
Fractality and Coherent Structures in Satisfiability Problems

Theophanes E. Raptis
abc

a
National Center for Science and Research “Demokritos”, Division of Applied Technologies,

Computational Applications Group, Athens, Greece.

b
University of Athens, Department of Chemistry, Laboratory of Physical Chemistry, Athens, Greece

cUniversity of Peloponnese, Informatics and Telecommunications Dep., Tripolis, Greece

Abstract: We utilize a previously reported methodological framework

[5], to find a general set of mappings for any satisfiability (SAT) problem

to a set of arithmetized codes allowing a classification hierarchy

enumerable via integer partition functions. This reveals a unique

unsatisfiability criterion via the introduction of certain universal indicator

functions associating the validity of any such problem with a mapping

between Mersenne integers and their complements in an inclusive

hierarchy of exponential intervals. Lastly, we present means to reduce the

complexity of the original problem to that of a special set of binary

sequences and their bit block analysis via a reduction of any expression to

a type of a Sequential Dynamical System (SDS) using the technique of

clause equalization. We specifically notice the apparent analogy of

certain dynamical properties behind such problems with resonances and

coherencies of multi-periodic systems leading to the possibility of certain

fast analog or natural implementations of dedicated SAT-machines. A

Matlab toolbox is also offered as additional aid in exploring certain

simple examples.

1. Introduction

The Boolean Satisfiability (SAT) problems comprise a central part of

both computer science, mathematical logic and complexity science with

applications ranging from Artificial Intelligence (AI) as well as circuit

design and automated theorem proving. It is also one the first proven

cases of Non-Polynomial (NP) problems [1], [2] for which no general

algorithm for solving every possible case has been reported as yet. A

modern review of the problem can be found in [3] and [4]. In this report

we present a new methodology for tackling these problems which largely

departs from traditional methods by making use of some analytical

approaches following certain reduction protocols. The emphasis is not so

much in accelerating computations for specific cases as it is towards

deepening our understanding by looking at possible symmetries and

recursive structures of certain supersets of all possible such expressions.

In previous work [5], we introduced the notion of Inductive

Combinatorial Hierarchies (ICH) to provide the means for an organized

search of questions regarding symbolic patterns and their manipulations

in a variety of situations including abstract computations and complexity

measures. One of the main points behind this new setting relies in the

empirical observation that many indicator functions defined over

successive exponential integer intervals present a ubiquitous structure

akin to arithmetic fractal sequences the origin of which can be traced

back to the period mixing of counter sets. This can also be interpreted as

a discrete analogue of interference with the main characteristic of the

associated set of periods forming a lacunary series.

Given that indicator functions play a major role in both the so called,

functional [6] as well as purely functional programming framework [7] as

well as in other areas of machine learning for uniform computability as in

neural networks where characteristic functions are approximated via

polytopes [8], [9], [10] the existence of as yet unexplored constraints

imposing a hidden recursive structure manifesting as scale invariance

over a hierarchy of domains and to a large extent independently of the

particular problem at hand, poses a serious challenge in further

understanding its origin and implications for simplifying a variety of

problems and hence, achieving an ultimate reducibility in terms of

complexity measures, either in the sense of Kolmogorov [11], [12], [13]

or Rademacher [14], [15] or any other possible.

An essential step towards this direction is to recognize two major classes

as in principle two foreign sets of possible morphisms, the first one being

given always as an algebraic mapping of integers to integers, depending

solely on some functions over the quantitative content (“value”) of the

integers, while the second being applied strictly symbol-wise on their

expansion in some alphabet base (otherwise known as “radix”) b. A

complete arithmetization of the second class is any attempt in finding a

correspondence between a member of the second class with one or more

of the first one, via a set of pattern recognition attacks on a hierarchical

lay out of the resulting sequences of outputs encoded as integers over

successive exponential intervals, whenever these can be resolved by some

analytical methods. As a matter of fact, the one dimensional orderly

projection used in ICH intends to act as a replacement of probabilistic

approaches which in cases of a fractal order being present could turn out

being recursive.

The current effort is focused on a double target as part of a larger

program including (a) applications of the “et pluribus unum” principle

introduced in [16] for finding ways to perform digital computations

without digital design with possible applications in analog and natural

computing, (b) reexamination of the status of complexity theory under the

light of the same principle where large integers are treated like “black

boxes” with pattern mappings performed via direct arithmetic operations

and, (c) lastly, the possibility of using such techniques for formal

verification [17], [18].

That these same techniques are directly applicable to the case of the

general satisfiability (SAT) problem is not directly obvious and it gives

an opportunity for demonstrating the power of the arithmetization

technique of which one of the main benefits is a serious reduction of the

Kolmogorov complexity of search algorithms. While the SAT problem

has a long history and the number of algorithms in circulation are many

and constantly improving [19], [20], [21] we will concentrate on an

attempt to completely arithmetize any SAT instances proceeding

constructively in a series of progressively more general expressions of the

overall problem starting from the more symmetric ones.

To this aim, we first introduce the ICH toolbox in section 2 while the

types of symmetry leading to an overall hierarchical classification and

enumeration of all possible SAT instances are appropriately quantified in

section 3. In section 4 we introduce a set of universal indicator functions

admitting an analytical formulation in terms of bitwise operators. These

can easily be generalized for problems with a redundant set of atomic

variables and arbitrary negation literals of which the action becomes

equivalent to that of a set of logical masks. In section 5, we perform a

reduction via the introduction of a “clause equalization” protocol leading

to an association of each SAT instance with the trajectories of a

Sequential Dynamical System. These are then reduced to analytic series

representations of some number theoretic functions which finally reveal

any such instance to be resolvable via the product of at most three

appropriate indicator functions. In the last section we further discuss the

significance of fractal sequences that are revealed through the previous

analysis and their close association with wave-like phenomena which we

suggest that it calls for a new axiomatic framework.

