
Uncertainty and the lonely runner conjecture

The conjecture of [1] is that for k points (ideal runners) starting at
one point and moving at distinct constant speeds around an ideal
circle, for each runner there is a time when the arc distance between
that runner and every other is at least C/k where C is the circum-
ference of the circle. Only the cases when k ≤ 7 have been solved
in the 45 years since the conjecture was posed.

When ratios among the relative speeds are allowed to be rational,
the conditions for each runner to be distance at least C/k from the
chosen runner are not in general mutually statistically independent.
(And the mutual expectation can actually be zero.)

Despite this, there are cases when the speeds are all rational, while
the proportion of times when all runners are distance at least C/k
from the chosen runner is just the continuous extension of the tran-
scendental case.

In examples, for the sequence of rational speeds (a1, ..., ak−1, 0), for
each choice of j, the proportion of time when the k’th runner is
distance ≥ C/k from all others seems to be the same as if the ai

aj

were transcendental, provided for each prime divisor p of k one has
|vp(aj)− vp(as)| ≥ vp(k) for all s 6= j, k.

We’ll explain a bit later that if (a1, ..., ak−1, 0) were a counterexample
and some ai is prime to k then some other must be a multiple of k.
The observation above, if it is always true, implies when k is a prime
p that at least two speeds must be divisible by p, and if we rescale
so they are not all divisible by p then either at least two are prime
to p or at least two must be divisible by exactly the same highest
power of p larger than zero.

To begin considering the phenomenon relating primes with statisti-
cal independence, let’s think of it this way. Instead of attempting to
approximate how the expected proportion of time becomes discon-
tinuous at certain rational points, let’s introduce some uncertainty
into the starting time of one of the runners to remove the disconti-
nuity.
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Let bj = 1
aj
lcm(a1, ..., .ak−1) for j = 1, ..., k−1. The involution which

interchanges integer sequences (a1, ..., ak−1) and (b1, ..., bk−1) arises
by the relation between two approaches to the problem, fixing a
point in space and considering how speed and time are reciprocals.

1. Theorem. A sequence of integer speeds (a1, ..., ak−1, 0) is a
counterexample to the lonely runner conjecture if and only if the
conjugate sequence (b1, ..., bk−1) has the property that the union of
the discrete arithmetic progressions kbiZ + j for −bi < j < bi is the
whole of Z.

Proof. Choose units of time so that C = k lcm(a1, ..., ak−1). The
probability distributions of times when each runner is within C/k
of zero is a step function which changes values at integers.

In the next few paragraphs we are really just calculating unions of
arithmetic progressions but we let the formalization by real valued
step functions persist so that we can talk about the proportion of
time when a runner is lonely without making new definitions and
also so we can smooth or ‘feather’ one of the distributions. We will
assume C = k lcm(a1, ..., ak−1).

Choose one of the runners, the i’th runner for i 6= k. Define integers

y = gcd(bi, k gcd(bi, lcm(b1, b2, ..., b̂i, ..., bk−1)))

where the hat denotes a deleted entry, and

x =
k gcd(bi, lcm(b1, ..., b̂i, ..., bk−1))

y
.

Let ψ be the step function which takes the value 1/x at x steps of
width 1, alternating with x − 1 steps of zero, which are of width
y − 1.

Now we alter the statistical behaviour of the i’th runner by convolv-
ing its probability distribution with ψ.
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2. Theorem. When the probability distribution of the i’th runner
is altered by convolving with ψ, the resulting joint probability of all
the runners being of distance larger than C/k from the k’th reverts
to the joint probability which is the continuous extension of the
transcendental (for speed ratios relating that runner to the others)
case and is therefore nonzero assuming LRC for k − 1.1

Proof. We are considering a product of periodic functions with
different periods. We think of this as the product of two functions,
the one the i’th runner, on the one hand, and the product of all
the others, on the other hand. The function for the i’th runner is a
step function with a single high step and a single low step; and as
the period replicates in the longer least common multiple the step
function walks through the product function. In the transcendental
case the corresponding sum of translates of the step function can be
considered as if it were translationally invariant. Here there is the
possibility that the greatest common divisor of the two periods may
not be an integer divisor of the greatest common divisor of the size
of the upstep and the downstep. According to the relevant cyclic
group extension the convolution replaces the step function with a
finite sum of translates to repair this. QED

Our observation about primes and valuations is partly proven by
this theorem. If k is a power pe of a prime p and the valuation of bi
is higher than the others by as much as e. Then x = 1, and the step
function is the one which acts by the identity under convolution.

