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Abstract 
 
In this paper, the integration of a function over a curved manifold is examined in the case 
where the curvature of the manifold results in a varying density of coordinates over 
which the function is being integrated where the upper bound of the of integration is 
infinity.  It is shown that when the coordinate density varies in such a case, the true area 
under the curve is not correctly calculated by traditional techniques of integration, but 
must account for the varying coordinate density.  This integration technique is then 
applied to the Schwarzschild metric of General Relativity to examine the proper time 
taken for a freefalling observer to reach the event horizon of a black hole. 
 
 
Integration and Coordinate Density 
 
Consider a velocity !"!"  defined by some function that is parameterized by a variable r 

where r increases (or decreases) as t increases such that !"!" = !(!).  We will begin by 
integrating this function between !! and some finite t.  In Figure 1, we see this function 
plotted in two different cases: on the left, we have a flat manifold where the time 
coordinate density is constant along the length of the function, and on the right we have a 
curved manifold which causes the density of the time coordinates to increase as r 
increases. 

 
Figure 1 – Velocity vs. Time on Flat (left) and Curved (right) Manifolds (Finite Upper 

Bound)  
 

On both the left and right sides of Figure 1, the numerical ∆! between tick marks on the 
time axis is the same between any two adjacent tick marks.  Now let us examine what 
happens when we approximate the integrals by summing the areas of the rectangles 

(where each rectangle has area ! = !"
!" ! (Δ!)).  When comparing the left and right 

images in Figure 1, we see that since the ∆! between tick marks in both images is the 
same, the approximate integral on the right side will give a larger value than the integral 
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on the left as a result of the increasing density of the time coordinate as r increases (we 
have more rectangles of equal ∆! on the right side).  Now, it is not entirely surprising that 
the integral on the right would be larger than that on the left since we are essentially 
integrating the function over a larger time interval on the right side (we could just stretch 
the coordinates on the right side such that they have equal density and then integrate 
normally over a larger time interval).  The purpose of Figure 1 is to introduce the effect 
of increasing coordinate density on an integral to emphasize that when we approximate 
the integral by summing rectangles when the density increases, we get a larger value for 
the integral because we are summing more rectangles of equal ∆!.   
 
Now consider the same type of velocity function integrated from some finite time to 
infinite time in flat and curved spacetime.  Figure 2 shows both of these cases for a 
velocity function that decreases to zero as t goes to infinity. 

  
Figure 2 – Velocity vs. Time on Flat (left) and Curved (right) Manifolds (Infinite Upper 

Bound) 
 

Just as was the case in Figure 1, we can see that when we approximate the integrals in 
Figure 2 by summing the areas of rectangles, the integral on the right will give a larger 
than the integral on the left.  However, in this case, since the upper bound of t is infinite 
in both cases, we can’t attribute the increase in area to an increase in the time interval.  If 
we suppose that !(!) decreases in such a way that the integral from !! to ∞ on the left 
side (flat manifold) gives a finite value, we can see that the integral on the right side will 
give a value greater than that and if the coordinate density goes to infinity as  !"!"  goes to 
zero, the integral can even be infinite.  This idea of coordinate density can be thought of 
as being analogous to a dynamic unit change.  For instance, in the flat manifold case, 
suppose x and t were measured in the same units and we multiply the integral by a 
constant.  That would essentially be a change of units (minutes to seconds or mm to 
meters).  But a change of units is really just a rescaling of the axes.  So since the 
coordinate density is describing how the coordinates are scaled over the manifold, it is as 
if the coordinate units are being changed as you move along the manifold.  This is 
essentially what length contraction and time dilation in General Relativity is, a relative 
stretching or squeezing of the coordinate axes. 
 
This concept will next be applied to the worldline of a freefalling observer in 
Schwarzschild spacetime to examine the limit of proper time of the freefaller she 
approaches the event horizon.   
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Freefall in the Schwarzschild Field 
 
The well-known Schwarzschild metric is given in (1) below (note we will be using units 
where the Schwarzschild radius is 1 and we will drop the angular term of the metric since 
we will only be examining radial freefall): 
 

  !"! = 1− !
! !"

! − 1− !
!
!!
!"! (1) 

 
These coordinates are quite useful for describing the spacetime for observers at rest in the 
gravitational field, particularly the observer at infinity in asymptotically flat spacetime.  
The r coordinate represents some notion of distance from the center of the gravitational 
source, where the units of r are in units of Schwarzschild radius of the source.  Thus, this 
radial coordinate gives circles around the source where, in a top-down view of the source, 
the circle radii increase linearly as one moves away from the center.  Let’s now consider 
the coordinate speed of a freefalling observer (who starts to fall from rest at infinity) in 
the frame of an observer at infinity in Schwarzschild coordinates [1]: 
 

  !"!" = − !
! 1−

!
!  (2) 

 
Let us now substitute (2) into (1) to examine the proper time of the freefalling observer: 
 
  !" = 1− !

