stable as well. Denote by HDz the PHYM metric
on EDz inducing the same metric on det(EDz) as H0 |Dz . Then we can identify HDz and
H0 |Dz when L0 is sufficiently large, in other words,

log(H−1Dz
H0 |Dz) ∈ C∞δ (V,

√
−1su(E,H0)).

And by the implicit function theorem, HDz depends on z smoothly. Then from Proposi-
tion 3.1 and Proposition 3.2 we have

‖ s ‖L1(Dz) −1 .M(HDz , H0e
s |Dz)

=M(H0 |Dz , H0e
s |Dz) +M(HDz , H0 |Dz)

=M(H0 |Dz , H0e
s |Dz) +O(e−δL0)

.
∫
Dz

∣∣s∣∣∣∣KH0es|Dz

∣∣+ e−δL0 .

This implies the asserted inequality.
Comparing the lower bounds from Step 2.2 with the upper bounds obtained by inte-

grating Step 2.3 completes the proof of Step 2.
Step 3. We have

‖ KH0es|Dz ‖
2
L2(V \VL0

). e−δL0+ ‖ F⊥H0
‖2L2(VL0

),

where F⊥H0
denotes the trace-free part.

Step 3.1. We have

lim
L→∞

‖ KH0es|Dz ‖
2
L2(VL\VL0

). ce−δL0+ ‖ F⊥H0
‖2L2(VL0

) + lim
L→∞

∫
VL

∣∣F⊥H0es

∣∣2 − ∣∣F⊥H0

∣∣2.
If H is a Hermitian metric on a Higgs bundle E over an n-dimensional compact Kähler

manifold X with Kähler form ω, then∫
X

q4(H) ∧ ωn−2 =

∫
X

c(
∣∣F⊥H ∣∣2 − ∣∣KH

∣∣2)vol

independent on the choice of the metric, where

q4(H) := 2c2(H)− r − 1

r
c1(H)2
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with

c1(H) :=

√
−1

2π
trFH,φ, c2(H) := − 1

8π2
((trFH,φ)2 − tr(F 2

H,φ)).

Therefore ∫
Dz

∣∣KH0es|Dz

∣∣2 =

∫
Dz

∣∣KH0|Dz

∣∣2 +

∫
Dz

∣∣F⊥H0es|Dz

∣∣2 − ∣∣F⊥H0|Dz

∣∣2
.
∫
Dz

∣∣F⊥H0es

∣∣2 − ∣∣F⊥H0

∣∣2 + e−δL,

here we used
| FH0 − FH0|Dz |. e−δL and | KH0|Dz |. e−δL.

Step 3.2. We have

lim
L→∞

∫
VL

∣∣F⊥H0es

∣∣2 − ∣∣F⊥H0

∣∣2 ≤ 0.

Using (6.1), L(s, t) = 0 and

lim
L→∞

∫
VL

(q4(H0e
s)− q4(H0)) ∧ ωn−2 = 0,

one can easily derive the inequality. �
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