Note that the condition about prime valuations is invariant under
the involution interchanging (a1, ..., ak−1) with (b1, ..., bk−1).

The change in the joint expectation from modifying the i’th dis-
tribution can be derived from the same calculation but instead we
convolve with the difference φ − δ between the step function and
the ‘delta function’ which has a single step of height 1. The differ-
ence function is reminiscent of sin(x)/x which by its convolution
performs low bandpass filtering.

1because decreasing k has the same effect as increasing the arc from −C/k to C/k by the
same ratio.
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On the other side of the picture, we can think of a Cartesian plane
where one axis is speed and the other is position. Lines through
the origin correspond to choices of time, and so belong to the real
projective line. We can assume the integers ai are greater than zero
by adding a common multiple to all.

Our assumption that no other runner has the same speed as the
k’th provides nonzero denominators which allow us to ignore the
point at infinity and pass to the interval of ratios in the real line
(−1+mk

ai
, 1+mk

ai
) for i = 1, ..., k − 1. The conjecture is equivalent to

saying that these open sets are not an open cover of the real line.
Nestedness considerations lead us to considering that the condition

−1 +mk

ai
<

1 + nk

aj
<

1 +mk

ai

for the limiting point of one open interval to be contained in another,
is equivalent to the determinantal condition

0 < det

(
aj 1 + nk
ai 1 +mk

)
< 2aj.

If (a1, ..., ak−1, 0) is a counterexample, for any integer n and choice
of aj with j ≤ k − 1 there is an integer m and an ai with i ≤ k − 1
so that the determinantal condition holds. The second row of the
matrix can play the role of the first row of a new matrix.

3. Theorem. If (a1, ..., ak−1, 0) is a lonely runner counterexam-
ple the algorithm runs forever from every starting point. If not, it
terminates in finite time from every starting point.

In the first case the algorithm then constructs an infinite fan for a
toric surface with the given upper bound on the indices of its cyclic
quotient singular points. The condition is periodic up to adding a
multiple of ai to m and one can mod out the surface by an analytic
automorphism to create a compact surface. Thus

4. Theorem. Such a surface exists if and only if the conjecture is
false.
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A topological aspect is to consider the configurations of the k − 1
points as a point on a k− 1-torus. One considers the closed cube of
side k−2. The Radon transform of the the cube is a function whose
domain is the projectivized tangent bundle, and while it usually has
a nonempty zero locus, the lonely runner conjecture refers to the
Pk−2 fiber over the unique furthest point from the cube. The points
in the Pk−2 fiber are exactly the speed ratios [a1 : ... : ak−1]. Because
lengths of closed geodesics change discontinuously we should try to
define the Radon transform to return an average. We could multiply
the characteristic function of the cube by the normal distribution on
the line with standard deviation δ and take the limit of the integral
as δ tends to ∞. Technical issues remain in trying to understand
what discontinuities remain. One can sample the normal distribu-
tion instead of integrating the product with the step function. The
limit will be the same as the standard deviation tends to infinity.
While the standard deviation is finite, the sum approximating the
integral is a theta series of a union of arithmetic progressions; a coun-
terexample to the lonely runner conjecture would be a case when
without passing to the limit the sum is a full Jacobi theta function
with no missing terms. For small standard deviations the sum does
not approach the integral, but it can be represented by an integral
by using the functional equation instead.

The conjecture that every tangent line though the unique furthest
point from the cube meets the closed cube is equivalent to saying
that if a spanning set p1, ..., pk−1 of a free abelian group satsify the
single relation 0 = a1p1 + ...+ ak−1pk−1 and none besides its logical
consequences, the element

−p1 − p2...− pk−1

is congruent in the corresponding rational vector space modulo that
relation to some c1p1 + ... + ck−1pk−1 with 0 ≤ ci ≤ k − 2 rational
numbers.