2. Inductive combinatorial hierarchies: a How-To

We consider an inclusive sequence of integer intervals SN:[0,…,2
N
-1]

satisfying Ν⊂⊂⊂ SSS K21 and the associated lexicographically ordered

word dictionaries of the binary patterns for each integer in these intervals

laid as a hierarchy of N x 2
N
 matrices Ν⊂⊂⊂ WWW K21 known also as

binary designs [22]. Alternatively, any such dictionary is identical with

the ordered set of unfolded paths of a binary tree with L+1 nodes (with

the root node not “visible”).These then constitute the members of a well

formed, naturally self-similar hierarchy of which the rows correspond to

an increasing set of periodic counters of periods Ν≤< kk 0,2 and the

columns correspond to the decoded binary expression of each integer

index in any interval with the least significant bit at the first row and the

maximal one given by the binary logarithm defined as  )(log1)(22 νν +=l

. We will consider these two directions as complementary with the row-

wise direction being termed the direction of “uniform computability” and

the column-wise as that of “individual computability”. Any function

which contains a coordinatization of the form f(ν,k) will then be

considered as both uniformly and individually computable in which case

we shall call it completely resolvable or simply complete over the

hierarchy. An example of this construct is shown in figure 1.

In problems of satisfiability, bounded length L expressions result in an

exponentially large search space which is often treated via the

introduction of a hypercube{ }L
1,0 . We shall avoid this technique here and

we shall instead use a type of “uniform deployment” over any interval SN

forming an integer sequence and in particular a large binary word

corresponding to any indicator function defined over the same interval.

We shall also associate every WL dictionary with a discrete time flow of

the underlying set of counters which is then the equivalent of a

“successor” function in the uniform direction while the individual

direction serves as a “rank” map providing an ordered sequence of bits

corresponding to the associated index of the discrete time flow. An

“unrank” map then inverts this operation by giving back the index of a

sequence. This allows a representation corresponding to a hierarchy of

Boolean Dynamical Systems (BDS) with the operator formula serving as

the “program” and the Word Dictionary as the underlying BDS providing

the driving data. The essential property of any such BDS is that for any

level of a hierarchy with members {SL, WL}, the individual power

exponents are turned into periods often resulting in an arithmetic fractal

structure of the resulting sequence. An important distinction concerns two

classes of sequences which can be characterized as “amending” and “non-

amending” with respect to their evaluation across any level of the

hierarchy. This depends on the possible sensitivity of any operator

formula on a new symbol added on top of each level of {SL, WL} which

forces reevaluation on the whole interval. As a trivial example, simple

sequences like that of the digit-sum function are non-amending while for

SAT indicators the opposite must be true.

The resulting fractality seems ubiquitous and it can be observed in a

variety of settings including such abstract cases as the set of allowed

words of a Dyck language [23] (a concrete example can be seen in

https://github.com/rtheo/Easy-Dyck). This is also an example of an

amending sequence. An arithmetized version of such indicator functions

will then be any individually resolvable analytical expression as a

function of the integer index solely which avoids any use of the pair of

rank and unrank bijections entirely. If a unique formula can be proven

inductively for any two consecutive steps then it is universal which is

especially useful if a generating function can also be extracted. We shall

also need to introduce a special map required for the block analysis of

indicator functions especially in the case of an underlying fractal order.

 This is given via some bit block counting method which performs a

lossless mapping into a higher alphabet of the alternating blocks of same

bits the simplest such encoding given as an alternating sign sequence { }ic

of varying length satisfying Li

i

i SLcLc
C

∀≤<=∑
Ν

=

,||0,||
1

with NC as the

“block dimension” while the sign follows the (mod 2) periodicity for the

first counter across any SL. We notice that the sign convention can also be

transferred to a single additional bit given by the (mod 2) operator while

the first and last counters with negative sign are equivalent to the leading

and trailing zeros as often mentioned in computer science [24]. By

construction, the set of block counters for any SL is a subset of the integer

partitions of L [25]. In fact, one can construct the whole set of the L-

partitions by choosing a sufficiently larger L order.

The main rule of thumb in all such cases is that an individual formula

trades time complexity over space complexity in that recursive formulas

for uniform computability are often simpler at the expense of exponential

memory consumption, hence satisfying a generic type of inequality like

CM >τ where C some arbitrary constant. This is also strongly associated

with the fact that the uniform direction at any level of a hierarchy is

always absolutely ordered while any individual direction appears

increasingly randomized at a varying degree of complexity on different

zones of any dictionary. Given recent advances in the Fourier analysis of

Boolean functions [26], [27], it might be possible to promote the previous

into a kind of “uncertainty” principle but this lies beyond the scope of the

present report.

In what follows, we also introduce an additional tool that we shall call

“arithmetization”. The fundamental arithmetized operation in the above

defined hierarchy can be given as the identity 0)(=−Ν ννId where we

define the identity operator via the polynomial representation as

∑
−

=
Ν =

1

0

),(2)(
L

k

k
iId νσν (1)

In (1), we use the abstract symbol c(ν,i) for any bit decoding operator at a

row-wise position k of which a frequently used analytical expression is

given by  ()2,2/mod),(k
k ννσ = with  denoting the floor function. In

what follows, we shall introduce a much simpler, division-free equivalent

expression which can be constructed from a restriction of a general

asymmetrically 2-periodic square pulse of the form

()),mod(),;(01110 ppxpppx +−Θ=η (2)

