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Abstract

This paper reviews evidence for the idea that much of human learn-

ing, perception, and cognition, may be understood as information

compression, and often more speci�cally as `information compression

via the matching and uni�cation of patterns' (ICMUP). Evidence in-

cludes: information compression can mean selective advantage for any

creature; the storage and utilisation of the relatively enormous quan-

tities of sensory information would be made easier if the redundancy

of incoming information were to be reduced; content words in nat-

ural languages, with their meanings, may be seen as ICMUP; other

techniques for compression of information�such as class-inclusion hi-

erarchies, schema-plus-correction, run-length coding, and part-whole

hierarchies�may be seen in psychological phenomena; ICMUP may

be seen in how we merge multiple views to make one, in recognition,

in binocular vision, in how we can abstract object concepts via motion,

in adaptation of sensory units in the eye of Limulus, the horseshoe crab,

and in other examples of adaptation; the discovery of the segmental

structure of language (words and phrases), grammatical inference, and

the correction of over- and under-generalisations in learning, may be

understood in terms of ICMUP; information compression may be seen

in the perceptual constancies; there is indirect evidence for ICMUP in

human cognition via kinds of redundancy such as the decimal expan-

sion of π which are di�cult for people to detect; much of the structure
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and workings of mathematics�an aid to human thinking�may be

understood in terms of ICMUP; and there is additional evidence via

the SP Theory of Intelligence and its realisation in the SP Computer

Model. Three objections to the main thesis of this paper are described,

with suggested answers. These ideas may be seen to be part of a `Big

Picture' with six components, outlined in the paper.

The author declares that there is no con�ict of interest regarding the publi-
cation of this paper.

1 Introduction

�Fascinating idea! All that mental work I've done over the years,
and what have I got to show for it? A goddamned zip�le! Well,
why not, after all?� (John Winston Bush, 1996).

This paper describes empirical evidence for the idea that much of hu-
man learning, perception, and cognition, may be understood as information
compression.1 To be more speci�c, evidence will be presented that much of
human learning, perception and cognition may be understood as information
compression via the discovery of patterns that match each other, with the
merging or `uni�cation' of two or more instances of any pattern to make
one. References will also be made to the SP Theory of Intelligence and its
realisation in the SP Computer Model in which information compression has
a central role (Section 2.2.1).

Although this paper is primarily about information compression in human
brains, it seems that similar principles apply throughout the nervous system,
and throughout much of the animal kingdom. Accordingly, this paper has
things to say here and there about the workings of neural tissue outside the
human brain and in non-human species.

1.1 Abbreviations

For the sake of brevity in this paper: �information compression� may be
shortened to `IC'; the expression �information compression via the matching
and uni�cation of patterns� may be referred to as `ICMUP'; and �human
learning, perception, and cognition� may be `HLPC'.

The main thesis of this paper�that much of HLPC may be understood
as IC�may be referred to as `ICHLPC'.

1This paper updates, revises, and extends the discussion in [104], itself the basis for
[105, Chapter 2], but with the main focus on human learning, perception, and cognition.
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For reasons given in Section 2.2, the name �SP� stands for Simplicity and
Power.

The SP Theory of Intelligence, with its realisation in the SP Computer
Model, may be referred to, together, as the SP System.

1.2 Presentation

In this paper: the next section (Section 2) describes some of the background
to this research and some relevant general principles; the next-but-one section
(Section 3) describes related research; Sections 4 to 20 inclusive describe
relatively direct empirical evidence in support of ICHLPC; and Section 21
summarises indirect support for ICHLPC via the SP Theory of Intelligence;

Appendix A, referenced from Section 2.3 and elsewhere, gives some math-
ematical details relating to ICMUP and the SP System.

Appendix B, referenced from Section 3.1.1 and elsewhere, describes Ho-
race Barlow's change of view about the signi�cance of IC in mammalian
learning, perception, and cognition, with comments.

Appendix C, referenced from Section 22 and elsewhere, describes apparent
contradictions of ideas in this paper, and how they may be resolved.

2 Background and general principles

This section provides some background to this paper and summarises some
general principles that have a bearing on ICHLPC and the programme of
research of which this paper is a part.

2.1 Seven variants of `information compression via the
matching and uni�cation of patterns' (ICMUP)

This subsection �lls out the concept of ICMUP, starting with the essentials,
described in Section 2.1.1, next. Six variants of the basic idea are described
in Sections 2.1.2 to 2.1.7.

Whilst care has been taken in this programme of research to avoid un-
necessary duplication of information across di�erent publications, the impor-
tance of the following seven variants of ICMUP has made it necessary, for
the sake of clarity, to describe them quite fully both in this paper and also
in [113].
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2.1.1 Basic ICMUP

The main idea in ICMUP is illustrated in the top part of Figure 1. Here,
a stream of raw data may be seen to contain two instances of the pattern
`INFORMATION'. Subjectively, we `see' this immediately. But in a computer or
a brain, the discovery of that kind of replication of patterns must necessarily
be done by some kind of searching for matches between patterns.

Raw data

Compressed data

....w62................w62.........

....INFORMATION................INFORMATION.........

w62INFORMATION
Unified pattern
with identifier

INFORMATION
Unified pattern
without identifier

Figure 1: A schematic representation of the way two instances of the pattern
`INFORMATION' in a body of raw data may be uni�ed to form a single
`uni�ed' pattern or `chunk' of information, below the `raw data'. Lower
again in the �gure, `w62' is added to the uni�ed chunk as a relatively short
identi�er or `code'. The lowest part of the �gure shows how the raw data
may be compressed by replacing each instance of `INFORMATION' with a
copy of the short identifer. Adapted with permission from Figure 2.3 in [105].

In itself, the detection of repeated patterns is not very useful. But by
merging or `unifying' the two instances of `INFORMATION' in Figure 1 we may
create the single instance shown below the raw data, thus achieving some
compression of information in the raw data (Appendix A.1).

Other relevant points include:

• Repetition of patterns and `redundancy' in information. From the per-
spective of ICMUP, the concept of redundancy in information may be
seen as the occurrence of two or more arrays of symbols that match
each other. As noted in Section 2.2.2, below, redundancy may take the
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form of good partial matches between patterns as well as exact matches
between patterns.

• A threshold on frequency of occurrence. With regard to the previous
point, an important quali�cation is that, for a given repeating array
of symbols, A, to represent redundancy within a given body of infor-
mation, I, A's frequency of occurrence within I must be higher than
would be expected by chance for an array of the same size [105, Sections
2.2.8.3 and 2.2.8.4].

• Frequencies and sizes of patterns. In connection with the preceding
point: the minimum frequency needed to exceed the threshold is smaller
for large patterns than it is for small patterns. Contrary to the com-
mon assumption that large frequencies are needed to attain statistical
signi�cance, frequencies as small as 2 can be statistically signi�cant
with patterns of quite moderate size or larger; and large patterns of a
given frequency yield more compression than small ones of the same
frequency (Appendix A.1, [105, Section 2.2.8.4]).

• The concept of a `chunk' of information. A discrete pattern like
`INFORMATION' is often referred to as a chunk of information, a term
that gained prominence in psychology largely because of its use by
George Miller in his in�uential paper The magical number seven, plus
or minus two [60].

Miller did not use terms like `uni�cation' or `IC', and he sees some un-
certainty in the signi�cance of the concept of a chunk: �The contrast
of the terms bit and chunk also serves to highlight the fact that we
are not very de�nite about what constitutes a chunk of information.�
(p. 93, emphasis in the original). However, he describes how chunking
of information may achieve something like compression of information:
�... we must recognize the importance of grouping or organizing the
input sequence into units or chunks. Since the memory span is a �xed
number of chunks, we can increase the number of bits of information
that it contains simply by building larger and larger chunks, each chunk
containing more information than before.� (p. 93, emphasis in the orig-
inal) and �... the dits and dahs are organized by learning into patterns
and ... as these larger chunks emerge the amount of message that the
operator can remember increases correspondingly.� (p. 93, emphasis in
the original).

• Basic ICMUP means lossy compression of information. A point to
notice about basic ICMUP of a body of information, I, is that, without
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the code mentioned above, it must always be `lossy', meaning that
non-redundant information in I will be lost. This is because, in the
uni�cation of two or more matching patterns in I, information is lost
about the location of: 1) all but one of those patterns if the uni�ed chunk
is stored in one of the original locations within I; or alternatively 2) all
of those patterns if the uni�ed chunk is stored outside I.

2.1.2 Chunking-with-codes

The key idea with the chunking-with-codes variant of ICMUP is that each
uni�ed chunk of information (Section 2.1.1) receives a relatively short name,
identi�er, or code, and that code is used as a shorthand for the chunk of
information wherever it occurs.

As already noted, this idea is illustrated in Figure 1, where, in the middle
of the �gure, the relatively short code or identi�er `w62' is attached to a copy
of the `chunk' `INFORMATION', and we may suppose that that the pairing of
code and uni�ed chunk would be stored in some kind of `dictionary', separate
from the main body of data. Then, under the heading �Compressed data� at
the bottom of the �gure, each of the two original instances of `INFORMATION'
is replaced by the short code `w62' yielding an overall compression of the
original data.

Examples of chunking-with-codes from this paper are the use of `ICMUP'
as a shorthand for �information compression via the matching and uni�cation
of patterns�, and `HLPC' as a shorthand for �human learning, perception, and
cognition�.

The chunking-with-codes variant of ICMUP overcomes the weakness of
basic ICMUP noted at the end of Section 2.1.1: that it loses non-redundant
information about the locations of chunks in the original data, I. The problem
may be remedied with chunking-with-codes because copies of the code for a
given chunk may be used to mark the locations of each instance of the chunk
within I.

Another point of interest is that, with the chunking-with-codes technique,
compression of information may be optimised by assigning shorter codes to
more frequent chunks and longer codes to rarer chunks, in accordance with
some such scheme as Shannon-Fano-Elias coding [26, Section 5.9].

Similar principles may be applied in the other variants of ICMUP de-
scribed in Sections 2.1.3 to 2.1.7, below.
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2.1.3 Schema-plus-correction

The schema-plus-correction variant of ICMUP is like chunking-with-codes
but the uni�ed chunk of information may have variations or `corrections' on
di�erent occasions.

An example from everyday life is a menu in a restaurant or café. This
provides an overall framework, something like `starter, main course,

pudding' which may be seen as a chunk of information. Each of
the three elements of the menu may be seen as a place where each
customer may make a choice or `correction' to the menu. For ex-
ample, one customer may choose `starter(soup), main course(fish),

pudding(apple pie)' while another customer may choose `starter(salad)
main course(vegetable hotpot) pudding(ice cream)', and so on.

The schema-plus-correction variant of ICMUP may achieve compression
of information via two mechanisms:

• The schema may itself have a short code. In our menu example, each
menu may have a short code such as `bm' for the breakfast menu, `lm'
for the lunch-time menu, and so on.

• Each `correction' may have a short code. Again with our menu example,
options such as `soup', `�sh', and so on, may each have a short code
such as `s' for soup, `f' for �sh, and so on.

With those two devices, a customer's order such as `[lunch-time-menu:
starter(soup), main course(fish), pudding(apple pie)]' may be re-
duced to something like `[lm: s, f, ap]'.

2.1.4 Run-length coding

The run-length coding variant of ICMUP may be used with any sequence of
two or more copies of a pattern where each copy except the �rst one follows
immediately after the preceding copy. In that case, it is only necessary to
record one copy of the pattern, with the number of copies, or with symbols
or `tags' to mark the start and end of the sequence.

For example, a repeated pattern like:

`INFORMATIONINFORMATIONINFORMATIONINFORMATIONINFORMATION'

may be reduced to something like `INFORMATION(×5)' (where `×5' records
the number of instances of `INFORMATION'). Alternatively, the sequence may
be reduced to something like `p INFORMATION* #p', where `*' means that
�the pattern `INFORMATION' is repeated an unspeci�ed number of times, and
`p ... #p' speci�es where the sequence begins and where it stops.
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2.1.5 Class-inclusion hierarchy with inheritance of attributes

With the class-inclusion hierarchy variant of ICMUP, there is a hierarchy of
classes and subclasses, with `attributes' at each level. At every level except
the top level, each subclass `inherits' the attributes of all the higher levels.

For example, in simpli�ed form, the class `motorised vehicle' con-
tains sub-classes like `road vehicle' and `rail vehicle', the class `road
vehicle' contains subclasses like `bus', `lorry', and `car', and so on. An at-
tribute like `contains engine' would be assigned to the top level (`vehicle')
and would be inherited by all lower-level classes, thus avoiding the need to
record that information repeatedly at all levels in the hierarchy, and likewise
for attributes at lower levels. Thus a class-inclusion hierarchy with inheri-
tance of attributes combines IC with inference, in accordance with the close
relation between those two things, noted in Section 2.5.

Of course there are many subtleties in the way people use class-inclusion
hierarchies, such as cross-classi�cation, `polythetic' or `family resemblance'
concepts (in which no single attribute is necessarily present in every member
of the given category and there need be no single attribute that is exclusive
to that category [81]), and the ability to recognise that something belongs in
a class despite errors of omission, commission, or substitution. The way in
which the SP System can accommodate those kinds of subtleties is discussed
in [105, Sections 2.3.2, 6.4.3, 12.2, and 13.4.6.2].

2.1.6 Part-whole hierarchy with inheritance of contexts

The part-whole hierarchy variant of ICMUP is like a class-inclusion hierarchy
with inheritance of attributes except that the hierarchical structure repre-
sents the parts and subparts of some class or entity, and any given part
inherits information about the context which it shares with all its siblings on
the same level. A part-whole hierarchy promotes economy by sidestepping
the need for each part of an entity at any given level to store full information
about the higher-level structures of which it is a part�which is the same as
other parts on the same level.

A simple example is the way that a `person' has parts like `head', `body',
`arms', and `legs', while an arm may be divided into `upper arm', `forearm',
`hand', and so on. In a structure like this, inheritance means that if one
hears that a given person has an injury to his or her hand, one can infer
immediately that that person's `arm' has been injured, and indeed his or her
whole `person'.
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2.1.7 SP-multiple-alignment as a generalised version of ICMUP

The seventh of the versions of ICMUP considered in this paper is the concept
of SP-multiple-alignment, described in Section 2.2.2, below.

SP-multiple-alignment may be seen to be a generalised version of ICMUP
which encompasses the other six versions described in Sections 2.1.1 to 2.1.6.
How it can model those other six versions is described in detail in [111,
Appendix B].

This versatility in modelling other versions of ICMUP is not altogether
surprising since SP-multiple-alignment is largely responsible for the SP Sys-
tem's versatility in diverse aspects of intelligence (including diverse kinds
of reasoning), in the representation of diverse kinds of knowledge, and its
potential for the seamless integration of diverse aspects of intelligence and
diverse kinds of knowledge, in any combination (Section 2.2.5).

2.2 The SP Theory of Intelligence

Readers will see that the paper contains references to the SP Theory of
Intelligence, its realisation in the SP Computer Model, and associated ideas,
especially the concept of SP-multiple-alignment. But it must be emphasised
that the SP Theory is not the main focus of the paper. Instead it is relevant
for subsidiary reasons:

• Empirical evidence for ICHLPC strengthens empirical support for the
SP Theory. Since IC and, more speci�cally, ICMUP, are central in the
SP Theory, empirical evidence for ICHLPC (presented in Sections 4
to 20) strengthens empirical support for the SP Theory, viewed as a
theory of HLPC.

• Direct empirical evidence for the SP Theory provides indirect evi-
dence for ICHLPC. Direct empirical evidence for the SP Theory�
summarised in Section 2.2.5�provides indirect evidence for ICHLPC
which is additional to that in in Sections 4 to 20 (see Section 21).

• Clarifying theoretical issues related to HLPC. The SP Computer Model,
which may be seen as a working model of several aspects of HLPC, can
help to clarify theoretical issues related to HLPC. It has, for example,
proved useful in understanding issues discussed in Appendices B and
C.

For those reasons, an outline of the theory is appropriate here.
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2.2.1 Outline of the SP Theory of Intelligence: introduction

The SP Theory of Intelligence and its realisation in the SP Computer Model�
the SP System�is a unique attempt to simplify and integrate observations
and concepts across arti�cial intelligence, mainstream computing, mathe-
matics, and human learning, perception, and cognition, with IC as a unifying
theme. This broad scope for the SP programme of research has been adopted
for reasons summarised in Section 2.6, below.