! !" (3) 
 
It is conjectured here that Equation 3 is the case described in the first section of this paper 
where the t coordinate density increases as one moves toward the event horizon.  If one 
integrates (3) in the usual way starting from some finite distance from the horizon to the 
horizon, the integral will yield a finite proper time, but it will be argued that when 
accounting for the increasing coordinate density near the horizon, the actual time 
measured by the freefalling observer will be infinite.  In order to demonstrate this, we 
must first make a change of variables for the radial coordinate. 
 
 
Radial Coordinate Transformation 
 
It is conjectured that the freefalling observer will fall for infinite proper time before 
reaching the event horizon, and this means that the freefalling observer must traverse an 
infinite amount of space while falling to the horizon.  But the Schwarzschild radial 
coordinate r is defined such that if someone begins falling from some finite distance from 
the horizon, they will traverse a finite r.  This is depicted graphically in Figure 3 below. 
 



 
Figure 3- Relationship Between Schwarzschild Coordinates and the Curved Manifold 

 
In Figure 3, we see our intrepid explorer, Scout, freefalling along a radial geodesic in the 
Schwarzschild gravitational field in the frame of observers at rest in the field.  The 
infinite observer would be off to the right on this diagram where the geodesic (the dark 
black line) would be horizontal.  Since, in this particular depiction, the tangent to the 
manifold is horizontal at the infinite observer who is inertial in flat space, the acceleration 
needed for an observer to remain at rest at a given point is proportional to the slope of the 
tangent at that point.   
 
It is desirable at this point to make a coordinate change for the radial coordinate such that 
it is better able to capture the curvature near the horizon in the same way the time 
coordinate does.  We will choose coordinate R such that !"!" =

!
!!!.  This coordinate varies 

identically to the r coordinate for large r (this is good because r is a good physical 
coordinate at large r) and then diverges from it at the horizon.  Integrating the expression 
gives: 
  ! = ! + ln ! − 1 , ! =!(!!!!)+ 1 (4) 
  
Where W is the product-log function.  Note that ! → ∞ as ! → ∞ and ! → −∞ as ! → 1.  
R is zero in the region of the elbow of the geodesic pictured in Figure 3.  Making this 
coordinate substitution in (2) gives: 
 

   !"!" = − !
! !!!! !! = − !

! (5) 

 
This coordinate choice is also useful because the speed of light in these coordinates is 1 
independent of R and t.  The Schwarzschild metric with the new coordinate becomes: 
 
  !"! = !(!!!!)

!(!!!!)!! !"
! − !"! = !!!

! !"! − !"!  (6) 
 
A portion of the worldline of a freefalling observer plotted on the t-R plane is shown in 
Figure 4 below: 
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Figure 4 – t vs. R 

 
The slope of the worldline is close to but less than 1 in the upper right quadrant for all 
finite R and t.   
 
If we substitute Equation 5 into Equation 6, we get the expression for proper time of the 
freefalling observer: 
 

  !" = − !(!!!!)
!(!!!!)!! ! !!!! + 1− 1  !" = − (! − 1) !!!

! !" (7) 

 
This function decreases to zero as ! → −∞ and if it is integrated directly as-is, we find 
that there is a finite proper time to reach the horizon from any finite R.  But we know that 
the coordinate density increases as the freefaller approaches the horizon and therefore, as 
discussed in the first section of this paper, a typical integration will not give the correct 
quantity of proper time elapsed. 
 
   
Inertial Motion in General Relativity 
 
Suppose we have two observers in flat spacetime where for some period of time, their 
times are related by the expression !!! = !!!.  Then, this relationship changes such that 
their times are related by !!! = 0.5!!!.  We might depict this as shown on the graph on 
the left side of Figure 5 below: 
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Figure 5 – Acceleration as a Change of Units 