The η function represents an asymmetric pulse with an excitation period

p1 and a silent period p0 giving a total period p = p1 + p0, while Θ stands

for the modified Heavyside function with Θ(0) = 1. We notice in passing

that the function is generic even for C∈x where it creates a regular lattice

for Rp ∈1,0 while there is an equivalent residue based expression as

())1,/mod(1 pxpp −Θ . It is then possible to reproduce the bit decoder via

the choice ...1,0,210 === kpp
k

 and either a phase shift of the main

period or by taking its complement as)2,2,(1),(, kkkc νην −= . We shall

heretofore adopt the simplified notation)2,2,(1),(kkk νηνη −= which we

shall call, the restricted η function. Since periods are symmetric, we can

also provide the equivalent residue form ())1,12mod(2 −Θ −kx . Any matrix

WN can then be reconstructed as a concatenation of complete constructors

given as

() NkSjkjW Njk <≤∈= 0,,η (3)

An alternative expression can be given with the aid of a phase shift

120 −= kν performing a bit complement as well as with inversion of the

Θ argument

() () NkSjjkjW N

kk

jk <≤∈−Θ=+= − 0,,2)2,mod(, 1

0νη (4)

Other elementary examples include the well known case of the “Digit-

Sum” function s2(ν) [28] and its trivial derivative, the parity function

mod(s2(ν), 2) for which we can immediately provide a complete formula

as

∑
=

=
)(

0

2

2

),()(
ν

νην
l

k

ks (5)

The case of s2(ν) has already being proven to be also equivalent to a

fractal function F as Fs += 2/)log()(2 ννν [29]. Similar formulas can be

written for other important quantities as the Hamming distance which

simply replaces the single term in (5) with the absolute difference of two

terms. We should stress here the fact that objects like WL matrices are

here treated as samplings of an underlying dynamics in the uniform

direction which can be periodically extended in an infinite interval. This

then can also be interpreted as an extension of the well known

orthonormal Rademacher system [30] consisting of a sampling of a so

called, lacunary sequence of harmonic oscillator signs. This also allows

generalizing the Walsh system comprising products of the previous [31],

[32]. Hence, any of the operators and formulas defined below can also be

considered as particular filters sampling an underlying continuous flow.

A set of important object expressible in a similar way are bitwise

operators that play a major role in the expression of some universal

indicator functions and their reduction to equivalent BDS in the analysis

that follows. We may give beforehand a compact representation of the

basic form of any bitwise operator denoted here as R(ν,µ) as a binary

expansion of the form

{ }{ }
L

L
i SrR ∈=∑

−

=
∨∧ µνπµηπνηµν

π

,,),(),,(2),(
1

0

, (6)

In (6) we use r to denote either a standard Boolean AND (∧) and OR (∨)

operator. Using the periodic η function representation as in (8) we can

perform a dissection of the above formula for any SL to show that all

terms are superpositions of the same scaled square grids which then

attains the form of an “interference” pattern as

∑
−

=
∧ =

1

0

),(),(2),(
L

iR
π

πµηπνηµν (7a)

),(),(µνµνµν ∧∨ −+= RR (7b)

The second formula is derived from the known identity

())1)(1(1 µν ηη −−−≅¬∧¬¬=∨ yxyx which when applied to each summand

takes the form µνµν ηηηη −+ . The two operators commute over any pair of

integers {ν, µ} with the additional “edge” properties over any intervals

 () () () () νννννν =−∧−=−∨=∧=∨ 12,,1212,,0,,00, LLL RRRR

and the fixed points () ννν =∨∧ ,,R . Interestingly, (7b) may be used to

define the notion of a “complement over a plane”. Computation over any

hierarchy has the amending property.

A mostly useful operator in the SAT analysis that follows is the bitwise

difference or exclusive disjunction operation which can be defined via the

expansion

 ∑
−

=
⊕ ⊕=

1

0

),(),(2),(
L

i

i
R

π

πµηπνηµν (8)

where ji xx ⊕ denotes the individual XOR of each pair of bits. It is

possible to derive it algebraically from a product of the two previous

operators in (7) corresponding to a product of summands as

µνµνµν ηηηηηη 2|| 2 −+=− . Using the explicit forms from (7) results in

the identity

),(2),(µνµνµν ∧⊕ −+= RR (9)

Hence, the bitwise exclusive disjunction is identical with the difference

operator ∧∨ − RR . With the aid of (7a-b) and (9) we can then write the

equivalent forms

() ()()νµνµνµ ,
2

1
, ⊕∨ −+= RR (10a)

() ()()νµνµνµ ,
2

1
, ⊕∧ ++= RR (10b)

An important property of many such objects when expressed as 2
L
 x 2

L

matrices over exponential integer intervals has already been recognized

as the origin of many arithmetic fractals by others [33], [34], [35]. Some

uses of arithmetic fractals appeared recently in [36]. The block analysis of

successive rows of fractal matrices reveals a complicated pattern of

modulated block periods with no obvious expressions for p0 and p1 and

leads to the need for special interpolation methods.

A fundamental property of these operators associates (8) with a special

subgroup of the permutation group. Let then a triplet of integers as {λ, µ,

ν} such that λ + µ = ν. Let also their binary expansions be given as

{ }νµλ σσσ ,, . Since the two first form a restricted 2-integer partition of ν, it

must hold that

)()(,1)()(iiii µλµλ σσσσ ≠∀=+

We may then call λ and µ the “partial negation codes” of ν as each of

them can be used to invert certain bits of ν via νλ σσ − or νµ σσ − . The

action of any negation bits is a bitwise operation in any pair (µ, ν) which

is identical with a bitwise exclusive disjunction hence it is straightforward

to extract the total action of any bitwise negation in SL via an additional

operator applied as a transformation on all inputs of (21a-b) in the form

),(νµνν µ ⊕=→ R . This also leads to the simultaneous identities

()() ()µννµνµ 22 ,),(sRsh == ⊕ for the Hamming distance h of any two

positive integers.