As mentioned in Section 1.1, the name �SP� stands for Simplicity and
Power. This is because compression of any given body of information, I,
may be seen as a process of reducing informational `redundancy' in I and
thus increasing its `simplicity', whilst retaining as much as possible of its
non-redundant expressive `power'.

The SP Theory, the SP Computer Model, and some applications, are
described quite fully in [107], and much more fully in [105]. Details of other
publications about the SP System, most with download links, may be found
on www.cognitionresearch.org/sp.htm. A download link for the source code
of SP71, the latest version of the SP Computer Model, may be found under
the heading `SOURCE CODE' near the bottom of that page.

The SP Theory is conceived as a brain-like system as shown schematically
in Figure 2. The system receives New information via its senses and stores
some or all of it in compressed form as Old information.

Figure 2: Schematic representation of the SP System from an `input' per-
spective. Reproduced with permission from Figure 1 in [107].

All kinds of knowledge or information in the SP System are represented
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with arrays of atomic SP-symbols in one or two dimensions called SP-patterns.
At present the SP Computer Model works only with one-dimensional SP-
patterns but it is envisaged that, at some stage, it will be generalised to
work with two-dimensional SP-patterns.

2.2.2 SP-multiple-alignment

A central part of the SP System is the powerful concept of SP-multiple-
alignment, outlined here. The concept is described more fully in [107, Section
4] and [105, Sections 3.4 and 3.5].

The concept of SP-multiple-alignment in the SP System is derived from
the concept of `multiple sequence alignment' in bioinformatics (see, for ex-
ample, [1]). That latter concept means an arrangement of two or more DNA
sequences or sequences of amino-acid residues so that, by judicious `stretch-
ing' of sequences in a computer, symbols that match from row to row are
aligned�as illustrated in Figure 3. A `good' multiple sequence alignment is
one with a relatively high value for some metric related to the number of
symbols that have been brought into line.

G G A G C A G G G A G G A T G G G G A

| | | | | | | | | | | | | | | | | | |

G G | G G C C C A G G G A G G A | G G C G G G A

| | | | | | | | | | | | | | | | | | | | |

A | G A C T G C C C A G G G | G G | G C T G G A | G A

| | | | | | | | | | | | | | | | | |

G G A A | A G G G A G G A | A G G G G A

| | | | | | | | | | | | | | | | |

G G C A C A G G G A G G C G G G G A

Figure 3: A `good' multiple sequence alignment amongst �ve DNA sequences.
Reproduced with permission from Figure 3.1 in [105].

For a given set of sequences, �nding or creating `good' multiple sequence
alignments amongst the many possible `bad' ones is normally a complex
process�normally too complex to be solved by exhaustive search. For that
reason, bioinformatics programs for �nding good multiple sequence align-
ments use heuristic methods, building multiple sequence alignments in stages
and discarding low-scoring multiple sequence alignments at the end of each
stage, with backtracking or something equivalent to improve the robustness
of the search.

With such methods it is not normally possible to guarantee that the best
possible multiple sequence alignment has been found, but it is normally pos-
sible to �nd multiple sequence alignments that are good enough for practical
purposes.
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The two main di�erences between the concept of SP-multiple-alignment
in the SP System and the concept of multiple sequence alignment in bioin-
formatics are that:

• New and Old information. With an SP-multiple-alignment, one of the
SP-patterns (sometimes more than one) is New information from the
system's environment (see Figure 2), and the remaining SP-patterns are
Old information, meaning information that has been previously stored
(also shown in Figure 2).

• Encoding New information economically in terms of Old information.
In the creation of SP-multiple-alignments, the aim is to build ones that,
in each case, allow the New SP-pattern (or SP-patterns) to be encoded
economically in terms of the Old SP-patterns in the given SP-multiple-
alignment. In each case, there is an implicit merging or uni�cation of
SP-patterns or parts of SP-patterns that match each other, as described
in [107, Section 4.1] and [105, Section 3.5].

In the SP-multiple-alignment shown in Figure 4, one New SP-pattern is
shown in row 0, and Old SP-patterns, drawn from a repository of Old SP-
patterns, are shown in rows 1 to 9. By convention, the New SP-pattern(s) is
always shown in row 0 and the Old SP-patterns are shown in the other rows,
one SP-pattern per row.

0 f o r t u n e f a v o u r s t h e b r a v e 0

| | | | | | | | | | | | | | | | | | | | | |

1 | | | | | | | Vr 6 f a v o u r #Vr | | | | | | | | | 1

| | | | | | | | | | | | | | | | | |

2 | | | | | | | V 7 Vr #Vr s #V | | | | | | | | 2

| | | | | | | | | | | | | | | | |

3 | | | | | | | VP 3 V #V NP | | | | | | | | #NP #VP 3

| | | | | | | | | | | | | | | | | | |

4 N 4 f o r t u n e #N | | | | | | | | | | | | 4

| | | | | | | | | | | | | |

5 NP 2 N #N #NP | | | | | | | | | | | | 5

| | | | | | | | | | | | | |

6 S 0 NP #NP VP | | | | | | | | | | #VP #S 6

| | | | | | | | | |

7 | | | | N 5 b r a v e #N | 7

| | | | | | |

8 NP 1 D | | | #D N #N #NP 8

| | | | |

9 D 8 t h e #D 9

Figure 4: The best SP-multiple-alignment produced by the SP Computer
Model with a New SP-pattern representing a sentence to be parsed and a
repository of user-supplied Old SP-patterns representing grammatical cate-
gories, including words. Reproduced with permission from Figure 2 in [109].

In this example, the New SP-pattern is a sentence and the Old SP-
patterns in rows 1 to 9 represent grammatical structures including words.
The overall e�ect of the SP-multiple-alignment is to `parse' or analyse the

12



sentence into its constituent parts and sub-parts, with each part marked
with a category like `NP' (meaning `noun phrase'), `N' (meaning `noun'), `VP'
(meaning `verb phrase'), and so on. But, as described in Section 2.2.5, the
SP-multiple-alignment construct can do much more than parse sentences.

Each SP-multiple-alignment is evaluated in terms of how it provides for
the New SP-pattern in row 0 to being encoded economically in terms of the
Old SP-patterns in the other rows. An SP-multiple-alignment is `good' if the
encoding is indeed economical. Details of how this is done are described in
Appendix A.4.

With SP-multiple-alignments in the SP System, as with multiple sequence
alignments in bioinformatics, the process of �nding `good' SP-multiple-
alignments is too complex for exhaustive search, so it is normally necessary to
use heuristic methods�which means that, as before, the best possible results
may be missed but it is normally possible to �nd SP-multiple-alignments that
are reasonably good.

At the heart of SP-multiple-alignment is a process for �nding good full
and partial matches between SP-patterns, described quite fully in [105, Ap-
pendix A]. As in the building of SP-multiple-alignments, heuristic search is
an important part of the process of �nding good full and partial matches
between SP-patterns. Some details with relevant calculations are given in
Appendix A.8.

As noted in Section 2.1.7, the concept of SP-multiple-alignment may be
seen to be a generalised version of ICMUP, which encompasses all the other
six variants of ICMUP described in Section 2.1.

2.2.3 Unsupervised learning in the SP System

Unsupervised learning in the SP System is described in [107, Section 5] and
[105, Chapter 9]. In brief, it means searching for one or more collections of
Old SP-patterns called grammars which are relatively good for the economical
encoding of a given set of New SP-patterns.

As with the building of SP-multiple-alignments (Section 2.2.2), and the
process of �nding good full and partial matches between SP-patterns [105,
Appendix A], and many other AI programs, unsupervised learning in the SP
System uses heuristic techniques: doing the search in stages and, at each
stage, concentrating the search in the most promising areas and cutting out
the rest.

Some of the details of relevant calculations are given in Appendix A.7.
As mentioned in Section 2.2.4, learning in the SP System is quite di�erent

from the popular `Hebbian' learning (often characterised as �Cells that �re
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together wire together�),2 and it is quite di�erent from how deep learning
systems learn.

2.2.4 SP-Neural

Functionality that is similar to that of the SP System may be realised in
a `neural' sister to the SP System called SP-Neural, expressed in terms of
neurons and their interconnections [109], as illustrated in Figure 5. Although
the main elements of SP-Neural have been de�ned, there are details to be
�lled in. As with the development of the SP Theory itself, it is likely that
many insights may be gained by building computer models of SP-Neural.

An important point here is that SP-Neural is quite di�erent from the kinds
of `arti�cial neural network' that are popular in computer science, including
those that provide the basis for `deep learning' [76].

It is relevant to mention that Section V of [110] describes thirteen prob-
lems with deep learning in arti�cial neural networks and how, with the
SP System, those problems may be overcome . The SP System also pro-
vides a comprehensive solution to a fourteenth problem with deep learning�
�catastrophic forgetting��meaning the way in which new learning in a deep
learning system wipes out old memories [114].

Probably, SP-Neural's closest relative is Donald Hebb's [37] concept of
a `cell assembly' but, since learning in SP-Neural is likely to be modelled
on learning in the SP System (Section 2.2.3), it will be quite di�erent from
Hebbian learning, and also quite di�erent from learning in deep learning
systems. More loosely, SP-Neural, when it is more fully developed, is likely to
bear a super�cial resemblance to Alan Turing's concept of an `unorganised'
machine [89] because its neural tissues would become progressively more
organised as it learns.

2.2.5 Strengths and potential of the SP System

Largely because of the versatility of the SP-multiple-alignment construct,
the SP System has strengths and potential in modelling several aspects of
HLPC, as outlined here:

• Versatility in aspects of intelligence. The SP System has strengths
in several aspects of human-like intelligence including: unsupervised

2Hebb's original version is �When an axon of cell A is near enough to excite a cell B
and repeatedly or persistently takes part in �ring it, some growth process or metabolic
change takes place in one or both cells such that A's e�ciency, as one of the cells �ring B,
is increased.� [37, p. 62].
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Figure 5: A schematic representation of a partial SP-multiple-alignment
in SP-Neural, as discussed in [109, Section 4]. Each broken-line rectangle
with rounded corners represents a pattern assembly�corresponding to an
SP-pattern in the SP Theory. Each character or group of characters en-
closed in a solid-line ellipse represents a neural symbol corresponding to an
SP-symbol in the SP Theory. The lines between pattern assemblies repre-
sent nerve �bres with arrows showing the direction in which impulses travel.
Neural symbols are mainly symbols from linguistics such as `NP' meaning
`noun phrase', `D' meaning a `determiner', `#D' meaning the end of a deter-
miner, `#NP' meaning the end of a noun phrase, and so on. Reproduced with
permission from Figure 3 in [109].
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learning, the analysis and production of natural language; pattern
recognition that is robust in the face of errors in data; pattern recog-
nition at multiple levels of abstraction; computer vision; best-match
and semantic kinds of information retrieval; several kinds of reasoning
(next bullet point); planning; and problem solving.

• Versatility in reasoning. Strengths of the SP System in reasoning in-
clude: one-step `deductive' reasoning; chains of reasoning; abductive
reasoning; reasoning with probabilistic networks and trees; reasoning
with `rules'; nonmonotonic reasoning and reasoning with default values;
Bayesian reasoning with `explaining away'3; causal reasoning; reasoning
that is not supported by evidence; the already-mentioned inheritance
of attributes in class hierarchies; and inheritance of contexts in part-
whole hierarchies. There is also potential in the SP System for spatial
reasoning and for what-if reasoning. Probabilities for inferences may
be calculated in a straightforward manner (Appendix A.6).

• Versatility in the representation and processing of knowledge. The
SP System has strengths in the representation and processing of sev-
eral di�erent kinds of knowledge including: the syntax of natural lan-
guages; class-inclusion hierarchies (with or without cross classi�cation);
part-whole hierarchies; discrimination networks and trees; if-then rules;
entity-relationship structures; relational tuples; and concepts in math-
ematics, logic, and computing, such as `function', `variable', `value',
`set', and `type de�nition'. With the addition of Two-dimensional SP-
patterns to the SP System, there is potential to represent such things
as: photographs; diagrams; structures in three dimensions; and proce-
dures that work in parallel.

• Seamless integration of diverse aspects of intelligence and diverse kinds
of knowledge, in any combination. Because the SP System's versatility
(in diverse aspects of intelligence and in the representation of diverse
kinds of knowledge) �ows from one relatively simple framework�SP-
multiple-alignment�the system has clear potential for the seamless
integration of diverse aspects of intelligence and diverse kinds of knowl-
edge, in any combination. That kind of seamless integration appears
to be essential in modelling the �uidity, versatility, and adaptability of
the human mind.

3This means �If A implies B, C implies B, and B is true, then �nding that C is true
makes A less credible. In other words, �nding a second explanation for an item of data
makes the �rst explanation less credible� [68, p. 7]. See also [107, Section 10.2] and [105,
Section 7.8].
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Figure 6 shows schematically how the SP System, with SP-multiple-
alignment centre stage, exhibits versatility and integration.

SP-
multiple-
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Figure 6: A schematic representation of versatility and integration in the SP
System, with SP-multiple-alignment centre stage.

There is more detail in [112, Sections 4, 5, and 6], even more detail in
[107], and most detail in [105]. Distinctive features and advantages of the SP
System are described quite fully in [110].

How absolute and relative probabilities for SP-multiple-alignments may
be calculated (for use in reasoning and other aspects of AI) is detailed in
Appendix A.6.
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2.2.6 Potential bene�ts and applications of the SP System

Apart from its strengths and potential in modelling aspects of the human
mind, it appears that, in more humdrum terms, the SP System has sev-
eral potential bene�ts and applications. These include: helping to solve
nine problems with big data, helping to develop intelligence in autonomous
robots, development of an intelligent database system, medical diagnosis,
computer vision and natural vision, suggesting avenues for investigation in
neuroscience, commonsense reasoning, and more. Details of relevant papers,
with download links, may be found on www.cognitionresearch.org/sp.htm.

2.3 Avoiding too much dependence on mathematics

Many approaches to IC have a mathematical �avour (see, for example, [75]).
Much the same is true of concepts of inference and probability which, as
outlined in Section 2.5, are closely related to IC.

In the SP programme of research, the orientation is di�erent. The SP
Theory attempts to get below or behind the mathematics of other approaches
to IC and to concepts of inference and probability: it attempts to focus
on ICMUP, the relatively simple, `primitive' idea that information may be
compressed by �nding two or more patterns that match each other, and
merging or `unifying' them so that multiple instances of the pattern are
reduced to one.

That said, there is some mathematics associated with ICMUP, and there
is some more which is incorporated in the SP Computer Model. They are
described in Appendix A, and referenced at appropriate points throughout
this paper.

There are four main reasons for this focus on ICMUP and the avoidance
of too much dependence on mathematics:

• Opening the door to non-mathematical mechanisms for compression of
information. Since ICMUP is relatively `concrete' and less abstract
than the more mathematical approaches to IC, it may open the door
to non-mathematical mechanisms for compression of information which
may otherwise be overlooked. Here are two putative examples:

� SP-multiple-alignment. The concept of SP-multiple-alignment
(Section 2.2.2) is founded on ICMUP and is not a recognised part
of today's mathematics�but it has proved to be e�ective in the
compression of information, it makes possible a relatively straight-
forward approach to the calculation of probabilities for inferences
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(Appendix A.6), and it facilitates the modelling of several aspects
of HLPC (Section 2.2.5, [105, 107]).

� ICMUP in SP-Neural. Because SP-Neural (Section 2.2.4) is de-
rived from the SP Theory, ICMUP is implicit in how, when it is
more fully developed, SP-Neural is likely to work.

• Don't use mathematics in describing the foundations of mathematics.
The SP Theory aims to be, amongst other things, a theory of the
foundations of mathematics [113], so it would not be appropriate for
the theory to be too dependent on mathematics.

• The SP Theory is not founded on the concept of a universal Turing
machine. Whilst the SP Theory has bene�tted from valuable insights
gained from mathematically-oriented research on Algorithmic Probabil-
ity Theory, Algorithmic Information Theory, and related work (Section
3.2), it di�ers from that work in that it is not founded on the concept
of a `universal Turing machine'.

Instead, a focus on ICMUP, has yielded a new theory of computing and
cognition, founded on ICMUP and SP-multiple-alignment, with the
generality of the universal Turing machine [105, Chapter 4] but with
strengths in the modelling of human-like intelligence which, as Alan
Turing acknowledged [89, 98], are missing from the universal Turing
machine (Section 2.2.5, [105, 107]).