This allows us to visualize the determinantal condition in terms of
a three dimensional axonometric projection.
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For example, for the tuple of speeds (1, 3, 5, 0) we consider the cube
in three space {(x, y, z) : 0 ≤ x, y, z ≤ 2} translated by all elements
of 4Z3 projected along the line of slope [1 : 3 : 5]. The conjecture
asserts that a point of any cube projects to (−1,−1,−1). Modding
out by the direction [1 : 3 : 5] gives the relation among the standard
basic translation vectors

p1 + 3p2 + 5p3 = 0

Now p3 projects to −1
5
p1 − 3

5
p2 and −p1 − p2 − p3 projects to (1

5
−

1)p1+(3
5
−1)p2 = −4

5
p1+ −2

5
p2. For projections of points congruent to

this modulo 4 we must allow translations by multiples of 4p1 and 4p2
but also by the projection of 4p3 or equivalently of 4(−p1− p2− p3)
which is four times the translation we just calculated already.

Thus we’re considering the projection of (1+mk)(−p1−p2−p3) for
integers m and if one of these projected points lies in the standard
square with coefficients of p1, p2 between 0 and 2 this means the
projection of (−1,−1,−1) is also the projection of the bottom face
of a cube. If this were to fail we’d repeat using p2 and p1 in place of
p3. A line hits a cube if and only if it hits one of the faces of course!

Thus such a sequence (a1, ..., ak−1, 0) is a counterexample if and only
if for all i and all numbers m there is a j such that

(ai − aj)(1 +mk) mod kai ∈ {1, ..., 2ai − 1} mod aik

Subtracting ai from both side and negating this is equivalent to

aj(1 +mk) mod kai ∈ {−ai + 1, ..., ai − 1}.

Dividing by common denominators to make the 1+mk be units and
dividing through by the units we see
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5. Theorem. Let (a1, ...ak−1) be distinct nonzero natural numbers
with no common prime divisor. The speeds (a1, ..., ak−1, 0) is a lonely
runner counterexample if and only if for every i, for every divisor
g of ai such that ai/g is coprime to k, and for every unit u in the
integers modulo kg which reduces modulo k to ai/g there is an entry
aj in the sequence and a number m ∈ {−g + 1, ..., g − 1} such that
aj ≡ mu mod gk.

In the discussion about uncertainty we promised to prove that in a
counterexample when some ai is prime to k then some other ai must
be a multiple of k. We can deduce this now. If some ai is prime to k
we can take the divisor g in the theorem to be 1 (since ai/g is prime
to k). Now m = 0 is forced and the theorem says that there is an
entry aj congruent to 0 modulo k.

Finally, it is possible of course to replace the integrals in the consid-
erations about sums of arithmetic progressions with sums. Applying
our involution to (a1, ..., ak−1) to arrive at (b1, ..., bk−1) we form the
finite abelian group A = ⊕Z/(kbiZ) and the exact sequence

0→ C → Λ1(A)→ Λ2(A)

The kernel C is the cyclic group Z/(k lcm(b1, ..., bk−1)Z) and the
union of the arithmetic progressions is an inverse image of a subset
of C. A slight subtlety is that when we were calculating statistical
expectation we considered an interval like (−bi, bi) to have measure
2bi, but now we represent it as {−bi+1, ..., bi−1} which has counting
measure 2bi−1. This is inessential since we are now considering just
unions of arithmetic progressions rather than measures. With this
understood,

6. Theorem. Elements of C which represent an element not in
the union of the arithmetic progressions correspond bijectively with
(k − 1) cliques in the graph with vertices the disjoint union of the
sets of integers {bi, bi + 1, ..., (k − 1)bi} and we say a vertex in the
i’th set is connected by an edge with a vertex in the j’th set if and
only if the integers are congruent modulo k gcd(bi, bj).
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This makes a (k − 1) partite graph and of course all (k − 1) cliques
are k − 1 partite. A (k − 1) clique in the graph describes a cocycle
whose components belong to the various arithmetic progressions.
The graph is a disjoint union along residue classes modulo k. The
conjecture is equivalent to the statement that such a k − 1 clique
always exists. In cases when the convolving function ψ is the delta
function it does exist since the expectation is nonzero.
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