Let then, an arbitrary exponential interval SL and a negation mask coded

as an integer LS∈µ with a binary logarithm λ = l2(µ). For the case of the

marginal value of 12 −= L

Lµ , it acts as a total negation operator

satisfying the known identity 12 −−= νν L while for all other cases it

corresponds to a partial negation. Let then νµ be the greatest integer in any

SL such that for any ν in the same interval we have






+=
λµ

ν
νν

2
 (11)

Then νµ has the same most significant bit at the level of any partial

negation the rest of the bits of any ν being invariant under µ. Let then µν

be the result of any partial negation in which case we immediately have

the following obvious identities

12||,||||,0,0 −=−=== λ
λλλµµ µµµ SSS (12)

For any 2
L
 x 2

L
 matrix over all pairs of (ν, µ) values, (12) fixes the main

diagonal and the first and last columns of inverse order. We may also

classify separately the cases of µ = 2
i
, i=0,…,L-1 for which the sole action

is the reversal of the corresponding period at the same significance level i

resulting always to a permutation class analogous to the corresponding

period. Hence, for µ = 1 we get an action isomorphic to a swap matrix

between even and odd indices giving simply LS∈−+= ννν ν ,)1(1 .

Similarly, for µ = 2, for which we can write a scaled version as

LS∈−−= ννηνν],1)2,2;(2[2~
2 and so on. For all other cases, we will have

a mixture of swaps creating a total permutation. For instance, in case of

µ= 3 we first find the uniform deployment of all partial 1-negations as the

sequence 1 0 3 2 5 4 7 6… followed by the partial 2-negations giving as a

total the new sequence 3 2 1 0 7 6 5 4… This way every one of the

intermediate partial negation codes in every SL can be classified

accordingly. The level of the most significant bit also determines the

“locality” or neighborhood dependence for each particular µ code. Αn

alternative treatment is given in App. A, where a direct relationship is

proven between individual permutation elements and 2-integer

compositions of any µ code.

An additional property directly associated with the internal mirror

symmetry of any WL array can be given through the restricted 2-integer

partitions of any 2
L
 – 1 integer of which the binary expansions are always

the total bitwise not-complement of each other. When the total

complementation is used in any of the arguments of any of the three R

operators defined previously, it performs either a left right or an up-down

flip of the resulting matrix for all 2
L
 inputs. We can numerically verify

that any total summand of the form),(),(),(),(νµνµνµνµ RRRR +++ will

evaluate in a constant matrix with its unique value being always)12(−Ls

with s = 3, 2, 1 for bitwise disjunction, exclusive disjunction and

conjunction respectively. We notice that the s integer is the number of

truth values in the elementary symbol-wise version of each operator. The

three separate summands that result are equivalent to three linear

functional equations. Using also the decompositions (10a-b), one can

verify that they are compatible with the total summands. One is then left

with a unique functional equation for the exclusive disjunction operator

of the form

() () () () 022)(),()(,),(, 1 =+−+++ +
⊕⊕⊕⊕

L
ffRfRfRR µνµνµνµν (13)

In (13) we used 12)(−−= νLvf for the total complement over any SL to

emphasize the resulting functional forms while the order L can also be

taken as ()},max{2 µνl . We would like to stress the importance of (10) and

(13) as well as the restricted integer partition property of App. A for

further development of a bitwise calculus that could reveal the existence

of register-less logical machines with as yet unknown types of fast,

analog implementations.

Last, we provide a useful extension of the binary hierarchy on higher

alphabets that can be given with an inclusive sequence of larger interval

]1,...,0[:)(−Lb

L bS . A complete hierarchy shall comprise the objects

{ })()(, b

L

b

L WS where)(b

LW shall be an associated matrix from a lexicographical

ordering of multiple step counters with a scaling of order b
i
. To provide

an analytical form we expand the previous definitions appropriately.

Consider then any set of b-counters as constructors of an associated)(b
W

matrix given as

 












= b
b

i
W

j

b

ij ,mod)(

 (13)

We can replace (13) with a new division-free version of a generalized ηb

function where a standard η function replaces the scaling factor as

()∑
−

=

−− −==
1

1

11)(
)(,;),(

b

k

jj

b

b

ij bkbkbijiW ηη (14)

In the above we use an accumulator of ones for the reconstruction of each

symbol while periods form a restricted 2-integer partition of the scaling

factor b
j-1

. Using the residue form of the original η function we can also

write the expansion terms as ())1,)/mod((1 kbkxb j −Θ −
.

The generic expression in (14) leads to a curious algebraic structure when

one uses the alternative expression of the Heaviside function in the

original definition of the η function as () 2//1)(xxx +=Θ , by noticing the

fact that the absolute value in the denominator of the sign equivalent is

restricted to the ternary alphabet thus making possible the identification

() 1)(,3 −≅ xjxx η . Using the original definition as () 2//11),,(xxpp +−=′νη

where x stands for the internal function),mod(ppp ′+− ν then leads to

an additional identity where every base expansion term ηb can be

expressed with the aid of a modulated version of η3 solely, including η3

itself. Using an appropriate match f(j,k) for the original periods in (10)

and the equivalent (mod 1) form of η results in a summation formula as

),(
4

)1(

1)),(,(

)1,/mod(1

1 3

1

ji
bb

kjfi

kibbk
b

b

k b

j

η
η

−
−

=
−

−∑
−

=

−

The presence of poles in the above suggests that these objects should be

studied as a set of merorphisms in the complex plane rather than the

restricted integer domain we are interested here. The significance of the

above goes beyond the scope of the present work so we only mention it

here for the integrity of the presentation of the new generalized ηb

functions.