• ICMUP not obvious in such techniques as as wavelet compression
and arithmetic coding. At some abstract level, it may be that all
mathematically-based techniques for compression of information are
founded on ICMUP. And if the thesis of [113] is true, then all such
techniques will indeed have an ICMUP foundation. But, nevertheless,
techniques for the compression of information such as wavelet com-
pression or arithmetic coding seem far removed from the simple idea of
�nding patterns that match each other and merging them into a single
instance.

The SP System, including the concepts of SP-multiple-alignment and
ICMUP, provides a novel approach to concepts of IC and probability (Sec-
tion 2.5) which appears to have potential as an alternative to more widely
recognised methods in these areas.
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2.4 Empirical evidence and quanti�cation

Although quanti�cation of empirical evidence can in some studies be neces-
sary or at least useful, it appears that, with most of the evidence presented
in this paper (except in Sections 15 and 16), quanti�cation would not be fea-
sible or useful. In any case, attempts at quanti�cation would be a distraction
from the main thrust of the paper: that many examples of IC in HLPC are
staring us in the face without the need for quanti�cation.

As an example (from Section 6), a name like `New York' is, in the manner
of chunking-with-codes, a relatively brief `code' for the enormously complex
`chunk' of information which is the structure and workings of the city itself.
Similar things can be said about most other names for things, and also `con-
tent' words like `house', `table' etc. In short, natural language may be seen
to be a very powerful means of compressing information via the chunking-
with-codes technique�and this is clear without the need for quanti�cation.

2.5 IC and concepts of inference and probability

It has been recognised for some time that there is an intimate relation
between IC and concepts of inference and probability (Appendix A.2,
[78, 82, 83, 52]).

In case this seems obscure, it makes sense in terms of ICMUP. A pattern
that repeats is one that invites ICMUP but it is also one that, via inductive
reasoning, suggests possible inferences:

• Any repeating pattern provides a basis for prediction. Any repeat-
ing pattern�such as the association between black clouds and rain�
provides a basis for prediction: black clouds suggest that rain may
be on the way, and probabilities may be derived from the number of
repetitions.

• Inferences via partial matching. With basic ICMUP and its variants,
inferences may be made when one new pattern from the environ-
ment matches part of a stored, uni�ed pattern. If, for example, we
see `INFORMA', we may guess, on the strength of the stored pattern,
`INFORMATION' (Figure 1), that the letters `TION' are likely to follow.
This idea is sometimes called `prediction by partial matching' [86]. Of
course, the pattern may be completed in a similar way if the incoming
information is `INFORMAN', `INMATION', `INFRMAION', and so on.

• The SP System is designed to �nd partial matches as well as exact
matches. Because of the need to make inferences like those just de-
scribed, and because a prominent feature of human perception is that
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we are rather good at �nding good partial matches between patterns as
well as exact matches, the SP System, including the process for build-
ing SP-multiple-alignments, is designed to search for redundancy in the
form of good partial matches between patterns, as well as redundancy
in the form of exact matches. This is done with a version of dynamic
programming, described in [105, Appendix A].

There is a lot more detail about how this works with the SP-multiple-
alignment concept in Appendix A.6, [107, Section 4.4] and [105, Section 3.7
and Chapter 7]. The SP System has proved to be an e�ective alternative
to Bayesian theory in explaining such phenomena as `explaining away' ([107,
Section 10.2], [105, Section 7.8]).

As indicated in Section 4, the close connection between IC and concepts
of inference and probability makes sense in terms of biology.

2.6 The Big Picture

The credibility of the ICHLPC thesis of this paper is strengthened by its
position in a `Big Picture' of the importance of IC in at least six areas:

• Evidence for IC as a unifying principle in human learning, perception,
and cognition. This paper describes relatively direct empirical evidence
for IC (and more speci�cally ICMUP) as a unifying principle in HLPC.

• IC in the SP Theory of Intelligence. ICMUP is central in the SP Theory
of Intelligence (Section 2.2) which itself has much empirical and ana-
lytical support, summarised in Section 2.2.5, with pointers to where
further information may be found.

• IC in Neuroscience. Because of its central role in the SP System, IC is
central in SP-Neural (Section 2.2.4) and may thus have an important
role in neuroscience.

• IC and concepts of inference and probability. It is known that there is an
intimate relation between IC and concepts of inference and probability
(Section 2.5).

• IC as a foundation for mathematics. The paper �Mathematics as infor-
mation compression via the matching and uni�cation of patterns� [113]
argues that much of mathematics, perhaps all of it, may be understood
in terms of ICMUP.
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• IC as a unifying principle in science. It is widely agreed that �Science
is, at root, just the search for compression in the world� [12, p. 247],
with variations such as �Science may be regarded as the art of data
compression� [52, p. 585], and more.

The Big Picture, as just outlined, is important for reasons summarised
here:

• You can't play 20 questions with nature and win. In his famous essay,
�You can't play 20 questions with nature and win�, Allen Newell [62]
writes about the sterility of developing theories in narrow �elds, and
calls for each researcher to focus on �a genuine slab of human behaviour�
(p. 303).4

• Ockham's razor. Newell's exhortation accords with a slightly extended
version of Ockham's razor: in developing simple theories of empirical
phenomena, we should concentrate on those with the greatest explana-
tory range. Such theories will, naturally, be more useful than those with
narrow scope, but, in addition, it seems that they are often relatively
robust in the face of new evidence.

• If you can't solve a problem, enlarge it. In a similar vein, President
Eisenhower is reputed to have said: �If you can't solve a problem,
enlarge it�, meaning that putting a problem in a broader context may
make it easier to solve. Good solutions to a problem may be hard to
see when the problem is viewed through a keyhole, but become visible
when the door is opened.

In keeping with these three reasons, the Big Picture is important in show-
ing the potential of IC as a unifying principle across a wide canvass, including
the six areas mentioned above.

Each of the six components of the Big Picture has support via empirical
and analytical evidence which is speci�c to that component. In addition,

4Newell's essay and his book Uni�ed Theories of Cognition [63] led to many attempts
by himself and others to develop such theories. But the di�culty of reaching agreement
on a comprehensive framework for general, human-like AI is suggested by the following
observation in [44, Locations 43�52]: �Despite all the current enthusiasm in AI, the tech-
nologies involved still represent no more than advanced versions of classic statistics and
machine learning.� And what follows [44, Location 52] seems to con�rm the persistence of
the long-standing fragmentation of AI: �Behind the scenes, however, many breakthroughs
are happening on multiple fronts: in unsupervised language and grammar learning, deep-
learning, generative adversarial methods, vision systems, reinforcement learning, transfer
learning, probabilistic programming, blockchain integration, causal networks, and many
more�.
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the six components are mutually supportive in the sense that the credibility
of any one of them, including the main ICHLPC thesis of this paper, is
strengthened via its position in the Big Picture.

Implications of the Big Picture include, for example, that IC should be
a key part of any and all proposals for general, human-like AI, for theories
of human learning, perception, and cognition, and for theories of cognitive
neuroscience.

2.7 Volumes of data and speeds of learning

As noted in Section 2.1.1, large patterns may exceed the threshold for redun-
dancy at a lower frequency than small patterns. With a complex pattern,
such as an image of a person or a tree, there can be signi�cant redundancy
in a mere 2 occurrences of the pattern.

If redundancies can be detected via patterns that occur only 2 or 3 times
in a given sample of data, unsupervised learning may prove to be e�ective
with smallish amounts of data. This may help to explain why, in contrast to
the very large amounts of data that are apparently required for success with
deep learning, children and non-deep-learning types of learning program can
do useful things with relatively tiny amounts of data [110, Section V-E].

In this connection, neuroscientist David Cox has been reported as saying:
�To build a dog detector [with a deep learning system], you need to show the
program thousands of things that are dogs and thousands that aren't dogs.
My daughter only had to see one dog.� and, the report says, she was happily
pointing out puppies ever since.5

This issue relates to the way in which a camou�aged animal is likely to
become visible when it moves relative to its background (Section 12). As with
random-dot stereograms (Section 11), only two images which are similar but
not the same are needed to reveal hidden structure.

2.8 Emotions and motivations

A point that deserves emphasis is that, while this paper is part of a pro-
gramme of research aiming for simpli�cation and integration of observations
and ideas in HLPC and related �elds, it does not aspire to be a comprehensive
view of human psychology. In particular, it does not attempt to say anything
about emotions or motivations, despite their undoubted importance and rel-
evance to many aspects of human psychology, including cognitive psychology.

5�Inside the moonshot e�ort to �nally �gure out the brain�, MIT Technology Review,
2017-10-12, bit.ly/2wRxsOg.
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That said, it seems possible that IC might apply to emotions or motivations
in the same way that it may be applied to sensory data and our concepts
about the world.

3 Related research

An early example of thinking relating to IC in HLPC was the suggestion by
William of Ockham in the 14th century that �Entities are not to be multiplied
beyond necessity.�. Later, Isaac Newton wrote that �Nature is pleased with
simplicity� [64, p. 320], Albert Einstein wrote that �A theory is more im-
pressive the greater the simplicity of its premises, the more di�erent things it
relates, and the more expanded its area of application.�,6 and more. Research
with a more direct bearing on ICHLPC began in the 1950s and '60s after the
publication of Claude Shannon's [78] `theory of communication' (later called
`information theory'), and partly inspired by it.

In the two subsections that follow, there is a rough distinction between
research with the main focus on issues in HLPC and neuroscience, and re-
search that concentrates on issues in mathematics and computing. In both
sections, research is described roughly in the order in which it was published.

In this research, the prevailing view of information, compression of infor-
mation, and probabilities, is that they are things to be de�ned and analysed
in mathematical terms. This perspective has yielded some useful insights but,
as suggested in Section 2.3, there are potential advantages in the ICMUP per-
spective adopted in the SP research. This ICMUP perspective is what chie�y
distinguishes the evidence which provides the main thrust of this paper from
the related research described in this section.

3.1 Psychology-related and neuroscience-related re-
search

Research relating to IC and HLPC and neuroscience may be divided roughly
into two parts: early research initiated in the 1950s and '60s by Fred At-
tneave, Horace Barlow and others, and then after a relative lull in activity,
later research from the 1990s onwards.

3.1.1 Early psychology-related and neuroscience-related research

In a paper called �Some informational aspects of visual perception�, Fred
Attneave [6] describes evidence that visual perception may be understood

6Quoted in [45, p. 512].
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in terms of the distinction between areas in a visual image where there is
much redundancy, and boundaries between those areas where non-redundant
information is concentrated: �... information is concentrated along contours
(i.e., regions where color changes abruptly), and is further concentrated at
those points on a contour at which its direction changes most rapidly (i.e.,
at angles or peaks of curvature).� [6, p. 184].

For those reasons, he suggests that: �Common objects may be represented
with great economy, and fairly striking �delity, by copying the points at which
their contours change direction maximally, and then connecting these points
appropriately with a straight edge.� [6, p. 185]. And he illustrates the point
with a drawing of a sleeping cat reproduced in Figure 7.
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Fie. 2. Subjects attempted to approximate
the dosed figure shown above with a pattern
of 10 dots. Radiating bars indicate the rela-
tive frequency with which various portions of
the outline were represented by dots chosen.

Evidence from other and entirely dif-
ferent situations supports both of these
inferences. The concentration of infor-
mation in contours is illustrated by the
remarkably similar appearance of ob-
jects alike in contour and different
otherwise. The "same" triangle, for ex-
ample, may be either white on black or
green on white. Even more impressive
is the familiar fact that an artist's
sketch, in which lines are substituted
for sharp color gradients, may consti-
tute a readily identifiable representation
of a person or thing.

An experiment relevant to the second
principle, i.e., that information is fur-
ther concentrated at points where a
contour changes direction most rapidly,
may be summarized briefly.8 Eighty 5s
were instructed to draw, for each of 16
outline shapes, a pattern of 10 dots
which would resemble the shape as
closely as possible, and then to indicate
on the original outline the exact places

3 This study has been previously published
only in the form of a mimeographed note:
"The Relative Importance of Parts of a Con-
tour," Research Note P&MS Sl-8, Human Re-
sources Research Center, November 1951.

which the dots represented. A good
sample of the results is shown in Fig. 2:
radial bars indicate the relative fre-
quency with which dots were placed on
each of the segments into which the con-
tour was divided for scoring purposes.
It is clear that Ss show a great deal of
agreement in their abstractions of points
best representing the shape, and most
of these points are taken from regions
where the contour is most different from
a straight line. This conclusion is veri-
fied by detailed comparisons of dot fre-
quencies with measured curvatures on
both the figure shown and others.

Common objects may be represented
with great economy, and fairly striking
fidelity, by copying the points at which
their contours change direction maxi-
mally, and then connecting these points
appropriately with a straightedge. Fig-
ure 3 was drawn by applying this tech-
nique, as mechanically as possible, to a
real sleeping cat. The informational
content of a drawing like this may be
considered to consist of two compo-
nents: one describing the positions of
the points, the other indicating which
points are connected with which others.
The first of these components will al-
most always contain more information
than the second, but its exact share will
depend upon the precision with which
positions are designated, and will fur-
ther vary from object to object.

Let us now return to the hypothetical
subject whom we left between the corner

FIG. 3. Drawing made by abstracting 38
points of maximum curvature from the con-
tours of a sleeping cat, and connecting these
points appropriately with a straightedge.

Figure 7: Drawing made by abstracting 38 points of maximum curvature from
the contours of a sleeping cat, and connecting these points appropriately with
a straight edge. Reproduced from Figure 3 in [6], with permission.

And he concludes with the suggestion that perception may be seen as
economical description: �It appears likely that a major function of the per-
ceptual machinery is to strip away some of the redundancy of stimulation,
to describe or encode incoming information in a form more economical than
that in which it impinges on the receptors.� [6, p. 189].

Satosi Watanabe picked up the baton in a paper called �Information-
theoretical aspects of inductive and deductive inference� [95]. He later wrote
about the role of IC in pattern recognition [96, 97].

At about this time, Horace Barlow published a paper called �Sensory
mechanisms, the reduction of redundancy, and intelligence� [8] in which he
argued, on the strength of the large amounts of sensory information being fed
into the [mammalian] central nervous system, that �the storage and utiliza-
tion of this enormous sensory in�ow would be made easier if the redundancy
of the incoming messages was reduced.� (p. 537). And he draws attention
to evidence that, in mammals at least, each optic nerve is too small, by a
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wide margin, to carry reasonable amounts of the information impinging on
the retina unless there is considerable compression of that information [8,
p. 548].

In the paper, Barlow makes the interesting suggestion that �... the mech-
anism that organises [the large size of the sensory in�ow] must play an im-
portant part in the production of intelligent behaviour.� (p. 555), and in a
later paper [9, p. 210] he writes:

�... the operations required to �nd a less redundant code have
a rather fascinating similarity to the task of answering an intel-
ligence test, �nding an appropriate scienti�c concept, or other
exercises in the use of inductive reasoning. Thus, redundancy
reduction may lead one towards understanding something about
the organization of memory and intelligence, as well as pattern
recognition and discrimination.� .

These prescient insights into the signi�cance of IC for the workings of
human intelligence, with further discussion in [10], is a strand of thinking
that has carried through into the SP Theory of Intelligence, with a wealth of
supporting evidence, summarised in Section 2.2.5.7

Barlow developed these and related ideas over a period of years in several
papers, some of which are referenced in this paper. However, in [11], he
adopted a new position, arguing that:

�... the [compression] idea was right in drawing attention to the
importance of redundancy in sensory messages because this can
often lead to crucially important knowledge of the environment,
but it was wrong in emphasizing the main technical use for re-
dundancy, which is compressive coding. The idea points to the
enormous importance of estimating probabilities for almost ev-
erything the brain does, from determining what is redundant to
fuelling Bayesian calculations of near optimal courses of action in
a complicated world.� (p. 242).

While there are some valid points in what Barlow says in support of his
new position, his overall conclusions appear to be wrong. His main arguments
are summarised in Appendix B, with what I'm sorry to say are my critical
comments after each one.8

7When I was an undergraduate at Cambridge University, it was fascinating lectures by
Horace Barlow about the signi�cance of IC in the workings of brains and nervous systems,
that �rst got me interested in those ideas.

8I feel apologetic about this because, as I mentioned, Barlow's lectures and his earlier
research relating to IC in brains and nervous systems have been an inspiration for me over
many years.
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3.1.2 Later psychology-related and neuroscience-related research

Like the earlier studies, later studies relating to IC in brains and nervous
systems have little to say about ICMUP. But they help to con�rm the im-
portance of IC in HLPC, and thus provide support for ICHLPC. A selection
of publications are described brie�y here.