 
The left side of Figure 5 suggests that at some point, observer 1 accelerated relative to 
observer 2, changing the slope of the worldline.  But when we ask both observers, they 
each say that they never felt any acceleration (i.e. they were at rest relative to one another 
the entire time).  How can this be?  After inspecting both clocks, it is found that in the 
first half of the graph, both clocks were measuring seconds.  But in the second half, 
observer 1’s clock ticked off seconds while observer 2’s clocks was ticking off half-
seconds.  The problem with the graph on the left of Figure 5 is that it was constructed 
using the derivatives given earlier, without accounting for the fact that the change in the 
derivative from 1 to 0.5 was not caused by acceleration, but was simply the result of a 
unit change in t2.  Therefore, we can see the correct depiction of the situation on the right 
side of Figure 5.  The coordinate marks represent the actual clock ticks.  Since they were 
both at rest relative to each other the whole time, we know that if both of their clocks had 
ticked off seconds the whole time, they would have agreed that the same amount of time 
had passed.  Therefore, we should draw the relationship as a 45-degree straight line on 
the graph.  But since observer 2’s clock ticked off half-seconds in the second half of the 
graph, the tick marks must be twice as dense on the second half relative to those on the 
first half.  This allows us to preserve the derivatives relating the times. 
 
This scenario is what we have when considering an observer freefalling in a 
Schwarzschild field.  Both the observer at infinity and the freefalling observer remain 
inertial as the freefaller falls.  The apparent acceleration between them is coming from 
the curvature of the freefaller’s time coordinate relative to the infinite observer’s time 
coordinate.  This curvature manifests itself as an increase in time coordinate density for 
the freefaller as she falls.  It is analogous to a continuous unit change of the freefaller’s 
clock relative to the infinite observer’s clock.  The metric in Equation 6 is useful because 
it is essentially the Minkowski metric with a variable multiplicative factor.  This 
multiplicative factor is analogous to a function keeping track of the units of the 
freefaller’s clock relative to the infinite observer’s clock.  Since the metric is quasi-
Minkowskian, we can compare the worldline of the freefalling observer, defined by 
Equation 5, to the same worldline for an observer accelerating in Minkowski space.  This 
comparison is shown in Figure 6 below: 
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Figure 6 – ! vs. t for the Accelerating Observer in Flat Space (left) and ! vs. t for the 

Freefalling Observer (right) 
 

In Figure 6, we see the worldline of Equation 5 in both Minkowski space and in the 
Schwarzschild field.  The graph on the right side of Figure 6 can be constructed by laying 
the flat grid from the left graph on it and then adding tick marks to the t axis between the 
flat ticks.  The number of ticks to add between two flat ticks will be proportional to !

!!!.   
As we can see in Figure 6, since the t axis of the flat grid goes off to infinity, the t axis on 
the Schwarzschild grid will do the same with an ever-increasing coordinate density.  The 
result of this is that there must be an infinite amount of proper time elapsed when falling 
toward the horizon from any finite distance.  If the freefaller accelerates at any time or 
starts falling with a non-zero velocity relative to the infinite observer, then the straight 
worldline on the left of Figure 6 will be curved or will have a different slope depending 
on that acceleration/initial velocity. 
 
So in the Minkowski case, the observer is in an accelerating reference frame, causing her 
to approach a maximum ! asymptotically as ! → ∞.  Figure 6 therefore makes plain the 
difference between freefall in a Schwarzschild field and acceleration in flat spacetime 
when both observers have the same !"!" .  It shows that for the freefalling observer, the 
underlying coordinate curvature is the cause of the acceleration whereas in flat space it is 
a ‘real’ acceleration.  This ‘real’ acceleration manifests itself as a curvature in the 
worldline itself as shown in Figure 6.  Figure 6 is therefore an effective graphical 
representation of the Equivalence Principle at work. 
 
As will be shown in the conclusion of this paper, the freefalling observer will see the rest 
observer’s clock slow as she falls.  This is just like the symmetry of Special Relativity 
where inertial observers moving relative to each other each claim that it is the other 
person who is moving.  In order to actually compare their clocks, one of the observers 
must accelerate toward the other, breaking the symmetry and resulting in less time having 
passed for the accelerating observer when the two observers meet (so in order to meet 
and compare clocks, either the freefaller has to accelerate away from the center of gravity 
or the rest observer must accelerate toward it in order to catch up to the freefaller). 
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In terms of the R coordinate, the !-R grid will look very much like Figure 4 because the t 
and R coordinates are curved by the same factor.  However, we see that we can express 
Equation 7 as !"!" =

!"
!" !.   Therefore, rather than getting a straight line as was the case in 

Figure 6, the ! factor gives us the worldline shown in Figure 7 (recall that ! → 1 as 
! → −∞): 

 
Figure 7 – ! vs. R for the Freefalling Observer 

 
Combining Equations 1 and 2, we see that !"!" → 1 as ! → 1.  This is because as r goes to 

1, both !"!" and !"!" for the freefalling observer go to zero, where !"!" goes to zero for the 

reasons discussed above, and !"!" goes to zero because of the extreme curvature of space 
near ! = 1, which will be examined in further detail below. 
 