Let now)(νbs be the higher order digit-sum function exhausting all

values in any bounded interval{ })(Nb,…0, b

NS∈∀ν . We shall also need to

define a pair of΄”even/odd digit-sums” satisfying)()()(01 ννν bbb sss +=

written symbolically as

()∑
−

=

−=
1)(

0

)(,;)(
ν

νην
bl

j

jj

bb bkbkbs (15a)

() }1,0{,)(,;)(
1)(

0

1

1

22 ∈−= ∑ ∑
−

=

−

=

++ σνην
ν

σσσ
bl

j

b

k

jj

b bkbkbs (15b)

We shall also define another auxiliary sequence as)()()(0110 νννδ bbb sss −=

.As these are relevant for the SDS analysis of section 5, we are interested

in resolving them based on their internal regularities which have a natural

recursive structure and self-similarity. These allow their uniform

deployment via concatenative operators and simple reproducing maps

{K1,…,Km} acting on an initial core sequence s0 as

[])(),...,(, 1111 −−−← nmnnn sKsKss

It is then possible to resolve their individually computable expressions via

a set of standard elementary number theoretic functions where modulo

operations capture periodicities and different types of scaling are used for

repetitive indices. Using these techniques one can isolate successive

subsequences until the complexity of the original sequence is exhausted.

Applying this technique into the uniform evaluation of both)(νbs and

)(10 νδ bs sequences shows that they can be interpolated with the formulas

() 












−




+= b
bb

bsb ,mod2,mod)(
2

νν
νν (16a)














+












−= b
b

b
b

bsb ,mod,mod),mod()(
2

10 νν
ννδ (16b)

We have heretofore, described a toolbox that shall be of aid in an effort to

make a full transcription of SAT problems into their arithmetized forms

where further analytical manipulation can be made possible.

3. Hierarchical classification of SAT problems

Next, we proceed to a hierarchical classification of both Conjuctive and

Disjunctive Normal Forms (CNF/DNF) for any SAT problem which is to

be applied at any level of the ICH defined in the sense of the previous

section. To this aim we have to introduce an intermediate assignment map

as follows. Let us assume a set of nC “slots” for each clause over L total

positions and a set of nA arbitrary Boolean variables referred to as the

“atoms” of a CNF/DNF expression to be assigned to each slot

accommodating a number of {ni} positions conforming to one of the

integer partitions of L

∑
=

=
Cn

i

inL
1

Then any CNF/DNF proposition can be abstracted to a set of nC

parentheses as {(x,y,…),(z,…),…,(w,…)} before the specific order of

logical operators being applied for evaluation which is effectively, only

one more bit. Such a case corresponds to a diagrammatic network

characterized by a specific connectivity matrix under the additional

constraint that each map of input atoms to the literals codomain of any

clause being non-injective and surjective but with many-to-one

connections disallowed. The presence of negation operators in the

translation of atoms to literals (‘x’ vs ‘~x’) inside any clause can then be

taken care of by the use of a weighting factor {-1,+1} in any connection

arrow from atoms to slots.

Given any particular connectivity diagram we may then discriminate

between different cases with the following characteristics. For any set of

nC slots we can have either a 1-1 mapping with no overlap between

clauses or a redundant mapping where several initial atoms are used in

multiple positions in different clauses. Any set of expressions can also be

parametrized by the number of negative weights so that for any

expression we can have up to 2
L
 distinct “negation codes” which can be

encoded as integers including the identity of atoms and literals (0-code).

To properly characterize any given SAT instance we need to separate

between instances of exactly k distinct atoms in all clauses (k-SAT) or

less. To this aim we introduce a total overlap ratio 10,/ ≤<= iAi Ln λλ

where nA the number of input atoms with the case λ =1 corresponding to a

unique 1-1 assignment. This particular parameters serve to define an

amount of non-uniqueness in the set of unique Boolean variables entering

any such expression with the symmetric ones being given for λ = 1.

Notably, due to a well known Local Lemma of Lovasz [37], any k-CNF

formula is satisfiable if every one of its clauses has a common overlap in

at most 2
k-2

 positions or equivalently, the same number of non-zero

entries in a connectivity matrix rows. Recent work by Moser [38] as well

as Moser and Tardos [39] revealed a randomized algorithm based on a

new lemma according to which there is always some constant k0 such that

when the overlap does not exceed 2
k-k0

 the k-CNF problem is satisfiable

and a satisfying assignment can be found in polynomial time τ ~ p(nC).

We can now separate SAT instances into at most four distinct classes

which allow their parametrization to be given in terms of appropriate

indicator functions and integer codes over any member of a combinatorial

hierarchy. Specifically, we may discriminate between (a) 1-1 k-SAT

expressions with equal length clauses, (b) 1-1 SAT with unequal clauses,

(c) k-SAT with overlapping, equal clauses and, (d) SAT with overlapping

and unequal clauses. The additional parametrization of each expression

with a Boolean negation code can be given as an independent dimension

of each problem via a separate integer encoding. This allows the direct

visualization of the influence of all possible negation codes as a 2
L
 x 2

L

Boolean matrix. In order to make this algorithmically tractable we need to

devise a method of applying each expression as an appropriately

parametrized operator to all the elements of a WL matrix as defined in (3)

or (4) for each separate negation code corresponding to a row of the final

matrix. To this aim, we utilize the weight encoding of the original

assignment map which can be brought to a strict binary format in {0,1}
L

with each one denoting the presence of a negation operator in the

associated literal.