Ruma Falk and Cli�ord Konold [29] describe the results of experiments
indicating that the perceived randomness of a sequence is better predicted by
various measures of its encoding di�culty than by its objective randomness.
They suggest that judging the extent of a sequence's randomness is based
on an attempt to encode it mentally, and that the subjective experience of
randomness may result when that kind of attempt fails.

Jose Hernández-Orallo and Neus Minaya-Collado [40] propose a de�nition
of intelligence in terms of IC. At the most abstract level, it chimes with
remarks by Horace Barlow quoted in Section 3.1.1, and indeed it is consonant
with the SP Theory itself. But the proposal shows no hint of how to model
the kinds of capabilities that one would expect to see in any arti�cial system
that aspires to human-like intelligence.

Nick Chater, with others, has conducted extensive research on HLPC,
compression of information, and concepts of probability, generally with an
orientation towards Algorithmic Information Theory, Bayesian theory, and
related ideas. For example:

• Chater [18] discusses how `simplicity' and `likelihood' principles for per-
ceptual organisation may be reconciled, with the conclusion that they
are equivalent. He suggests that �the fundamental question is whether,
or to what extent, perceptual organization is maximizing simplicity and
maximizing likelihood.� (p. 579).

• Chater [19] discusses the idea that the cognitive system imposes pat-
terns on the world according to a simplicity principle, meaning that
it chooses the pattern that provides the briefest representation of the
available information. Here, the word `pattern' means essentially a the-
ory or system of one or more rules, a meaning which is quite di�erent
from the meaning of `pattern' or `SP-pattern' in the SP research, which
simply means an array of atomic symbols in one or two dimensions.
There is further discussion in [21].

• Emmanuel Pothos with Nick Chater [69] present experimental evidence
in support of the idea that, in sorting novel items into categories, people
prefer the categories that provide the simplest encoding of these items.
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• Nick Chater with Paul Vitányi [22] describe how the `simplicity princi-
ple' allows the learning of language from positive evidence alone, given
quite weak assumptions, in contrast to results on language learnability
in the limit [36]. There is further discussion in [41].

• Editors Nick Chater and Mike Oaksford [20] present a variety of stud-
ies using Bayesian analysis to understand probabilistic phenomena in
HLPC.

• Paul Vitányi with Nick Chater [91] discuss whether it is possible to
infer a probabilistic model of the world from a sample of data from the
world and, via arguments relating to Algorithmic Information Theory,
they reach positive conclusions.

Jacob Feldman [30] describes experimental evidence that, when people
are asked to learn `Boolean concepts', meaning categories de�ned by logical
rules, the subjective di�culty of learning a concept is directly proportional to
its `compressibility', meaning the length of the shortest logically equivalent
formula.

Don Donderi [27] presents a review of concepts that relate to the con-
cept of `visual complexity'. These include Gestalt psychology, Neural Circuit
Theory, Algorithmic Information Theory, and Perceptual Learning Theory.
The paper includes discussion of how these and related ideas may contribute
to an understanding of human performance with visual displays.

Vivien Robinet and co-workers [73] describe a dynamic hierarchical
chunking mechanism, similar to the MK10 Computer Model (Section 15).
The theoretical orientation of this research is towards Algorithmic Informa-
tion Theory, while the MK10 Computer Model embodies ICMUP.

From analysis and experimentation, Nicolas Gauvrit and others [34] con-
clude that how people perceive complexity in images seems to be partly
shaped by the statistics of natural scenes. In [33], a slightly di�erent group-
ing with Gauvrit as lead author describe how it is possible to overcome the
apparent shortcoming of Algorithmic Information Theory in estimating the
complexity of short strings of symbols, and they show how the method may
be applied to examples from psychology.

In a review of research on the evolution of natural language, Simon Kirby
and others [47] describe evidence that transmission of language from one
person to another has the e�ect of developing structure in language, where
`structure' may be equated with compressibility. On the strength of further
research, [85] conclude that increases in compressibility arise from learning
processes (storing patterns in memory), whereas reproducing patterns leads
to random variations in language.
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On the strength of a theoretical framework, an experiment, and a sim-
ulation, Benoît Lemaire and co-workers [51] argue that the capacity of the
human working memory may be better expressed as a quantity of information
rather than a �xed number of chunks.

In related work, Fabien Mathy and Jacob Feldman [58] rede�ne George
Miller's [60] concept of a `chunk' in terms of Algorithmic Information Theory
as a unit in a �maximally compressed code�. On the strength of experimental
evidence, they suggest that the true limit on short-term memory is about 3
or 4 distinct chunks, equivalent to about 7 uncompressed items (of average
compressibility), consistent with George Miller's famous magical number.

And Mustapha Chekaf and co-workers [23] describe evidence that people
can store more information in their immediate memory if it is `compressible'
(meaning that it conforms to a rule such as �all numbers between 2 and
6�) than if it is not compressible. They draw the more general conclusion
that immediate memory is the starting place for compressive recoding of
information.

In addition to these several studies, there is quite a large body of research
which relates to the concept of �e�cient coding� in brains and nervous sys-
tems. These include the studies described in the following paragraphs.

Tiberiu Te³ileanu, Bence Ölveczky, and Vijay Balasubramanian [87] de-
veloped a computer model of e�cient two-stage learning, which proved ac-
curate against data for the learning of birdsong by birds.

Ann Hermundstad and colleagues [39] found evidence in support of the
propositions that e�cient coding extends to higher-order sensory features,
and that more neural resources are applied when sensory data is limited.

Vijay Balasubramanian [7] argues that the remarkable energy e�ciency
of the brain is achieved in part through the dedication of specialized circuit
elements and architectures to speci�c computational tasks, in a hierarchy
stretching from the scale of neurons to the scale of the entire brain, and that
these structures are learned via an evolutionary process.

Francisco Heras and colleagues [38] provide evidence for mechanisms pro-
moting energy e�ciency in the workings of blow�y photoreceptors.

Biswa Sengupta and colleagues [77] investigate why the conversion of
`graded' potentials in the brain's neural circuits to `action' potentials in those
circuits is accompanied by substantial information loss and how this changes
energy e�ciency..

Simon Laughlin and Terrence Sejnowski [50] describe some of �the geo-
metric, biophysical, and energy constraints that have governed the evolution
of cortical networks�, how �nature has optimized the structure and function
of cortical networks with design principles similar to those used in electronic
networks�, and how �the brain ... exploits the adaptability of biological sys-
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tems to recon�gure in response to changing needs.�
Joseph Atick [4] reviews evidence relating to the principle that e�ciency of

information representation may be a design principle for sensory processing.
In particular, it appears that this principle applies to large monopolar cells in
the �y's visual system and retinal coding in mammals in the spatial, temporal
and chromatic domains.

Joseph Atick and Norman Redlich [5] argue that the goal of processing
in the retina is to transform the visual input as much as possible into a
�statistically independent� form as a �rst step in creating a compressed rep-
resentation in the cortex, as suggested by Horace Barlow. But the amount
of compression that can be achieved in the retina is reduced by the need to
suppress noise in the sensory input.

Adrienne Fairhall and colleagues [28] consider evidence relating to the
optimisation of neural coding when the statistics of sensory data is changing.
They conclude that �The speed with which information is optimized and
ambiguities are resolved approaches the physical limit imposed by statistical
sampling and noise.�

Naama Brenner and colleagues [16] show that the input/output relation
of a sensory system in a dynamic environment changes with the statistical
properties of the environment. More speci�cally, when the dynamic range of
inputs changes, the input/output relation rescales so as to match the dynamic
range of responses to that of the inputs. And the scaling of the input/output
relation is set to maximize information transmission for each distribution of
signals.

William Bialek and colleagues [14] review progress on the question: �Does
the brain construct an e�cient representation of the sensory world?� In their
answer to this question they take account of the biological value of sensory
information, and they report preliminary evidence from studies of the �y's
visual system which appear to support their view.

Stephanie Palmer and colleagues [67] show that e�cient predictive com-
putation starts at the earliest stages of the visual system, and that this is
true of nearly every cell in the retina, and beyond. �E�cient representation
of predictive information is a candidate principle that can be applied at each
stage of neural computation.�

Bruno Olshausen and David Field [66] discuss how �sparse coding� (the
encoding of sensory information using a small number of active neurons at
any given point in time) may confer several advantages and that there is
evidence that �sparse coding could be a ubiquitous strategy employed in
several di�erent modalities across di�erent organisms.�

The same two authors, in [65], discuss the problem of how images can
best be encoded and transmitted, with particular emphasis on how the eye
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and brain process visual information. They remark that �computer scientists
and engineers now focusing on the problem of image compression should keep
abreast of emerging results in neuroscience. At the same time, neuroscientists
should pay close attention to current studies of image processing and image
statistics.�

Kristin Koch and colleagues [48] consider the question: how much infor-
mation does the retina send to the brain and how is it apportioned among
di�erent cell types? They conclude that �With approximately 106 ganglion
cells, the human retina would transmit data at roughly the rate of an Eth-
ernet connection.� This �gure appears to be for the amount of information
that is transmitted after decompression.

3.2 Mathematics-related and computer-related re-
search

Other research, with an emphasis on issues in mathematics and computing,
including arti�cial intelligence, can be helpful in the understanding of IC in
brains and nervous systems. This includes:

• Ray Solomono� developed Algorithmic Probability Theory showing the
intimate relation between IC and inductive inference [82, 83] (Section
2.5).

• Chris Wallace with others explored the signi�cance of IC in classi�ca-
tion and related areas (see, for example, [93, 94, 3].

• Gregory Chaitin and Andrei Kolmogorov, working independently, de-
veloped Algorithmic Information Theory, building on the work of Ray
Solomono�. The main idea here is that the information content of a
string of symbols is equivalent to the length of the shortest computer
program that anyone has been able to devise that describes the string.

• Jorma Rissanen has developed related ideas in [71, 72] and other pub-
lications.

A detailed description of these and related bodies of research may be
found in [52].

In research on deep learning in arti�cial neural networks, well reviewed
by Jürgen Schmidhuber [76], there is some recognition of the importance of
IC (in [76, Sections 4.2, 4.4, and 5.6.3]), but it appears that the idea is not
well developed in deep learning systems.
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Marcus Hutter, with others, [42, 43, 90] has developed the `AIXI' model
of intelligence based on Algorithmic Probability Theory and Sequential De-
cision Theory. He has also initiated the `Hutter Prize', a competition with
e50,000 of prize money, for lossless compression of a given sample of text.
The competition is motivated by the idea that �being able to compress well
is closely related to acting intelligently, thus reducing the slippery concept of
intelligence to hard �le size numbers.�9 This is an interesting project which
may yet lead to general, human-level AI.

4 IC and biology

This section and those that follow (up to and including Section 21) describe
evidence that, in varying degrees, lends support to the ICHLPC perspective.
Most of this evidence comes directly from observations of people, but some of
it comes from studies of animals�with the expectation that similar principles
would be true of people.

First, let's take an abstract view of why IC might be important in people
and other animals. In terms of biology, IC can confer a selective advantage
to any creature by allowing it to store more information in a given storage
space or use less storage space for a given amount of information, and by
speeding up the transmission of any given volume of information along nerve
�bres�thus speeding up reactions�or reducing the bandwidth needed for
the transmission of the same volume of information in a given time.

Perhaps more important than the impact of IC on the storage or transmis-
sion of information is the close connection, outlined in Section 2.5, between
IC and concepts of inference and probability. Compression of information
provides a means of predicting the future from the past and estimating prob-
abilities so that, for example, an animal may learn to predict where food may
be found or where there may be dangers.

As mentioned in Section 2.5, the close connection between IC and con-
cepts of inference and probability makes sense in terms of ICMUP: any re-
peating pattern can be a basis for inferences, and the probabilities of such
inferences may be derived from the number of repetitions of the given pat-
tern.

Being able to make inferences and estimate probabilities can mean large
savings in the use of energy and other bene�ts in terms of survival.

9From www.hutter1.net, retrieved 2017-10-10.
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5 Sensory in�ow, redundancy, and the trans-

mission and storage of information

As mentioned in Section 3.1.1, Fred Attneave [6] describes how visual percep-
tion may be understood in terms of the distinction between areas in a visual
image where there is much redundancy and boundaries between those ar-
eas where non-redundant information is concentrated. And he suggests that
visual perception may be understood, at least in part, as the economical
description of sensory input.

Also mentioned in the same section is Horace Barlow's [8] argument that
compression of sensory information is needed to cope with the large volumes
of such information, and, more speci�cally, his recognition that, without
compression of the information falling on the retina, each optic nerve would
be too small to transmit reasonable amounts of that information to the brain
[8, p. 548].

6 Chunking-with-codes

ICMUP is so much embedded in our thinking, and seems so natural and
obvious, that it is easily overlooked. This section, with Sections 7 and 8,
describe some examples.

In the same way that `TFEU' may be a convenient code or shorthand
for the rather cumbersome expression `Treaty on the Functioning of the Eu-
ropean Union' (Appendix C.1.2), a name like `New York' is, as previously
noted in Section 2.4, a compact way of referring to the many things and
activities in that renowned city . Likewise for the many other names that we
use: `Nelson Mandela', `George Washington', `Mount Everest', and so on.

The `chunking-with-codes' variant of ICMUP (Section 2.1.2) permeates
our use of natural language, both in its surface forms and in the way in which
surface forms relate to meanings.10

Because of its prominence in natural language and because of its intrinsic
power, chunking-with-codes is probably important in non-verbal aspects of
our thinking, as may be inferred from empirical support for the SP System
and its strengths in several aspects of intelligence (Section 2.2.5).11

10Although natural language provides a very e�ective means of compressing information
about the world, it is not free of redundancy. And that redundancy has a useful role to
play in, for example, enabling us to understand speech in noisy conditions, and in learning
the structure of language. How this apparent inconsistency may be resolved is discussed
in Appendix C.2.

11Contrary to the view which is sometimes expressed that thinking is not possible with-
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Ever since George Miller's in�uential paper [60], the concept of a 'chunk'
has been the subject of much research in psychology and related disciplines
(see, for example, [2, 115, 74, 35]).

Principles outlined in this section are likely to apply also to variants of
ICMUP discussed in Sections 7 and 8, below.

7 Class-inclusion hierarchies

As with chunking-with-codes, class-inclusion hierarchies, with variations such
as cross-classi�cation, are prominent in our use of language and in our think-
ing. Bene�ts arise from economies in the storage of information and in in-
ferences via inheritance of attributes, in accordance with the `class-inclusion
hierarchies' variant of ICMUP (Section 2.1.5).

As with chunking-with-codes, names for classes of things provide for great
economies in our use of language: most `content' words (nouns, verbs, adjec-
tives, and adverbs) in our everyday language stand for classes of things and,
as such, are powerful aids to economical description.

Imagine how cumbersome things would be if, on each occasion that we
wanted to refer to a �table�, we had to say something like �A horizontal
platform, often made of wood, used as a support for things like food, normally
with four legs but sometimes three, ...�, like the slow Entish language of the
Ents in Tolkien's The Lord of the Rings.12 Similar things may be said for
verbs like �speak� or �dance�, adjectives like �artistic� or �exuberant�, and
adverbs like �quickly� or �carefully�.

Classes and categories have been the subject of much research in psychol-
ogy and related disciplines over several decades (see, for example, [49, 53, 59]).

8 Schema-plus-correction, run-length coding,

and part-whole hierarchies

As with chunking-with-codes and class-inclusion hierarchies, it seems natural
to conceptualise things in terms of other techniques described in Section

out language, there is evidence in [32] for non-verbal thinking by congenitally deaf people
without knowledge of written or spoken natural language, and there is other evidence in
[13] for non-verbal thinking in people and in animals.

12J. R. R. Tolkien, The Lord of the Rings, London: HarperCollins, 2005, Kindle edition.
For a description of Entish, see, for example, page 480. See also, pages 465, 468, 473, 477,
478, 486, and 565.
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2.1. In all cases, there is clear potential for substantial economies in how
knowledge is represented and for the making of useful inferences.

8.1 Schema-plus-correction

As mentioned in Section 2.1.3, a menu in a restaurant or café is an obvious
example of the schema-plus-correction device in everyday thinking. Other
examples are the uses of forms to gather information about candidates for
a job, the features of a house for sale, a check-list for repairs on a car, and
so on. And knowledge of almost any skill such as baking a cake, gardening,
or woodwork, may be seen as a schema that may be tailored for a speci�c
task�such as baking a co�ee-and-walnut cake�by plugging in values for
that task.