Given that the freefalling worldline is a geodesic in curved spacetime, we can use the grid 
on the right side of Figure 6 to show the ! vs. t relationship for observers at rest in the 
gravitational field.  This is depicted in Figure 8: 

 
Figure 8 - ! vs. t for Observers at Rest in a Gravitational Field 

 
For observers at rest, !"!" is constant.  But the observers at rest are also in an accelerated 
reference frame, thus we should expect that the worldlines be curved in the curved 
spacetime.  This is what we see in Figure 8, where the curved lines are lines of constant r.  
The lines of constant r are curved such that the change in ! per change in t is constant, 
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but since the time dimension is curved, the worldline becomes curved relative to the 
worldline of the inertial observer, which reflects the fact that the rest observer is in an 
accelerated frame.  The dashed line in Figure 8 is the freefalling observer. The rest 
observer at the event horizon would just be a horizontal line at the bottom of Figure 8.  
The freefalling worldline will never intersect that line and therefore we see again that it 
must take an infinite amount of proper time to reach the horizon.  Note that if we plot 
curves of constant R coordinate on Figure 8, we would see that curves of equal intervals 
of R would get closer and closer together as R goes to negative infinity in the same way 
that the t coordinate spacing decreases.  This is what we would expect from Equation 6 
where the R and t coordinates are both curved gravitationally by the same factor. 
 
By manipulating Equation 6, we can see that the straight line over the curved of the time 
coordinate in Figure 8 is the result of two factors: 
 

  !" = 1− !! !!!
! !" (8) 

Where ! = !
!.  The factor !!!

!  in Equation 8 is the gravitational time dilation caused 

by the spacetime curvature (the Minkowski time coordinate is related to the 

Schwarzschild time coordinate by !" = !!!
! !").  This factor is what governs the time 

coordinate spacing in Figure 8.  The factor 1− !! is an additional time dilation caused 
by the relative velocity between the freefaller and the rest observers.  We see that as the 
worldline moves to increasing t, the factor 1− !! gets closer to zero, reducing the 
amount of proper time elapsed for each interval of coordinate time passed.  On Figure 8, 
this reduction is what keeps the worldline straight.  Notice that when a rest observer 
worldline intersects straight line, its apparent slope on Figure 8 is greater than one.  These 

observers have !!!" =
!!!
! , the gravitational time dilation factor.  For the inertial 

worldline to remain straight, this slope must be decreased, and that is what the 1− !! 
factor does.  This is why the inertial observer accelerates relative to the spacetime 
coordinates in order to remain inertial. 
 
Next, let’s consider the proper distance of a spacelike slice of the Schwarzschild metric.  
From Equation 1, we see that the relationship between proper distance and the r 

coordinate in this case is given by !"!" =
!

!!!.  In Minkowski space, this relationship 

would be !"!" = 1 and the difference between the two is caused by the manifold curvature.  
So Figure 9 shows a spacelike s vs. r graph for the Schwarzschild case: 
 



 
Figure 9 – s vs. r for Spacelike Slice of the Schwarzschild Metric 

 
Since the flat space relationship between s and r is a 45-degree line on the graph, we 
draw that first.  Then we dynamically stretch the axis with the radial coordinate as r goes 
to 1 to match the derivative given by the Schwarzschild metric (in Figure 9, r starts at 
some finite distance far from the horizon on the left side and then approaches 1 as we 
move to the right).  So although there will only be a finite number of total r ticks on 
Figure 9, as we get closer to ! = 1 the coordinate marks get increasingly stretched until 
they get infinitely stretched as r goes to 1.  Thus, we see that starting from any finite 
coordinate distance from the horizon, there will be an infinite proper distance to the 
horizon.  The r coordinate curvature in Figure 9 for the worldline of the inertial observer 
can be deduced from the metric as was done with the time coordinate.  Namely, the 
relationship !" = − !!" for the inertial observer can be expressed as: 
 

  !" = − ! − 1 !
!!!!" = − !

!! − 1
!

!!!!" (9) 

 
Equation 9 shows the relationship between the time dilation caused by the inertial 
observer’s velocity and the curvature of the r coordinate, just as Equation 8 did the same 
with the t coordinate.  In this case, we see that the r coordinate becomes increasingly 
stretched near ! = 1 as opposed to compressed as is the case with the t and R coordinates. 
Comparing Equation 9 to Equation 7, we see that the shape of the freefall worldline on a 
! vs. r plot should be the same as the one shown in Figure 7, the only difference in the 
plots being that the r coordinate will be stretched (as in Figure 9) instead of the R 
coordinate being compressed.  It is notable that for the freefalling observer, !"!" = −!.  
Therefore, when the freefalling observer is at some radius r, the rest observers will be 
moving relative to her with velocity !"!" = −! such that as she approaches ! = 1, the rest 
observers will appear to be moving closer and closer to the speed of light relative to her. 
 