To provide a complete integer encoding for the previous classification we

start from the two 1-1 classes (a) and (b) with the observation that for

each total length L for any interval SL, the set of all possible clauses

coincides with the set of integer partitions of L, hence for each and every

member {SL, WL} of the associated binary ICH, the number of possible

SAT expressions grows according to the well known integer partition

function P(ν) [25] (sequence A000041 in Sloan’s OEIS). If we use the

notation {ν} for the set of tuples {n1,…,nk} comprising all members of the

set of partitions and { } νν ≤< kk 0, for any particular member of k elements

from an ordered list then it is possible to provide a fully arithmetized

code for each member of a SAT class with L total atoms as a unique pair

(L, {L}k) mapping from the set of all such tuples to the integers

{ } 1,...0, 00

0

−=<<<≅∑
=

LnnnLnL k

k

i

i

ik (17)

For instance, the partitions of 4, given as {3+1, 2+2, 2+1+1, 1+1+1+1}

are mapped to the sequence { } { }85,22,10,74 → with the maximal element

always giving the trivial, all ones partition in class (a). Notice that an

inverse sorting of ni resulting in a different subset of pairs of partitions

per base L. In figure 3 we show the result of computing all such valid

encodings for different bases L > 2 for both sorting types. The same code

can be used as a partition generator under the constraints of monotonicity

and non-zero coefficients as in (14). We also checked the inverse method

of producing SAT codes from each partition with an independent

partition generator based on block counting revealing a similar

distribution as in figure(3). Details of the methods are reported in section

6. The above method characterizes uniquely and exhaustively all SAT

expressions of the two first classes corresponding to any particular

member of a hierarchy, the length of any particular partition member

given also as the L-ary decoding of the associated integer code. Hence, all

members of the classes (a) and (b) can be derived from the tuple

{ }{ } Lk SL ∈µµ ,, where µ stands for the associated negation code. We

mention in passing that the presence of fractality in the set of integer

partitions has been recently proved by Folsom et al.[40], as well as

Brunier et al. [41]. A uniform indicator function over any exponential

interval becomes now a map{ } { }1,0→× Lk SL .

For the last two classes (c) and (d), the numbers of nA input atoms, nC

clauses, and separate populations of literals per clause { } Cn

i

C

ip
1= are

independent parameters. In such a case, the connectivity matrix of the

assignment map ceases being a mere permutation. Let then, mi stand for

the multiplicity degree (number of one bits) in any column of the nA x L

connectivity matrix in the associated assignment map from atoms to

literals. For κ such degenerate rows with nA – κ single atom inputs taking

into account the structure of map from atoms to literals not allowing

many-to-one connections, every mi must count a unique literal so that we

must have

Lmnn
i

iA

n

i

i

C

=+−= ∑∑
==

κ

κ
11

)((18)

This simplifies using the overlap ratio λ as

κλ
κ

+−=∑
=

Lm
i

i)1(
1

 (19)

We can now associate members of the (c) and (d) classes with the set of

partitions{ } AnL <<+ ρρ 0, where we have introduced the parameter

κρ −= An as a new dimension of the total search space. Notice that in the

case of nA = κ, we have just two different partitions of L which is still an

incomplete description. To find a complete mapping to any level of {SL,

WL} we need to complete a tuple { } { }{ } Lk SLL ∈+ µµρ ,,, with an additional

encoding sufficient to cover all the information of a degenerate

assignment map uniquely identifying each and every row of the relevant

connectivity matrix. Each and every such row maps an atom to one or

more literals. If all such rows are interpreted as separate, distinct integers

{νi} then, the previously introduced multiplicities are associated as

)(2 ii sm ν= while every such integer is sampled from the corresponding

combinatoric subset 








im

L
in the relevant expansion of 2

L
 when

unconstrained. W can now prove that for any such matrix w and a pair of

an 1 x L vector v with elements vi = 2
i
, I = 0,…,L-1, and a nC x 1 vector 1,

the identity
L2=⋅⋅ vw1 holds.

The proof is a direct consequence of the map from atoms to literals in

each clause corresponding to rows and their integer codes νi. By the same

token that led us to the identity (17), each separate row of any such

random matrix must not have one bits in the same column for all

corresponding columns. Moreover, the previous property of no common

one bits is essentially the same as the requirement in App. A on the

Hamming distances between all κ(κ-1)/2 pairs satisfying

(){ } 2/)1(

},{22)()(,
−

−=−=
κκ

νννν
ji

jijiji mmssh (20)

Hence, addition of any pair of such integers increases the sum of digits

additively as already mentioned in App. A. As a result, any integer codes

for the rows of a connectivity matrix must be a subset of the restricted 2-

integer compositions of 2
L
-1. We shall denote the maximal subset of

these partitions as { }{ }12 −L
.

It is then in principle possible to construct a sieve using (20) as a filter

which given two partitions of L as { } { }
mC LL ρ+× the first being used to

decode the number of clauses nC and the second for deriving the

multiplicities mi. The filter can be used to extract only the relevant

partitions out of the { }{ }12 −L
 subset. The most direct way for

exhaustively enumerating the subset of all possible matrices can be given

through a special indicator function over the interval LnA
S where strings

are interpreted as a sequential concatenation of each such matrix rows,

each of them being valid when it satisfies the condition

()∑

=

−=
Ln

k

Lnk
A

A k
0

,mod
12),(2 νη

 (21)

These can be further classified according to the number of isolated

periods (powers of 2) in each substring of length nA. Results for the case

of such a classification are shown in figure 4 for an example of nA = 3 and

L = 4. A complete identification of the last two classes can then be given

with a tuple { } { } { }{ }{ }µρ ,12,, −+ L

mC LL . In Table 1, we review the basics

of the classification presented here with some additional properties that

shall be proven in the next section where we also complete the

examination of appropriate indicator functions for all the classes

separately.