An interesting example of schema-plus-correction in everyday life is the
UK shipping forecast which leaves out most of the schema and gives only the
corrections to the schema. So, for example: �good, becoming moderate or
poor� refers to visibility without mentioning that word; �moderate or rough�
refers to the state of the sea, without mentioning that expression; �gures
for wind speed are given without mentioning that they refer to the Beaufort
wind force scale; a word like �later� means a time that is more than 12 hours
from the time the forecast was issued; and so on.

8.2 Run-length coding

If anything is repeated, especially if it repeated a large number of times,
it seems natural and obvious to describe the repetition with a form of run-
length coding. For example, an instruction to walk from one place to another
may be: �From the old oak tree keep walking until you see the river�. Here,
�the old oak tree� marks the start of the repetition, �keep walking� describes
the repeated operation of putting one foot in front of the other, and �until
you see the river� marks the end of the repetition.

8.3 Part-whole hierarchies

As with class-inclusion hierarchies, part-whole hierarchies are prominent in
our language and in our thinking. In describing anything that is more com-
plex than `very simple', such as a house or a car, it seems natural and obvious
to divide it into parts and sub-parts through as many levels as are needed,
thus promoting economies and the making of inferences as described in Sec-
tion 2.1.6.
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9 Merging multiple views to make one

Here is another example of something that is so familiar that we are normally
not aware that it is part of our perceptions and thinking.

If, when we are looking at something, we close our eyes for a moment and
open them again, what do we see? Normally, it is the same as what we saw
before. But creating a single view out of the before and after views, means
unifying the two patterns to make one and thus compressing the information,
as shown schematically in Figure 8.13

Figure 8: A schematic view of how, if we close our eyes for a moment
and open them again, we normally merge the before and after views to
make one. The landscape here and in Figure 9 is from Wallpapers Buzz
(www.wallpapersbuzz.com), reproduced with permission.

It seems so simple and obvious that if we are looking at a landscape like
the one in the �gure, there is just one landscape even though we may look
at it two, three, or more times. But if we did not unify successive views
we would be like an old-style cine camera that simply records a sequence
of frames, without any kind of analysis or understanding that, very often,
successive frames are identical or nearly so.

13It is true that people may, on occasion, not detect large changes to objects and scenes
(`change blindness') [80] and that, without attention, we may not even perceive objects
(`inattentional blindness') [79], but it is also true that we can detect di�erences between
pairs of images that are similar but not identical�which means that we can also detect the
similarities between such pairs of images. That ability to detect similarities, together with
our ordinary experience that we normally merge multiple views to make one, as described
in the main text, implies that compression of information is an important part of visual
perception.
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10 Recognition

With the kind of merging of views just described, we do not bother to give it
a name. But if the interval between one view and the next is hours, months,
or years, it seems appropriate to call it `recognition'. In cases like that,
it is more obvious that we are relying on memory, as shown schematically
in Figure 9. Notwithstanding the undoubted complexities and subtleties in
how we recognise things, the process may be seen in broad terms as ICMUP:
matching incoming information with stored knowledge, merging or unifying
patterns that are the same, and thus compressing the information.

Figure 9: Schematic representation of how, in recognition, incoming visual
information may be matched and uni�ed with stored knowledge.

If we did not compress information in that way, our brains would quickly
become cluttered with millions of copies of things that we see around us�
people, furniture, cups, trees, and so on�and likewise for sounds and other
sensory inputs.

As mentioned earlier, Satosi Watanabe has explored the relationship be-
tween pattern recognition and IC [96, 97].

11 Binocular vision

ICMUP may also be seen at work in binocular vision:

�In an animal in which the visual �elds of the two eyes overlap
extensively, as in the cat, monkey, and man, one obvious type of
redundancy in the messages reaching the brain is the very nearly
exact reduplication of one eye's message by the other eye.� [9,
p. 213].
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In viewing a scene with two eyes, we normally see one view and not two.
This suggests that there is a matching and uni�cation of patterns, with a
corresponding compression of information. A sceptic might say, somewhat
implausibly, that the one view that we see comes from only one eye. But
that sceptical view is undermined by the fact that, normally, the one view
gives us a vivid impression of depth that comes from merging the two slightly
di�erent views from both eyes.

Strong evidence that, in stereoscopic vision, we do indeed merge the views
from both eyes, comes from a demonstration with `random-dot stereograms',
as described in [108, Section 5.1] (see also Appendix A.3).

In brief, each of the two images shown in Figure 10 is a random array of
black and white pixels, with no discernable structure, but they are related
to each other as shown in Figure 11: both images are the same except that
a square area near the middle of the left image is further to the left in the
right image.

Figure 10: A random-dot stereogram from [46, Figure 2.4-1], reproduced
with permission of Alcatel-Lucent/Bell Labs.

When the images in Figure 10 are viewed with a stereoscope, project-
ing the left image to the left eye and the right image to the right eye, the
central square appears gradually as a discrete object suspended above the
background.

Although this illustrates depth perception in stereoscopic vision�a sub-
ject of some interest in its own right�the main interest here is on how we
see the central square as a discrete object. There is no such object in either
of the two images individually. It exists purely in the relationship between
the two images, and seeing it means matching one image with the other and
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Figure 11: Diagram to show the relationship between the left and right
images in Figure 10. Reproduced from [46, Figure 2.4-3], with permission of
Alcatel-Lucent/Bell Labs.

unifying the parts which are the same.
This example shows that, although the matching and uni�cation of pat-

terns is a usefully simple idea, there are interesting subtleties and complexi-
ties that arise in �nding a good match when the two patterns are similar but
not identical.

11.1 Finding a good match

Seeing the central object in a random-dot stereogram means �nding a good
match between relevant pixels in the central area of the left and right images,
and likewise for the background. Here, a good match is one that yields a
relatively high level of IC. Since there is normally an astronomically large
number of alternative ways in which combinations of pixels in one image
may be aligned with combinations of pixels in the other image, it is not
normally feasible to search through all the possibilities exhaustively.

11.2 The best is the enemy of the good

As with the SP System (Sections 2.2.1 to 2.2.3) and many problems in arti-
�cial intelligence, the best is the enemy of the good. Instead of looking for
the perfect solution�which may lead to outright failure�we can do better,
achieving something useful on most occasions by looking for solutions that
are good enough for practical purposes. With this kind of problem, accept-
ably good solutions can often be found in a reasonable time with heuristic
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search. One such method for the analysis of random-dot stereograms has
been described by Marr and Poggio [56].

12 Abstracting object concepts via motion

It seems likely that the kinds of processes that enable us to see a hidden object
in a random-dot stereogram also apply to how we see discrete objects in the
world. The contrast between the relatively stable con�guration of features
in an object such as a car, compared with the variety of its surroundings
as it travels around, seems to be an important part of what leads us to
conceptualise the object as an object [108, Section 5.2].

Any creature that depends on camou�age for protection�by blending
with its background�must normally stay still. As soon as it moves relative
to its surroundings, it is likely to stand out as a discrete object ([108, Section
5.2], see also Section 2.7).

The idea that IC may provide a means of discovering `natural' structures
in the world�such as the many objects in our visual world�has been dubbed
the `DONSVIC' principle: the discovery of natural structures via information
compression [107, Section 5.2]. Of course, the word `natural' is not precise,
but it has enough precision to be a meaningful name for the process of learn-
ing the kinds of concepts which are the bread-and-butter of our everyday
thinking.

Similar principles may account for how young children come to under-
stand that their �rst language (or languages) is composed of words (Section
15).

13 Adaptation in the eye of Limulus and run-

length coding

IC may also be seen down in the works of vision. Figure 12 shows a recording
from a single sensory cell (ommatidium) in the eye of a horseshoe crab (Limu-
lus polyphemus), �rst when the background illumination is low, then when a
light is switched on and kept on for a while, and later switched o��shown
by the step function at the bottom of the �gure.

Perhaps contrary to what one might expect�a low rate of �ring when
illumination is low�the ommatidium �res at a moderate `background' rate
of about 20 impulses per second when the illumination is low (shown at the
left of the �gure). When the light is switched on, the rate of �ring increases
sharply but instead of staying high while the light is on (as one might expect),
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Figure 12: Variation in the rate of �ring of a single ommatidium of the eye of
a horseshoe crab in response to changing levels of illumination. Reproduced
from [70, Figure 16], with permission from the Optical Society of America.

41



it drops back almost immediately to the background rate. The rate of �ring
remains at that level until the light is switched o�, at which point it drops
sharply and then returns to the background level, a mirror image of what
happened when the light was switched on.

In connection with the main theme of this paper, a point of interest is
that the positive spike when the light is switched on, and the negative spike
when the light is switched o�, have the e�ect of marking boundaries, �rst
between dark and light, and later between light and dark. In e�ect, this is a
form of run-length coding (Section 2.1.4). At the �rst boundary, the positive
spike marks the fact of the light coming on. As long as the light stays on,
there is no need for that information to be constantly repeated, so there is
no need for the rate of �ring to remain at a high level. Likewise, when the
light is switched o�, the negative spike marks the transition to darkness and,
as before, there is no need for constant repetition of information about the
new low level of illumination.14

Another point of interest is that this pattern of responding�adaptation
to constant stimulation�can be explained via the action of inhibitory nerve
�bres that bring the rate of �ring back to the background rate when there is
little or no variation in the sensory input [92].

Inhibitory mechanisms are widespread in the brain [84, p. 45] and it
appears that, in general, their role is to reduce or eliminate redundancies in
information ([109, Section 9]), in keeping with the main theme of this paper.

14 Other examples of adaptation

Adaptation is also evident at the level of conscious awareness. If, for example,
a fan starts working nearby, we may notice the hum at �rst but then adapt
to the sound and cease to be aware of it. But when the fan stops, we are
likely to notice the new quietness at �rst but adapt again and stop noticing
it.

Another example is the contrast between how we become aware if some-
thing or someone touches us but we are mostly unaware of how our clothes
touch us in many places all day long. We are sensitive to something new and
di�erent and we are relatively insensitive to things that are repeated.

As with adaptation in the eye of Limulus, these other kinds of adaptation

14It is recognised that this kind of adaptation in eyes is a likely reason for small eye
movements when we are looking at something, including sudden small shifts in position
(`microsaccades'), drift in the direction of gaze, and tremor [57]. Without those move-
ments, there would be an unvarying image on the retina so that, via adaptation, what we
are looking at would soon disappear!
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may be seen as examples of the run-length coding technique for compression
of information.

15 Discovering the segmental structure of lan-

guage

There is evidence that much of the segmental structure of language�words
and phrases�may be discovered via ICMUP, as described in the following
two subsections. To the extent that these mechanisms model aspects of
HLPC, they provide evidence for ICHLPC.

With regard to Section 2.4, about the possible role of quanti�cation in
empirical evidence for ICHLPC, the MK10 Computer Model, designed for the
discovery of segmental structure in language and outlined below, assigns a
central role to the quanti�cation of frequencies with which basic symbols such
as letters, or sequences of symbols, occur in any given sample of language.

15.1 The word structure of natural language

As can be seen in Figure 13, people normally speak in `ribbons' of sound,
without gaps between words or other consistent markers of the boundaries
between words. In the �gure�the waveform for a recording of the spoken
phrase �on our website��it is not obvious where the word �on� ends and the
word �our� begins, and likewise for the words �our� and �website�. Just to
confuse matters, there are three places within the word �website� that look
as if they might be word boundaries.

Given that words are not clearly marked in the speech that young children
hear, how do they get to know that language is composed of words? Learning
to read could provide an answer but it appears that young children develop
an understanding that language is composed of words well before the age
when, normally, they are introduced to reading. Perhaps more to the point
is that there are still, regrettably, many children throughout the world that
are never introduced to reading but, in learning to talk and to understand
speech, they inevitably develop a knowledge of the structure of language,
including words.15

15It has been recognised for some time that skilled speakers of any language have an
ability to create or recognise sentences that are grammatical but new to the world. Chom-
sky's well-known example of such a sentence is Colorless green ideas sleep furiously. [25,
p. 15], which, when it was �rst published, was undoubtedly novel. This ability to create
or recognise grammatical but novel sentences implies that knowledge of a language means
knowledge of words as discrete entities that can form novel combinations.
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Figure 13: Waveform for the spoken phrase �On our website� with an alpha-
betic transcription above the waveform and a phonetic transcription below
it. With thanks to Sidney Wood of SWPhonetics (swphonetics.com) for the
�gure and for permission to reproduce it.

In keeping with the main theme of this paper, ICMUP provides an an-
swer [99, 100, 103] which works largely via ICMUP and can reveal much of
the word structure in an English-language text from which all spaces and
punctuation has been removed [107, Section 5.2]. It is true that there are
added complications with speech but it seems likely that similar principles
apply.

This discovery of word structure by the MK10 program, illustrated in
Figure 14, is achieved without the aid of any kind of externally-supplied dic-
tionary or other information about the structure of English. The program
builds its own dictionary via `unsupervised' learning using only the unseg-
mented sample of English with which it is supplied. It learns without the
assistance of any kind of `teacher', or data that is marked as `wrong', or the
grading of samples from simple to complex (cf. [36]).

Statistical tests show that the correspondence between the computer-
assigned word structure and the original (human) division into words is sig-
ni�cantly better than chance.

Two aspects of the MK10 model strengthen its position as a model of
what children do in learning the segmental structure of language [100]: the
growth in the lengths of words learned by the program corresponds quite well
with the same measure for children; and the pattern of changing numbers of
new words that are learned by the program at di�erent stages corresponds
quite well with the equivalent pattern for children.

Discovering the word structure of language via ICMUP is another example
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Figure 14: Part of a parsing created by the MK10 Computer Model [100] from
a 10,000 letter sample of English (book 8A of the Ladybird Reading Series)
with all spaces and punctuation removed. The program derived this parsing
from the sample alone, without any prior dictionary or other knowledge of the
structure of English. Reproduced from Figure 7.3 in [103], with permission.
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of the DONSVIC principle, mentioned in Section 12�because words are the
kinds of `natural' structure which are the subject of the DONSVIC principle,
and because ICMUP provides a key to how they may be discovered.

15.2 The phrase structure of natural language

In addition to its achievements in learning the word structure of natural
language, the MK10 Computer Model, featured in Section 15.1, does quite
a good job at discovering the phrase structure of unsegmented text in which
each word has been replaced by a symbol representing the grammatical class
of the word [101, 103]. An example is shown in Figure 15. As before, the
program works without any prior knowledge of the structure of English and,
apart from the initial assignment of word classes, it works in unsupervised
mode without the assistance of any kind of `teacher', or anything equivalent.
As before, statistical tests show that the correspondence between computer-
assigned and human-assigned structures is statistically signi�cant.16

Figure 15: One sentence from a 7600 word sample from the book Jerusalem
the Golden (by Margaret Drabble) showing (above the text) a surface struc-
ture analysis, and (below the text) the parsing developed by the MK10 Com-
puter Model at a late stage of processing [101]. This �gure is reproduced by
kind permission of Kingston Press Services Ltd.

Since ICMUP is central in the workings of the MK10 Computer Model,
this result suggests that ICMUP may have a role to play, not merely in dis-

16Thanks to Dr. Isabel Forbes, a person quali�ed in theoretical linguistics, for the as-
signment of grammatical class symbols to words in the given text, and for phrase-structure
analyses of the text.

46



covering the phrase structure of language, but more generally in discovering
the grammatical structure of language.

16 Grammatical inference

Regarding the last point from the previous section, it seems likely that learn-
ing the grammar of a language may also be understood in terms of ICMUP.
Evidence in support of that expectation comes from research with two pro-
grams designed for grammatical inference:

• The SNPR Computer Model. The SNPR Computer Model, which was
developed from the MK10 Computer Model, can discover plausible
grammars from samples of English-like arti�cial languages [102, 103].
This includes the discovery of segmental structures, classes of structure,
and abstract patterns. ICMUP is central in how the program works.

• The SP Computer Model. The SP Computer Model, one of the main
products of the SP programme of research, achieves results at a sim-
ilar level to that of SNPR. As before, ICMUP is central in how the
program works. With the solution of some residual problems, outlined
in [107, Section 3.3], there seems to be a real possibility that the SP
System will be able to discover plausible grammars from samples of
natural language. Also, it is anticipated that, with further develop-
ment, the program may be applied to the learning of non-syntactic
`semantic' knowledge, and the learning of grammars in which syntax
and semantics are integrated.