Next, imagine an observer at rest at the center of a collapsing spherically symmetric shell.  
According to Birkhoff’s theorem, the space inside the shell, where the central observer is, 
will be flat.  Therefore, according to the clock of an observer at infinity, light within the 
shell will travel just like it does at infinity.  Therefore, as the collapsing shell approaches 

r 

s 



its Schwarzschild radius (say 1 light-second), the observer at infinity will find that 
according to her clock, it will take just over 1 second for a signal to travel from the 
central observer to an observer on the shell.  But the clocks of both the central observer 
and shell observer will slow to a near stop relative to the observer at infinity.  Thus in the 
frames of the central and shell observers, signals exchanged between them will be 
received almost instantly as the shell approaches its Schwarzschild radius.  Thus, in their 
frame, it will appear as though the space between ! = 0 and ! = 1 contracts to zero 
proper distance as the shell reaches its Schwarzschild radius.  In other words, in the 
collapsing frame, ! = 1 will correspond to the center of gravity (there will be nowhere 
else to fall after that in the freefall frame).  It is also notable that the clock of the central 
observer ticks at the same rate as an observer at rest at the location of the shell.  
Therefore, if the shell were actually able to reach the horizon, the central observer’s clock 
would stop ticking and signals from it would be infinitely blueshifted when received by 
the collapsing shell (we can also see this from Equation 8, where the time dilation 
between the freefalling and central clocks is governed by the 1− !! factor which goes 
to zero at ! = 1).  This is yet another example as to why it is nonsensical for the shell to 
be able to reach ! = 1 in a finite time. 
 
Figure 10 shows the freefall worldline depicted with all relevant quantities such that all 
the Schwarzschild differential relationships are captured: 
 

 
Figure 10 – Freefalling Geodesic Plotted against Multiple Coordinates 

 
 
Conclusion 
 
It has been shown that when accounting for curved spacetime while integrating the 
freefall geodesic, the freefaller experiences an infinite amount of proper time before 
reaching the horizon.  We also know that the freefalling worldline approaches a null 
geodesic asymptotically, as can be deduced from Figure 4.  This means that there will be 
a final light signal receivable by the freefaller from rest observers.  Therefore, we must 
conclude that in the frame of the freefalling observer near the horizon, when she looks 
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out to signals coming from the rest observers, those observers will appear to her to be 
slowing down since she experiences infinite proper time in her frame while receiving a 
finite number of light signals from the rest observers.  What we find is that the rest 
observers will see the freefalling observer slow exponentially as their times go to infinity, 
while the freefaller will see the rest observers slow asymptotically as her time goes to 
infinity.  This means that in the rest observer frame, the freefaller will have an open 
future, unfolding at an exponentially slower rate over time, while in the freefalling frame 
the rest observers will have a closed future, where the rest observers will appear to evolve 
toward a finite future time at an asymptotically slower rate.  These features are shown in 
Figure 11 below: 
 

 
Figure 11 – Light Signals on t-R Chart 

 
Figure 11 is a t-R chart that shows a single infalling signal representing the signal to 
which the freefall worldline is asymptotic.  The freefalling observer will receive this 
signal after an infinite proper time and will receive no signals lying above that one on the 
chart.  If at any time the freefaller accelerates in a direction away from the black hole, he 
will receive more future signals from the rest observers beyond this asymptotic signal 
since his worldline will curve upwards on Figure 11 as a result of his acceleration.  Then 
if he stops accelerating and begins freefall again, there will be a new light signal to which 
his worldline will be asymptotic.  The dots in Figure 11 represent intervals of equal 
proper time along the worldline and we can see that since the worldline is infinite (with 
tangents always below the speed of light) on this chart, there will be an infinite number of 
dots on the line spaced increasingly far apart and rest observers will receive an infinite 
number of signals from the freefalling observer at longer and longer intervals. 
 
Note that in this case we showed that given the curvature of coordinates near the event 
horizon, a finite-looking integral actually has an infinite result.  It should also be true that 
in different applications, where the coordinate density decreases rather than increases as 
it does in the present paper, an integral that, when integrated in the traditional manner, 
gives an infinite answer may in fact give a finite value when the methods demonstrated 
here are applied. 
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