4. Universal Indicator Functions

We proceed with the construction of analytical formulas of appropriate

indicator functions for the arithmetized version of any CNF/DNF

expression. To begin with, we shall ignore overlaps and consider only the

first two classes SAT0-1 following the nomenclature of Table 1.

Evaluation of any similar expression is a two stage process, the first part

being the assignment mapping atoms to literals in a sequence of nC

parentheses ()
iikj pkpj =+= − ,1,,..., 1σσ followed by evaluation of each.

At the second stage, bits from each clause evaluation shall form a new

word of nC bits for final evaluation. Each parenthesis can then be

interpreted as a binary expansion associated with a unique new integer

Ci ni ,...,1, =µ such that all clauses can be arithmetized. The complete

arithmetization of the input expression will then be given by the total

code
Lnc

piSp

S S∈+++= µµµν)(

2

1

1 2...2 where we used S(pi) to

denote the partial summands of all clauses atom populations with the

convention S(n0) = 0. Negations can be encoded as separate integer codes

or logical masks translating the original { 1± } weights of the assignment

map into {0, 1} codes and identify them as a new unique integer. Overlap

codes can also be given as separate integers with ones indicating all pairs

of logical variables with the same index. In this section we provide a pure

analytical expression for indicator functions over any SL in the absence of

negations and overlaps restricting attention to the relevant classes SAT0

and SAT1, while the rest shall be treated separately in the next section

with one additional special indicator associated with unsatisfiability.

Each clause number µi has to be processed separately so that we need an

inverse map for extracting the whole tuple from any integer in SL via the

below equivalent operators

())(0,,22,
2

mod),;(2 SS

j

ik

kij

i

S ljikji ννη
ν

νσ ≤<≤=












= ∑
=

−
(22)

Processing each clause integer separately requires finding an arithmetic

alternative for a recursion of the form kjmxxx jmnn ,...,1,, 11 +==←+ σσo .

To this aim, we introduce a generalization of the parity function which is

normally derived from the sequential exclusive disjunction of successive

bits in any binary word, introducing a “C-parity” and a “D-parity”,

denoted as)(),(νν ∧∨ pp which can be typically written as

 ()∏∏
−

=
∧

−

=
∨ −==

1)(

0

1)(

0

22

),(1)(,),()(
νν

νηννην
l

i

l

i

ipip

The second form results from the algebraic expression of the logical

identity ()yxyx ¬∧¬¬=∨ which when applied simultaneously to all bits

in an expansion turning D-parity to an equivalent C-parity for total

complements. It is then trivial to show that for any interval SL the only

non-zero value of)(ν∨p is a Mersenne number 2
L
 – 1 as any other pattern

contains zeros which falsify the specific clause. Similarly, only the zero

word satisfies)(ν∧p . To construct a global indicator function over any SL

we shall then need two auxiliary characteristic functions over the integers

as







−≤<

==







−<≤

−==
120,1

0,0
),(,

120,0

12,1),(
l

D
l

l

C ll

ν

ννχ
ν
ννχ

An equivalent analytic form of a Mersenne number detector can be given

as  )12/(),(−= l

C l ννχ and the use of complements makes χC sufficient

for both cases. We then straightforwardly identify)(ν∨p with

())(, 2 ννχ lC and)(ν∧p with ())(1)(, 2 νννχ ∨−= plD . The use of χC

only is suggested from the crisp truth values over any interval allowing

the use of a Mersenne number detector.

The previous definitions allow us to derive analytical expressions for the

two main indicators in a purely functional approach by noticing that the

second processing stage is simply { }()nc

ipp
1

)(=∧∨ ιµ and { }()nc

ipp
1

)(=∨∧ ιµ for

the CNF and DNF cases respectively, resulting in the following explicit

forms for any Ls S∈ν

() 







−−= ∑

=
−

C

L

n

i

CiiisiC

i

CS

CNF

S nppSpS
1

1

)(,),(),(;(21)(νσβχχν1 (23a)

() 







−−= ∑
=

−

C

L

n

i

CiiisC

i

CCS

DNF

S nppSpSa
1

1

)(,),(),(;(21)(νσχχν1 (23b)

12,12 −=−= iC p

i

n

Ca β (23c)

The forms in (23) can be further simplified by noticing that it is sufficient

for each separate indicator per clause to be one for the CNF case or their

summand to be nonzero for the DNF case. Using also the cumulant

summand S(pi - 1) of all clause values reduced by one to fit into the form

of the σ operator of (22) leads in the expressions

































= ∑
=

C

i

i

n

i

p

pS

s

iC

S

CNF

S
n 1

)(

)(2,
2

mod
11

)(
ν

β
ν1

 (24a)

02,
2

mod
1

11)(
1

)(

)(>

































−−=∑
=

C

i

i

n

i

p

pS

s

i

S

DNF

S

ν
β

ν1
 (24b)

Since (24a-b) contains only summands of single bits and all divisions

correspond to single bit shifts the overall complexity depends mainly on

the modulo function. Current implementations for arbitrarily large

integers and infinite precision have a logarithmic complexity such that we

can propose an estimated total complexity of the above indicators of the

order of ()Cn
)(log~ νΟ apart from some minor overhead. We notice that

there is a kind of “resonance” mechanism involved in the evaluation of

(21) in that every exponential interval represents a full “phase coherency

interval” for the underlying counters while any intermediate uniform

column of any WL will also have partial coherency intervals at positions

given by a sequence like 120,2 −−+ ≤< jLji
kk for any intermediate column in

bit positions Ljijii <+ ,),,...(. Falsification of the total expression can only

result as a loss of all coherencies between the nC individual indicators.