What was the point of developing the SP Computer Model when it does
no better at grammatical inference than the SNPR Computer Model? The
reason is that the SNPR Computer Model, which was designed for the discov-
ery of syntactic structures and worked mainly via the building of hierarchical
structures, was not compatible with the new and much more ambitious goal
of the SP programme of research: to simplify and integrate observations and
concepts across arti�cial intelligence, mainstream computing, mathematics,
and HLPC. What was needed was a new organising principle that would
accommodate hierarchical structures and several other kinds of structure as
well.

It turns out that the SP-multiple-alignment concept is much more versa-
tile than the hierarchical organising principle in the SNPR program, provid-
ing for several aspects of intelligence and the representation and processing
of a variety of knowledge structures of which hierarchical structures is only
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one (Section 2.2.5). It appears that the SP System provides a much �rmer
foundation for the development of human-level intelligence than the SNPR
Computer Model or indeed deep learning models, as discussed in [110, Section
V].

With regard to Section 2.4 about the possible role of quanti�cation in
empirical evidence for ICHLPC, the SNPR Computer Model and the SP
Computer Model, like the MK10 Computer Model (Section 15), both have
a central role for quanti�cation of the frequencies with which basic symbols
such as letters, or contiguous or broken patterns of symbols, occur in any
given sample of data.

17 Generalisation, the correction of wrong gen-

eralisations, and `dirty data'

Issues relating to generalisation in learning are best described with reference
to the Venn diagram shown in Figure 16. That �gure relates to the unsuper-
vised learning of a natural language but it appears that generalisation issues
in other areas of learning are much the same.

The evidence to be described derives largely from the SNPR Computer
Model and the SP Computer Model. Since both models are founded on
ICMUP, evidence that they have human-like capabilities with generalisation
and related phenomena may be seen as evidence in support of ICHLPC.

In the �gure, the smallest envelope shows the �nite but large sample of
`utterances' from which a young child learns his or her native language17

(which we shall call L)�where an `utterance' is a speech sound of any kind,
and the speakers from which a young child learns are adults or older children.
The middle-sized envelope shows the (in�nite) set of utterances in L, and the
largest envelope shows the (in�nite) set of all possible utterances, including
those that are in L and those which are not. `Dirty data' are the many `un-
grammatical' utterances that children normally hear�outside the envelope
for L but inside the envelope representing the utterances from which a young
child learns.

The child generalises `correctly' when he or she infers L, and only L, from
the �nite sample he or she has heard, including dirty data. Anything that
spills over into the outer envelope, like �mouses� as the plural of �mouse� or
�buyed� as the past tense of �buy�, is an over-generalisation, while failure to
learn the whole of L represents under-generalisation.

17To keep things simple in this discussion we shall assume that each child learns only
one �rst language, although many children learn two or more �rst languages.
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All possible
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Figure 16: Categories of utterances involved in the learning of a �rst lan-
guage, L. In ascending order size, they are: the �nite sample of utterances
from which a child learns; the (in�nite) set of utterances in L; and the (in-
�nite) set of all possible utterances. Adapted from Figure 7.1 in [103], with
permission.

In connection with the foregoing summary of concepts relating to gener-
alisation, there are three main problems:

• Generalisation without over-generalisation. How can we generalise our
knowledge without over-generalisation, and this in the face of evidence
that children can learn their �rst language or languages without the
correction of errors by parents or teachers or anything equivalent?18

• Generalisation without under-generalisation. How can we generalise
our knowledge without under-generalisation? As before, there is ev-
idence that learning of a language can be achieved without explicit
teaching.

• Dirty data. How can we learn correct knowledge despite errors in the

18Evidence comes chie�y from children who learned language without the possibility
that anyone might correct their errors. Christy Brown was a cerebral-palsied child who
not only lacked any ability to speak but whose bodily handicap was so severe that for
much of his childhood he was unable to demonstrate that he had normal comprehension
of speech and non-verbal forms of communication [17]. Hence, his learning of language
must have been achieved without the possibility that anyone might correct errors in his
spoken language.
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examples we hear. Again, it appears that this can be done without
correction of errors.

These things are discussed quite fully in [105, Section 9.5.3] and [107,
Section 5.3]. There is also relevant discussion in [110, Section V-H and XI-
C].

In brief, IC provides an answer to all three problems like this: for a given
body of raw data, I, compress it thoroughly via unsupervised learning; the
resulting compressed version of I may be split into two parts, a grammar and
an encoding of I in terms of the grammar; normally, the grammar generalises
correctly without over- or under-generalisation, and errors in I are weeded
out; the encoding may be discarded.

This scheme is admirably simple, but, so far, the evidence in support of it
is only informal, derived largely from informal experiments with English-like
arti�cial languages with the SNPR Computer Model of language learning
([102], [103]) and the SP Computer Model [105, Section 9.5.3].

The weeding out of errors via this scheme may seem puzzling, but errors,
by their nature, are rare. The grammar retains the repeating parts of I (which
are relatively common), while the encoding contains the non-repeating parts
including most of the errors. `Errors' which are not rare acquire the status
of `dialect' and cease to be regarded as errors.

A problem with research in this area is that the identi�cation of any over-
or under-generalisations produced by the above scheme or any other model
depends largely on human intuitions. But this is not so very di�erent from
the long-established practice in research on linguistics of using human judge-
ments of grammaticality to establish what any given person knows about a
particular language.

The problem of generalising our learning without over- or under-
generalisation applies to the learning of a natural language and also to the
learning of such things as visual images. It appears that the solution out-
lined here has distinct advantages compared with, for example, what appear
to be largely ad hoc solutions that have been proposed for deep learning in
arti�cial neural networks [110, Section V-H].

As noted above, evidence for human-like generalisation with the SNPR
and SP computer models, without either over- or under-generalisation, may
be seen as evidence in support of ICMUP as a unifying principle in HLPC.

18 Perceptual constancies

It has long been recognised that our perceptions are governed by constancies:
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• Size constancy. To a large extent, we judge the size of an object to be
constant despite wide variations in the size of its image on the retina
[31, pp. 40-41].

• Lightness constancy. We judge the lightness of an object to be constant
despite wide variations in the intensity of its illumination [31, p. 376].

• Colour constancy. We judge the colour of an object to be constant
despite wide variations in the colour of its illumination [31, p. 402].

These kinds of constancy, and others such as shape constancy and location
constancy, may each be seen as a means of encoding information economi-
cally: it is simpler to remember that a particular person is �about my height�
than many di�erent judgements of size, depending on how far away that per-
son is. In a similar way, it is simpler to remember that a particular object
is �black� or �red� than all the complexity of how its lightness or its colour
changes in di�erent lighting conditions.

By �ltering out variations due to viewing distance or the intensity or
colour of incident light, we can facilitate ICMUP and thus, for example, in
watching a football match, simplify the process of establishing that there is
(normally) just one ball on the pitch and not many di�erent balls depending
on viewing distances, whether the ball is in a bright or shaded part of the
pitch, and so on.

19 Kinds of redundancy that people �nd di�-

cult or impossible to detect

Although the matching and uni�cation of patterns is often e�ective in the
detection and reduction of redundancy in information, there are kinds of
redundancy that are not easily revealed via ICMUP. It seems that those
kinds of redundancy are also ones that people �nd di�cult or impossible
to detect. A well-known example is the decimal representation of π, which
appears to most people to be entirely random, but which can be created by
a simple program so that, in terms of Algorithmic Information Theory, it
contains much redundancy.

At �rst sight, this observation seems to contradict the main thesis of this
paper, that much of HLPC may be may be understood as IC. But there is
nothing in the ICHLPC thesis to say that people can or should be able to
detect all kinds of redundancy via ICMUP. And the apparent randomness of
the decimal representation of π suggests that any natural or arti�cial system
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that works via ICMUP would fail to detect the redundancy in data of that
kind.

In short, what appears at �rst sight to be evidence against ICHLPC, turns
out to be evidence in support of that thesis: the failure of most people to
detect the redundancy in the decimal representation of π may be explained
via the ICHLPC thesis, together with the apparent weakness of ICMUP in
discovering and reducing that kind of redundancy.

20 Mathematics

A discussion of mathematics may seem out of place in a paper about ICHLPC
but mathematics is relevant because it has been developed over many years as
an aid to human thinking. For that reason, in the spirit of George Boole's An
investigation of the laws of thought [15],19 a consideration of the organisation
and workings of mathematics is relevant to ICHLPC.

In [113] it is argued that much of mathematics, perhaps all of it, may
be seen as a set of techniques for the compression of information via the
matching and uni�cation of patterns, and their application. In case this
seems implausible:

• An equation as a compressed representation of data. An equation like
Albert Einstein's E = mc2 may be seen as a very compressed represen-
tation of what may be a very large set of data points relating energy
(E) and mass (m), with the speed of light (c) as a constant. Similar
things may be said about such well-known equations as s = (gt2)/2
(derived from Newton's second law of motion), a2 + b2 = c2 (Pythago-
ras's equation), PV = k (Boyle's law), and F = q(E + v × B) (the
charged-particle equation).

• Variants of ICMUP may be seen at work in mathematical notations.
The second, third, and fourth of the variants of ICMUP outlined in
Section 2.1 may be seen at work in mathematical notations. For exam-
ple: multiplication as repeated addition may be seen as an example of
run-length coding.

Owing to the close connections between logic and mathematics, and be-
tween computing and mathematics, it seems likely that similar principles
apply in logic and in computing [113, Section 4].

19And perhaps also in the spirit of William Thomson's Outline of the Laws of Thought

[88], although his orientation is more towards concepts in logic than mathematics.
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Although in this research it has seemed necessary to avoid too much
dependence on mathematics (for reasons outlined in Section 2.3), there is
now the interesting possibility that the scope of mathematics may be greatly
extended by incorporating within it such concepts as SP-multiple-alignment
and other elements of the SP Theory [113, Section 7].

21 Evidence for ICHLPC via the SP System

Another strand of empirical evidence for ICHLPC is via the SP System and
the central role within it of SP-multiple-alignment (Section 2.2.2), a variant
of ICMUP which, as described in Section 2.1.7, encompasses the six others
described in Section 2.1.

The evidence for ICHLPC via the SP System derives largely from the
strengths of the SP System in modelling several aspects of HLPC, sum-
marised in Section 2.2.5, and described in progressively more detail in [112,
Sections 4, 5, and 6], in [107], and in [105].

22 Some apparent contradictions and how they

may be resolved

The idea that IC is fundamental in HLPC, and also in the SP Theory as a
theory of HLPC, seems to be contradicted by:

• The ways in which people may create redundant copies of information
as well as how they may compress information;

• The fact that redundancy in information is often useful in detecting and
correcting errors, and in the storage and processing of information;

• A less direct challenge to ICHLPC, and the SP Theory as a theory
of HLPC, is persuasive evidence, described by Gary Marcus [54], that
in many respects, the human mind is a kluge, meaning �a clumsy or
inelegant�yet surprisingly e�ective�solution to a problem� (p 2).

These apparent contradictions and how they may be resolved are dis-
cussed in Appendix C.
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23 Conclusion

This paper presents evidence for the idea that much of human learning,
perception, and cognition (HLPC), may be understood as IC, often via the
matching and uni�cation of patterns.

The paper is part of a programme of research developing the SP Theory of
Intelligence and its realisation in the SP Computer Model�a theory which
aims to simplify and integrate observations and concepts across arti�cial
intelligence, mainstream computing, mathematics, and HLPC.

Since IC is central in the SP Theory, evidence for IC in HLPC, pre-
sented in this paper in Sections 4 to 20 inclusive (but excluding Section
21), strengthens empirical support for the SP Theory, viewed as a theory of
HLPC.

More direct empirical evidence for the SP Theory as a theory of HLPC�
summarised in Section 2.2.5�provides evidence for the IC in HLPC thesis
which is additional to that in Sections 4 to 20 inclusive.

Four possible objections to the IC in HLPC thesis, and the SP Theory,
are described in Appendix C, with answers to those objections.

The ideas developed in this research may be seen to be part of a `Big
Picture' of the importance of IC in at least six areas, outlined in Section 2.6.
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Appendices

A Mathematics associated with ICMUP, and

mathematics incorporated in the SP System

As mentioned in Section 2.3, this appendix details some mathematics asso-
ciated with ICMUP, and some of the mathematics incorporated in the SP
System.
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A.1 Searching for repeating patterns

At �rst sight, the process of searching for repeating patterns (Sections 2.1.1
and 2.2.2) is simply a matter of comparing one pattern with another to
see whether they match each other or not. But there are, typically, many
alternative ways in which patterns within a given body of information, I,
may be compared�and some are better than others. We are interested
in �nding those matches between patterns that, via uni�cation, yield most
compression�and a little re�ection shows that this is not a trivial problem
[105, Section 2.2.8.4].

Maximising the amount of redundancy found means maximising R where:

R =
i=n∑
i=1

(fi − 1) · si, (1)

fi is the frequency of the ith member of a set of n patterns and s is its size in
bits. Patterns that are both big and frequent are best. This equation applies
irrespective of whether the patterns are coherent substrings or patterns that
are discontinuous within I.

Maximising R means searching the space of possible uni�cations for the
set of big, frequent patterns that gives the best value. For a sequence con-
taining N symbols, the number of possible subsequences (including single
symbols and all composite patterns, both coherent and fragmented) is:

P = 2N − 1. (2)

The number of possible comparisons is the number of possible pairings of
subsequences which is:

C = P (P − 1)/2. (3)

For all except the very smallest values of N , the value of P is very large
and the corresponding value of C is huge. In short, the abstract space of
possible comparisons between patterns and thus the space of possible uni�-
cations is, in the great majority of cases, astronomically large.

Since the space is normally so large, it is not feasible to search it exhaus-
tively. For that reason, we cannot normally guarantee to �nd the theoretically
ideal answer, and normally we cannot know whether or not we have found
the theoretically ideal answer.

In general, we need to use heuristic methods in searching�conducting
the search in stages and discarding all but the best results at the end of each
stage�and we must be content with answers that are �reasonably good�.
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A.2 Information, compression of information, inductive
inference and probabilities

Solomono� [82] seems to have been one of the �rst people to recognise the
close connection that exists between IC and inductive inference (Section 2.5):
predicting the future from the past, and calculating probabilities for such
inferences. The connection between them�which may at �rst sight seem
obscure�lies in the redundancy-as-repetition-of-patterns view of redundancy
and how that relates to IC (Section 2.1, [105, Section 2.2.11]):

• Patterns that repeat within I represent redundancy in I, and IC can
be achieved by reducing multiple instances of any pattern to one.

• When we make inductive predictions about the future, we do so on
the basis of repeating patterns. For example, the repeating pattern
`Spring, Summer, Autumn, Winter' enables us to predict that, if it is
Spring time now, Summer will follow.

Thus IC and inductive inference are closely related to concepts of fre-
quency and probability. Here are some of the ways in which these concepts
are related:

• Probability has a key role in Shannon's concept of information. In
that perspective, the average quantity of information conveyed by one
symbol in a sequence is:

H = −
i=n∑
i=1

pi log pi, (4)

where pi is the probability of the ith type in the alphabet of n available
alphabetic symbol types. If the base for the logarithm is 2, then the
information is measured in `bits'.

• Measures of frequency or probability are central in techniques for eco-
nomical coding such as the Hu�man method [26, Section 5.6] or the
Shannon-Fano-Elias method [26, Section 5.9].

• In the redundancy-as-repetition-of-patterns view of redundancy and
IC, the frequencies of occurrence of patterns in I is a main factor (with
the sizes of patterns) that determines how much compression can be
achieved.
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• Given a body of (binary) data that has been `fully' compressed (so that
it may be regarded as random or nearly so), its absolute probability
may be calculated as pABS = 2−L, where L is the length (in bits) of the
compressed data.

Probability and IC may be regarded as two sides of the same coin. That
said, they provide di�erent perspectives on a range of problems. In this
research, the IC perspective�with redundancy-as-repetition-of-patterns�
seems to be more fruitful than viewing the same problems through the lens
of probability. In the �rst case, one can see relatively clearly how compres-
sion may be achieved by the primitive operation of unifying patterns whereas
these ideas are obscured when the focus is on probabilities.

A.3 Random-dot stereograms

A particularly clear example of the kind of search described in Appendix A.1
is what the brain has to do to enable one to see the �gure in the kinds of
random-dot stereogram described in Section 11.

In this case, assuming the left image has the same number of pixels as
the right image, the size of the search space is:

S = P 2/2 (5)

where P is the number of possible patterns in each image, calculated in the
same way as was described in Appendix A.1. The fact that the images are
two dimensional needs no special provision because the original equations
cover all combinations of atomic symbols.

For any stereogram with a realistic number of pixels, this space is very
large indeed. Even with the very large processing power represented by the
1011 neurons in the brain, it is inconceivable that this space can be searched
in a few seconds and to such good e�ect without the use of heuristic methods.

David Marr [55, Chapter 3] describes two algorithms that solve this prob-
lem. In line with what has just been said, both algorithms rely on constraints
on the search space and both may be seen as incremental search guided by
redundancy-related metrics.

A.4 Coding and the evaluation of SP-multiple-
alignments in terms of IC

Given an SP-multiple-alignment like one of the two shown in Figure 4 (Sec-
tion 2.2.2), one can derive a code SP-pattern from the SP-multiple-alignment
in the following way:
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1. Scan the SP-multiple-alignment from left to right looking for columns
that contain an SP-symbol by itself, not aligned with any other symbol.

2. Copy these SP-symbols into a code pattern in the same order that they
appear in the SP-multiple-alignment.

The code SP-pattern derived in this way from the SP-multiple-alignment
shown in Figure 4 is `S 0 2 4 3 7 6 1 #S'. This is, in e�ect, a compressed
representation of those symbols in the New pattern that form hits with Old
symbols in the SP-multiple-alignment.

Given a code SP-pattern derived in this way, we may calculate a `com-
pression di�erence' as:

CD = BN −BE (6)

or a `compression ratio' as:

CR = BN/BE, (7)

where BN is the total number of bits in those symbols in the New pattern
that form hits with Old symbols in the SP-multiple-alignment, and BE is the
total number of bits in the code SP-pattern (the `encoding') that has been
derived from the SP-multiple-alignment as described above.

In each of these equations, BN is calculated as:

BN =
h∑

i=1

Ci, (8)

where Ci is the size of the code for ith symbol in a sequence, H1...Hh, compris-
ing those symbols within the New pattern that form hits with Old symbols
within the SP-multiple-alignment (Appendix A.5).

BE is calculated as:

BE =
s∑

i=1

Ci, (9)

where Ci is the size of the code for ith symbol in the sequence of s symbols
in the code pattern derived from the SP-multiple-alignment (Appendix A.5).

A.5 Encoding individual symbols

The simplest way to encode individual symbols in the New pattern and the
set of Old patterns in an SP-multiple-alignment is with a `block' code using
a �xed number of bits for each symbol. But the SP Computer Model uses
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variable-length codes for symbols, assigned in accordance with the Shannon-
Fano-Elias coding scheme [26, Section 5.9] so that the shortest codes repre-
sent the most frequent alphabetic symbol types and vice versa. Although
this scheme is slightly less e�cient than the well-known Hu�man scheme, it
has been adopted because it avoids some anomalous results that can arise
with the Hu�man scheme.

For the Shannon-Fano-Elias calculation, the frequency of each alphabetic
symbol type (fst) is calculated as:

fst =
P∑
i=1

(fi × oi) (10)

where fi is the (notional) frequency of the ith pattern in the collection of Old
SP-patterns (the grammar) used in the creation of the given SP-multiple-
alignment, oi is the number of occurrences of the given symbol in the ith SP-
pattern in the grammar and P is the number of SP-patterns in the grammar.

A.6 Calculation of probabilities associated with any
given SP-multiple-alignment

As may be seen in [105, Chapter 7], the formation of SP-multiple-alignments
in the SP framework supports a variety of kinds of probabilistic reasoning.
The core idea is that any Old symbol in a SP-multiple-alignment that is not
aligned with a New symbol represents an inference that may be drawn from
the SP-multiple-alignment. This section describes how absolute and relative
probabilities for such inferences may be calculated.

A.6.1 Absolute probabilities

Any sequence of L symbols, drawn from an alphabet of |A| alphabetic types,
represents one point in a set of N points where N is calculated as:

N = |A|L. (11)

If we assume that the sequence is random or nearly so, which means that
the N points are equi-probable or nearly so, the probability of any one point
(which represents a sequence of length L) is close to:

pABS = |A|−L. (12)

In the SP Computer Model, the value of |A| is 2.
This equation may be used to calculate the absolute probability of the

code, C, derived from the SP-multiple-alignment as described in Appendix
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A.4. pABS may also be regarded as the absolute probability of any inferences
that may be drawn from the SP-multiple-alignment as described in [105,
Section 7.2.2].

A.6.2 Relative probabilities

The absolute probabilities of SP-multiple-alignments, calculated as described
in the last subsection, are normally very small and not very interesting in
themselves. From the standpoint of practical applications, we are normally
interested in the relative values of probabilities, not their absolute values.

The procedure for calculating relative values for probabilities (pREL) is
as follows:

1. For the SP-multiple-alignment which has the highest CD (which we
shall call the reference SP-multiple-alignment), identify the symbols
from New which are encoded by the SP-multiple-alignment. We will
call these symbols the reference set of symbols in New.

2. Compile a reference set of SP-multiple-alignments which includes the
SP-multiple-alignment with the highest CD and all other SP-multiple-
alignments (if any) which encode exactly the reference set of symbols
from New, neither more nor less.

3. The SP-multiple-alignments in the reference set are examined to �nd
and remove any rows which are redundant in the sense that all the
symbols appearing in a given row also appear in another row in the
same order.20 Any SP-multiple-alignment which, after editing, matches
another SP-multiple-alignment in the set is removed from the set.

4. Calculate the sum of the values for pABS in the reference set of SP-
multiple-alignments:

pA_SUM =
i=R∑
i=1

pABSi
(13)

where R is the size of the reference set of SP-multiple-alignments and
pABSi

is the value of pABS for the ith SP-multiple-alignment in the
reference set.

20If Old is well compressed, this kind of redundancy amongst the rows of a SP-multiple-
alignment should not appear very often.
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5. For each SP-multiple-alignment in the reference set, calculate its rela-
tive probability as:

pRELi
= pABSi

/pA_SUM . (14)

The values of pREL calculated as just described seem to provide an ef-
fective means of comparing the SP-multiple-alignments in the reference set.
Normally, this will be those SP-multiple-alignments which encode the same
set of symbols from New as the SP-multiple-alignment which has the best
overall CD.

A.7 Sifting and sorting of SP-patterns in unsupervised
learning in the SP System

In the process of unsupervised learning in the SP System (Section 2.2.3, [105,
Chapter 9]), which starts with a set of New SP-patterns, there is a process
of sifting and sorting Old SP-patterns that are created by the SP System to
develop one or more alternative collections of Old SP-patterns (grammars),
each one of which scores well in terms of its capacity for the economical
encoding of the given set of New SP-patterns.

When all the New SP-patterns have been processed in this way, there is
a set A of full SP-multiple-alignments, divided into b1...bm disjoint subsets,
one for each SP-pattern from the given set of New SP-patterns. From these
SP-multiple-alignments, the program computes the frequency of occurrence
of each of the p1...pn Old SP-patterns as:

fi =
j=m∑
j=1

max(pi, bj) (15)

where max(pi, bj) is the maximum number of times that pi appears in any
one of the SP-multiple-alignment in the subset bj.

The program also compiles an alphabet of the alphabetic symbol types,
s1...sr, in the Old SP-patterns and, following the principles just described,
computes the frequency of occurrence of each alphabetic symbol type as:

Fi =
j=m∑
j=1

max(si, bj) (16)

where max(si, bj) is the maximum number of times that si appears in any
one SP-multiple-alignment in subset bj. From these values, the encoding cost
of each alphabetic symbol type is computed using the Shannon-Fano-Elias
method as before [26, Section 5.9].
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In the process of building alternative grammars, the tree of such alter-
natives is pruned periodically to keep it within reasonable bounds. Values
for G, E and (G + E) (which we will refer to as T ) are calculated for each
grammar and, at each stage, grammars with high values for T are eliminated.

For a given grammar comprising SP-patterns p1...pg, the value of G is
calculated as:

G =
i=g∑
i=1

(
j=Li∑
j=1

sj) (17)

where Li is the number of symbols in the ith SP-pattern and sj is the encoding
cost of the jth SP-symbol in that SP-pattern.

Given that each grammar is derived from a set a1...an of SP-multiple-
alignments (one SP-multiple-alignment for each pattern from New), the value
of E for the grammar is calculated as:

E =
i=n∑
i=1

ei (18)

where ei is the size, in bits, of the code SP-pattern derived from the ith
SP-multiple-alignment.

A.8 Finding good matches between two sequences of
symbols

At the heart of the SP Computer Model is a process for �nding good matches
between two sequences of symbols, mentioned in Section 2.2.2 and described
quite fully in [105, Appendix A]. What has been developed is a version of
dynamic programming with the advantage that it can �nd two or more good
matches between sequences, not just one good match.

The search process uses a measure of probability, pn, as its metric. This
metric provides a means of guiding the search which is e�ective in practice
and appears to have a sound theoretical basis. To de�ne pn and to justify it
theoretically, it is necessary �rst to de�ne the terms and variables on which
it is based:

• A sequence of matches between two sequences, sequence1 and se-
quence2, is called a `hit sequence'.

• For each hit sequence h1...hn, there is a corresponding series of gaps,
g1...gn. For any one hit, the corresponding gap is g = gq + gd, where
gq is the number of unmatched characters in the query between the
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query character for the given hit in the series and the query character
for the immediately preceding hit; and gd is the equivalent gap in the
database, g1 is taken to be 0.

• A is the size of the alphabet of symbol types used in sequence1 and
sequence2.

• p1 is the probability of a match between any one symbol in sequence1
and any one symbol in sequence2 on the null hypothesis that all hits are
equally probable at all locations. Its value is calculated as: p1 = 1/A.

Using these de�nitions, the probability of any hit sequence of length n is
calculated as:

pn =
i=n∏
i=1

(1− (1− p1)gi+1), g1 = 0

.
With this equation, is relatively easy to calculate the probability of the

hit sequence up to and including any hit by using the stored value of the hit
sequence up to and including the immediately preceding hit.

B Barlow's change of view about the signi�-

cance of IC in mammalian learning, percep-

tion, and cognition, with comments

As noted in Section 3.1.1, Horace Barlow [11, p. 242] argued that �... the
[compression] idea was right in drawing attention to the importance of re-
dundancy in sensory messages ... but it was wrong in emphasizing the main
technical use for redundancy, which is compressive coding.� His main argu-
ments follow, with my comments after each one, �agged with `JGW'.

B.1 �Redundancy is not something useless that can be
stripped o� and ignored�

�It is important to realize that redundancy is not something use-
less that can be stripped o� and ignored. An animal must iden-
tify what is redundant in its sensory messages, for this can tell it
about structure and statistical regularity in its environment that
are important for its survival.� [11, p. 243], and �It is ... knowl-
edge and recognition of ... redundancy, not its reduction, that
matters.� [11, p. 244].
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JGW: Barlow is right to say that knowledge of and recognition of redun-
dancy is important �for this can tell [an animal] about structure and statis-
tical regularity in its environment that are important for its survival.�. In
keeping with that remark, knowledge of the frequency of occurrence of any
pattern may serve in the calculation of absolute and relative probabilities
([105, Section 3.7], [107, Section 4.4]) and it can be the key to the correc-
tion of errors, as Barlow mentions in the quote from him in the heading of
Appendix B.2.

But in the SP System, redundancy is not treated as �something useless
that can be stripped o� and ignored�. Patterns that repeat are reduced to
a single instance and the frequency of occurrence of that single instance is
recorded. The existence of single instances like that, each with a record of
its frequency of occurrence, is very important, both in the way that the SP
System builds its model of the world, and also in the way that it makes
inferences and calculates probabilities of those inferences.

As noted in Section 10, if we did not compress sensory information, �our
brains would quickly become cluttered with millions of copies of things that
we see around us�people, furniture, cups, trees, and so on�and likewise
for sounds and other sensory inputs.� And as noted in Section 3.1.1, Bar-
low himself has pointed out that the mismatch between the relatively large
amounts of information falling on the retina and the relatively small trans-
mission capacity of the optic nerve suggests that sensory information is likely
to be compressed [8, p. 548]. And he has also pointed out that in animals like
cats, monkeys, and humans, �one obvious type of redundancy in the messages
reaching the brain is the very nearly exact reduplication of one eye's message
by the other eye� [9, p. 213], and because we normally see one view, not two,
the duplication implies that the two views are merged and thus compressed.
In general, the evidence presented in Sections 4 to 21 points strongly to IC
as a prominent feature of HLPC.

B.2 �Redundancy is mainly useful for error avoidance
and correction�

JGW: The heading above, from [11, p. 244], implies that compression of
information via the reduction of redundancy is relatively unimportant, in
keeping with the quotes from Barlow in the previous subsection.

Redundancy can certainly be useful in the avoidance of or correction of
errors (Appendix C.2). But experience in the development and application
of the SP Computer Model has shown that compression of information via
the reduction of redundancy is also needed for such tasks as the parsing
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of natural language, pattern recognition, and grammatical inference. And
compression of information may on occasion be intimately related to the
correction of errors of omission, commission, and substitution, as described
in Appendix C.2 and illustrated in Figure 20 (see also [107, Section 4.2.2]
and [105, Section 6.2]).

B.3 �There are very many more neurons at higher lev-
els in the brain� and �compressed, non-redundant,
representation would not be at all suitable for the
kinds of task that brains have to perform�

Following the remark that �This is the point on which my own opinion has
changed most, partly in response to criticism, partly in response to new facts
that have emerged.� [11, p. 244], Barlow writes:

�Originally both Attneave and I strongly emphasized the econ-
omy that could be achieved by recoding sensory messages to
take advantage of their redundancy, but two points have become
clear since those early days. First, anatomical evidence shows
that there are very many more neurons at higher levels in the
brain, suggesting that redundancy does not decrease, but actu-
ally increases. Second, the obvious forms of compressed, non-
redundant, representation would not be at all suitable for the
kinds of task that brains have to perform with the information
represented; ...� [11, pp. 244�245].

and

�I think one has to recognize that the information capacity of
the higher representations is likely to be greater than that of the
representation in the retina or optic nerve. If this is so, redun-
dancy must increase, not decrease, because information cannot
be created.� [11, p. 245].

JGW: There seem to be two problems here:

• The likelihood that there are �very many more neurons at higher levels
in the brain [than at the sensory levels]� and that �the information
capacity of the higher representations is likely to be greater than that
of the representation in the retina or optic nerve� need not invalidate
ICHLPC. It seems likely that many of the neurons at higher levels
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are concerned with the storage of one's accumulated knowledge over
the period from one's birth to one's current age ([105, Chapter 11],
[109, Section 4]). By contrast, neurons at the sensory level would be
concerned only with the processing of sensory information at any one
time.

Although knowledge in one's long-term memory stores is likely to be
highly compressed and only a partial record of one's experiences, it is
likely, for most of one's life except early childhood, to be very much
larger than the sensory information one is processing at any one time.
Hence, it should be no surprise to �nd many more neurons at higher
levels than at the sensory level.

• For reasons given in Appendix B.4, next, there are reasons for doubting
the proposition that �the obvious forms of compressed, non-redundant,
representation would not be at all suitable for the kinds of task that
brains have to perform with the information represented.�

B.4 �Compressed representations are unsuitable for the
brain�

Under the heading above, Barlow writes:

�The typical result of a redundancy-reducing code would be to
produce a distributed representation of the sensory input with a
high activity ratio, in which many neurons are active simultane-
ously, and with high and nearly equal frequencies. It can be shown
that, for one of the operations that is most essential in order to
perform brain-like tasks, such high activity-ratio distributed rep-
resentations are not only inconvenient, but also grossly ine�cient
from a statistical viewpoint ...� [11, p. 245].

JGW: With regard to these points:

• It is not clear why Barlow should assume that a redundancy-reducing
code would, typically, produce a distributed representation, or that
compressed representations are unsuitable for the brain. The SP Sys-
tem is dedicated to the creation of non-distributed compressed repre-
sentations which work very well in several aspects of intelligence as
outlined in Section 2.2.5 with pointers to where fuller information may
be found. And in [109] it is argued that, in SP-Neural, such represen-
tations can be mapped on to plausible structures of neurons and their
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inter-connections that are quite similar to Donald Hebb's [37] concept
of a `cell assembly'.

• With regard to e�ciency:

� It is true that deep learning in arti�cial neural networks [76], with
their distributed representations, are often hungry for computing
resources, with the implication that they are ine�cient. But oth-
erwise they are quite successful with certain kinds of task, and
there appears to be scope for increasing their e�ciencies [24].

� The SP System demonstrates that the compressed localist repre-
sentations in the system are e�cient and e�ective in a variety of
kinds of task, as outlined in Section 2.2.5 with pointers to where
fuller information may be found.

C Some apparent contradictions of ICHLPC

and the SP Theory, and how they may be

resolved

The apparent contradictions of ICHLPC, and the SP Theory as a theory of
HLPC that were mentioned in Section 22, are discussed in the following three
subsections, with suggested answers to those apparent contradictions.

C.1 Redundancy may be created by human brains, and
via mathematics and computing

Any person may create redundancy by simply repeating any action, includ-
ing any portion of speech or writing. Although this seems to contradict
the ICHLPC thesis, the contradiction may be resolved as described in the
following subsections.

C.1.1 Creating redundancy via IC

With a computer, it is very easy to create information containing large
amounts of redundancy and to do it by a process which may itself be seen to
entail the compression of information.

We can, for example, make a `call' to the function de�ned in Figure 17,
using the pattern `oranges_and_lemons(100)'. The e�ect of that call is to
print out a highly redundant sequence containing 100 copies of the expression
�Oranges and lemons, Say the bells of St. Clement's; �.
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void oranges_and_lemons(int x)

{

printf("Oranges and lemons, Say the bells of St. Clement's; ");

if (x > 1) oranges_and_lemons(x - 1) ;

}.

Figure 17: A simple recursive function showing how, via computing, it is
possible to create repeated (redundant) copies of `Oranges and lemons, Say
the bells of St. Clement's; '.

Taking things step by step, this works as follows:

1. The pattern `oranges_and_lemons(100)' is matched with the pattern
`void oranges_and_lemons(int x)' in the �rst line of the function.

2. The two instances of `oranges_and_lemons' are uni�ed and the value
100 is assigned to the variable x. The assignment may also be un-
derstood in terms of the matching and uni�cation of patterns but the
details would be a distraction from the main point here.

3. The instruction `printf("Oranges and lemons, Say the bells of

St. Clement's; ");' in the function has the e�ect of printing out
�Oranges and lemons, Say the bells of St. Clement's; �.

4. Then if x > 1, the instruction `oranges_and_lemons(x - 1)' has the
e�ect of calling the function again but this time with 99 as the value of x
(because of the instruction x−1 in the pattern `oranges_and_lemons(x
- 1)', meaning that 1 is to be subtracted from the current value of x).

5. Much as with the �rst call to the function (item 1, above), the pat-
tern `oranges_and_lemons(99)' is matched with the pattern `void
oranges_and_lemons(int x)' in the �rst line of the function.

6. Much as before, the two instances of `oranges_and_lemons' are uni�ed
and the value 98 is assigned to the variable x.

7. This cycle continues until the value of x is 0.

Where does compression of information come in? It happens mainly when
one copy of `oranges_and_lemons' is matched and uni�ed with another copy
so that, in e�ect, two copies are reduced to one.

There is more about recursion in Appendix C.1.4, below.
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C.1.2 A simple example of `decompression by compression'

In the retrieval of compressed information, the chunking-with-codes idea out-
lined in Section 2.1.2 provides a simple example of decompression by com-
pression:

• Compression of information. If, for example, a document contains
many instances of the expression �Treaty on the Functioning of the Eu-
ropean Union� we may shorten it by giving that expression a relatively
short name or code like `TFEU' and then replacing all but one instances
of the long expression with its shorter code. This achieves compression
of information because, in e�ect, multiple instances of �Treaty on the
Functioning of the European Union� have been reduced to one via
matching and uni�cation.

• Retrieval of compressed information. We can reverse the process and
thus decompress the document by searching for instances of `TFEU'
and replacing each one with �Treaty on the Functioning of the Euro-
pean Union�. But to achieve that result, the search pattern `TFEU'
needs to be matched and uni�ed with each instance of `TFEU' in the
document. And that process of matching and uni�cation is itself a pro-
cess of compressing information. Hence, decompression of information
has been achieved via IC!

C.1.3 How the SP System may achieve decompression by com-

pression

How the SP System may, with appropriate input, achieve decompression by
compression is described in [105, Section 3.8] and [107, Section 4.5]. There
are two key points: 1) decompression of a body of information I, may be
achieved by a process which is exactly the same as the process that achieved
the original compression of I�there is no modi�cation to the program of
any kind; 2) all that is needed to achieve decompression is to ensure that
there is some residual redundancy in the compressed version of I, so that the
program has something to work on.

Figure 18 shows a simple example. Here, the SP-multiple-alignment
shown in Figure 18 (a), the very simple sentence `j o h n r u n s', in row
0 of the SP-multiple-alignment, has been recognised as a sentence comprising
a noun followed by a verb.

A `code' for this analysis may be obtained by scanning the SP-multiple-
alignment from left to right, picking out the SP-symbols that have not been
aligned with any other symbol ([107, Section 4.1], [105, Section 3.5]). The
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0 j o h n r u n s 0

| | | | | | | |

1 N n1 j o h n #N | | | | 1

| | | | | |

2 S s0 N #N V | | | | #V #S 2

| | | | | |

3 V v0 r u n s #V 3

(a)

0 S s0 n1 v0 #S 0

| | | | |

1 S s0 N | #N V | #V #S 1

| | | | | |

2 N n1 j o h n #N | | | 2

| | |

3 V v0 r u n s #V 3

(b)

Figure 18: Two SP-multiple-alignments, produced by the SP Computer
Model, showing how the program may achieve decompression of information
as well as compression of information, as described in the text.

result in this case is the SP-pattern `S s0 n1 v0 #S'. Without worrying
about the details of how many bits are required for each SP-symbol (which
has nothing to do with the textual size of each SP-symbol�see [107, Section
4.1] and [105, Section 3.5.2.1]), we can see that there has been a moderate
compression of information because 8 SP-symbols in the sentence have been
encoded with 5 other SP-symbols.

In Figure 18 (b), the process is reversed. Now the code SP-pattern `S
s0 n1 v0 #S' is supplied to the program as a New SP-pattern. Each of the
SP-symbols in that SP-pattern are given extra bits of information to ensure
that the program has some redundancy to work on, as mentioned above.
The best SP-multiple-alignment that is created in this case contains `j o h

n' followed by `r u n s', which is of course the original sentence, recreated
via its code SP-symbols.

In general, the SP Computer Model, which is devoted to the compression
of information, can reverse the process without any modi�cation. It achieves
`decompression by compression' without any paradox or contradiction.
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C.1.4 How the SP System may create redundancy via recursion

The SP Computer Model may also create redundancy via recursion, as illus-
trated in Figure 19.

0 0 0

|

1 X a 0 #X 1

| |

2 X b X #X 1 #X 2

| |

3 X b X #X 1 #X 3

| |

4 X b X #X 1 #X 4

| |

5 X b X #X 1 #X 5

Figure 19: One of many SP-multiple-alignments produced by the SP Com-
puter Model with a New SP-pattern, `0', and a repository of user-supplied
Old SP-patterns: `X b X #X 1 #X'. Reproduced with permission from Figure
4.4 (a) in [105].

In this example, the SP Computer Model is supplied with two Old
SP-patterns�`X b X #X 1 #X' and `X a 0 #X'�and a one-symbol New SP-
pattern: `0'. The program processes this information like this:

1. The SP-symbol `0' in the New SP-pattern is matched with, and im-
plicitly uni�ed with, the same SP-symbol in the Old SP-pattern `X a

0 #X', as shown in rows 0 and 1 in the �gure.

2. The SP-symbols `X' and `#X' at the beginning and end of `X a 0 #X'
are matched and uni�ed with the same two symbols at the third and
fourth positions in the SP-pattern `X b X #X 1 #X', as shown in rows
1 and 2 in the �gure.

3. The SP-symbols `X' and `#X' at the beginning and end of `X b X #X 1

#X' are matched and uni�ed with the same two symbols at the third
and fourth positions in that same SP-pattern, as shown in rows 2 and
3 in the �gure.

4. After that, the process in step 3 repeats, as shown in rows 3 and 4 and
rows 4 and 5 of the �gure�and it may carry on like this, producing
many SP-multiple-alignments, until the operator stops it, or computer
memory is exhausted.
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If the matching symbols in Figure 19 are all uni�ed (merging each match-
ing pair into a single symbol), the result is a single sequence like this: `X b X

b X b X b X a 0 #X 1 #X 1 #X 1 #X 1 #X', and likewise for all the many
other SP-multiple-alignments that the program may produce. With all but
the simplest of those SP-multiple-alignments, there would be redundancy in
the repetition of the symbol `1', and likewise for other symbols in the �gure.
Hence, the SP Computer Model has created redundancy by a process which
is devoted to the compression of information.

C.2 Redundancy is often useful in the detection and
correction of errors and in the storage and process-
ing of information

The fact that redundancy�repetition of information�is often useful in the
detection and correction of errors and in the storage and processing of infor-
mation, and the fact that these things are true in biological systems as well
as arti�cial systems, is the second apparent contradiction to ICHLPC and
the SP Theory as a theory of HLPC. Here are some examples:

• Backup copies. With any kind of database, it is normal practice to
maintain one or more backup copies as a safeguard against catastrophic
loss of the data. Each backup copy represents redundancy in the sys-
tem.

• Mirror copies. With information on the internet, it is common practice
to maintain two or more mirror copies in di�erent places to minimise
transmission times and to spread processing loads across two or more
sites, thus reducing the chance of overload at any one site. Again, each
mirror copy represents redundancy in the system.

• Redundancies as an aid to the correction of errors. Redundancies in
natural language can be a very useful aid to the comprehension of
speech in noisy conditions.

• Redundancies in electronic messages. It is normal practice to add re-
dundancies to electronic messages, in the form of additional bits of
information together with checksums, and also by repeating the trans-
mission of any part of a message that has become corrupted. These
things help to safeguard messages against accidental errors caused by
such things as birds �ying across transmission beams, or electronic
noise in the system, and so on.
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In information processing systems of any kind, uses of redundancy of the
kind just described may co-exist with ICMUP. For example: �... it is entirely
possible for a database to be designed to minimise internal redundancies and,
at the same time, for redundancies to be used in backup copies or mirror
copies of the database ... Paradoxical as it may sound, knowledge can be
compressed and redundant at the same time.� [105, Section 2.3.7].

As noted in Appendix C.1.3, the SP System, which is dedicated to the
compression of information, will not work properly with totally random in-
formation containing no redundancy. It needs redundancy in its `New' data
in order to achieve such things as the parsing of natural language, pattern
recognition, and grammatical inference. Also, for the correction of errors in
any incoming batch of New SP-patterns, it needs a repository of Old patterns
that represent patterns of redundancy in a previously-processed body of New
information.

Figure 20 shows two SP-multiple-alignments that illustrate error correc-
tion by the SP Computer Model. Figure 20 (a) shows, as a reference standard,
a parsing of the sentence `t w o k i t t e n s p l a y' in row 0 where
that New SP-pattern is free of errors. For comparison, Figure 20 (b) shows a
parsing in which the New SP-pattern in row 0 contains an error of omission
(`t w o' is changed to `t o'), an error of substitution (`k i t t e n s' is
changed to `k i t t e m s'), and an error of addition (`p l a y' is changed
to `p l a x y'). Despite these three errors, the best SP-multiple-alignment
created by the SP Computer Model is what would normally be regarded as
correct.

This example illustrates the point, mentioned in Appendix B.2, that the
exploitation of redundancy for the correction of errors may on occasion be
intimately related to the exploitation of redundancy for the compression of
information.

C.3 The human mind as a kluge

As mentioned in Section 22, Gary Marcus has described persuasive evidence
that, in many respects, the human mind is a kluge. To illustrate the point,
here is a sample of what Marcus says:

�Our memory is both spectacular and a constant source of disap-
pointment: we recognize photos from our high school year-books
decades later�yet �nd it impossible to remember what we had
for breakfast yesterday. Our memory is also prone to distortion,
con�ation, and simple failure. We can know a word but not be
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0 t w o k i t t e n s p l a y 0

| | | | | | | | | | | | | |

1 | | | Nr 5 k i t t e n #Nr | | | | | 1

| | | | | | | | | |

2 | | | N Np Nr #Nr s #N | | | | 2

| | | | | | | | | |

3 D Dp 4 t w o #D | | | | | | | 3

| | | | | | | | |

4 NP D #D N | #N #NP | | | | 4

| | | | | | |

5 | | | Vr 1 p l a y #Vr 5

| | | | |

6 | | | V Vp Vr #Vr #V 6

| | | | | |

7 S Num ; NP | #NP V | #V #S 7

| | | |

8 Num PL ; Np Vp 8

(a)

0 t o k i t t e m s p l a x y 0

| | | | | | | | | | | |

1 | | Nr 5 k i t t e n #Nr | | | | | 1

| | | | | | | | |

2 | | N Np Nr #Nr s #N | | | | 2

| | | | | | | | |

3 D Dp 4 t w o #D | | | | | | | 3

| | | | | | | | |

4 NP D #D N | #N #NP | | | | 4

| | | | | | |

5 | | | Vr 1 p l a y #Vr 5

| | | | |

6 | | | V Vp Vr #Vr #V 6

| | | | | |

7 S Num ; NP | #NP V | #V #S 7

| | | |

8 Num PL ; Np Vp 8

(b)

Figure 20: (a) The best SP-multiple-alignment created by the SP model with
a store of Old SP-patterns like those in rows 1 to 8, representing grammati-
cal structures, including words, and a New SP-pattern in row 0, representing
a sentence to be parsed. (b) As in (a) but with errors of omission, com-
mission and substitution in the New SP-pattern, and with same set of Old
SP-patterns as before. Figures (a) and (b) are adapted from Figures 1 and
2 in [106], with permission.
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able to remember it when we need it ... or we can learn some-
thing valuable ... and promptly forget it. The average high school
student spends four years memorising dates, names, and places,
drill after drill, and yet a signi�cant number of teenagers can't
even identify the century in which World War I took place.� [54,
p. 18, emphasis as in the original].

Clearly, human memory is, in some respects, much less e�ective than a
computer disk drive or even a book. And it seems likely that at least part
of the reason for this and other shortcomings of the human mind is that
�Evolution [by natural selection] tends to work with what is already in place,
making modi�cations rather than starting from scratch.� and �piling new
systems on top of old ones� [54, p. 12].

The evidence that Marcus presents is persuasive: it is di�cult to deny
that, in certain respects, the human mind is a kluge. And evolution by
natural selection provides a plausible explanation for anomalies and incon-
sistencies in the workings of the human mind.

Broadly in keeping with these ideas, Marvin Minsky has suggested that
�each [human] mind is made of many smaller processes� called agents each
one of which �can only do some simple thing that needs no mind or thought
at all. Yet when we join these agents in societies�in certain very special
ways�this leads to true intelligence.� [61, p. 17]. Perhaps errors here and
there in a society of agents might explain the anomalies and inconsistencies
in human thinking that Marcus has described.

Super�cially, evidence and arguments presented by Marcus and Minsky
seem to undermine the idea that there is some grand unifying principle�
such as IC via SP-multiple-alignment�that governs the organisation and
workings of the human mind. But those conclusions are entirely compatible
with ICHLPC and the SP Theory as a theory of mind. As Marcus says: �I
don't mean to chuck the baby along with its bath�or even to suggest that
kluges outnumber more bene�cial adaptations. The biologist Leslie Orgel
once wrote that `Mother Nature is smarter than you are,' and most of the
time it is.� [54, p. 16], although Marcus warns that in comparisons between
arti�cial systems and natural ones, nature does not always come out on top.

In general it seems that, despite the evidence for kluges in the human
mind, there can be powerful organising principles too. Since ICHLPC and the
SP Theory are well supported by evidence, they are likely to provide useful
insights into the nature of human intelligence, alongside an understanding
that there are likely to be kluge-related anomalies and inconsistencies too.

Minsky's counsel of despair��The power of intelligence stems from our
vast diversity, not from any single, perfect principle.� [61, p. 308]�is prob-
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ably too strong. It is likely that there is at least one unifying principle for
human-level intelligence, and there may be more. And it is likely that, with
people, any such principle or principles operates alongside the somewhat
haphazard in�uences of evolution by natural selection.
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