5. Negations, overlaps and unsatisfiability

Next we move to examine the significance of the additional negation and

overlap arithmetized codes where any such code distorts the original

coherencies of the {SL, WL} hierarchy thus acting as a cut-off filter by

exclusion of certain subsets and nullification of the original indicator

functions in the remaining allowed sub-intervals. To this aim, we keep

the original direct association of any SAT expression clauses with the

rows of a WL array without removing the redundant variables. By doing

so we choose to work again with an overall search space of 2
L
 instead of

2
λL

, which is to be restricted with the introduction of some intermediate

maps M(ν)over any SL interval acting as logical masks in the uniform

direction and filtering out the appropriate subset. These can be computed

for any specific overlap ratio λ < 1, and any particular assignment map

under the demand that specific columns of the WL must conform to the

condition of certain bits being identical at different significance levels for

each column. We keep the negation as a mapping between indices and

apply both operations as a total mapping ()))(,(ννµνν µ
O

SRM 1⊕=→

where µ stands for the arithmetized negation code using the bitwise

formalism introduced in section 2 and the product with the overlap

indicator discarding indices out of the particular sub-class.

Assume then 1−im independent pairs of literals each with a degree of

degeneracy di, among all clauses that have to be constrained with the

disjunction or conjunction of a total of logical conditions of the form

{ } Ljixx ji ≤<= ,0, applied in every individual column of any WL. This is

equivalent to the not-complement of the exclusive disjunction of any two

bits which leads to the additional logical mask as a product over all the

numbers of pairs in the form

() L

N

ji

O

S Sji
p

∈−−=∏ ννηνην ,),(),(1)(
},{

1
 (25a)

∑
=

−=
κ

1

)1(
2

1

i

iip ddN (25b)

Since, any uniform deployment turns different significance levels into

periods this can be redefined as a total synchronization function or

multiple bitwise conjunctions between remote periods for each literal.

The above can be greatly simplified with mi bitwise conjunction operators

acting on each integer index in any SL via a set of arithmetized overlap

codes. These are to be extracted by the direct translation of the associated

mi binary rows in the connectivity matrix of the original assignment map

into their integer values as{ } im

i

O

i 1=κ . Both one bit and zero bit coincidences

can be incorporated utilizing the internal mirror symmetry of the total SL

interval to obtain

() (){ }







+= ∑

−

=
∨∨

1

1

},{
,,

1
),(

i

ii

m

i

O

i

O

i

i

ld

i

O

S RR
m

m νκνκν1
 (26)

Having completed the construction of the appropriate indicators and the

necessary logical masks, we proceed with the construction of Global

Truth Tables (GTT) as 2
L
 x 2

L
 matrices corresponding to a map

{ }1,0→×× LLL SSS where the second SL domain will contain all possible

assignments of atoms to literals, the associated new integers LS∈µ

standing for the “negation code” and the third one containing the

relevant overlap codes so as to cover the additional SAT2 and SAT3

classes. We use σ = 0, 1 for CNF or DNF forms from now on. A

definition comprising all the necessary problem data can be given as a

functional composition of the form

()()()},{)()(,, ii

LL

ld

i

O

SS mR ννµσσ 11T ⊕= (27)

We shall readily show that each such matrix is an ordered object with the

main information contained in the first “root” raw corresponding to µ = 0,

the rest being simply permutations.

The uniform permutation classes guarantee that for all possible negation

codes on the same instance of any SAT expression the initial number of

truth values is conserved thus leaving any true values untouched.

Let f(ν): Z � {0,1} be any Boolean function and consider the composite

()()νµ,⊕Rf . For µ=1, the action of any negation code is trivial

consisting of swapping permutations between adjacent bits of the output

of f for any uniform deployment. The block analysis of f in any SL shall

evidently remain invariant if no block counts start and/or end at odd

positions with every swapping taking place internally to each block

otherwise the block vector length shall increase. Any such permutation

depends on the binary expansion of µ and commutes always a block of

numbers of exponential order analogous to the periods in the µ expansion.

Thus, for any block structure to contain an invariant block at position i,

the partial summands must satisfy

)()(
1

1

22 2||,2||
µµ l

i

l
i

n

n cc <>∑
−

=

Using any large random binary vectors one can verify numerically that

the above results in a fractal structure for any matrix over all µ in any SL.

We conclude that all SAT expressions in the first two classes must be

satisfiable if they are satisfiable for µ=0 and the addition of any negation

code is in fact a redundant operation. It is only after imposing additional

constraints due to overlapping clauses that satisfiability is threatened.

Next we observe that the additional overlap filter in (26) is increasingly

restrictive as any term of lower periodicity is trimming the total interval

by excluding certain subsets much like the recursion leading to a Cantor

set but in more irregular ways. This in turn reveals a simple criterion for

unsatisfiability immediately retrievable by inspection of the connectivity

matrix structure in the assignment map. Specifically, we recall that all

overlap codes and their binary expansions are by construction made so as

to form a restricted integer composition of 2
L
 – 1, having no common one

bits. Whenever the overlap codes cover all significance levels of 2
L
 – 1

the trimming filter in (26) will exclude all input indices in any SL interval

apart from the zero and ones words of length L. Hence, we conclude that

the sole responsible for complete unsatisfiability of any SAT expression in

the last two classes is the case of the overlap codes leaving no non-empty

subset for applying the indicators in (23) or (24).

Both the interaction of periodic functions like η, as well as the trimming

operators of (26) always results into multi-periodic structures which then

act as filters on a similar structure produced by the universal indicator

functions making satisfiability a kind of “resonance” effect where one or

more periods preserve a degree of coherency between them. These effects

pointing again to a certain relation with dynamical models and BDS

implied a particular reduction technique in the next section adding more

flexibility in handling arbitrary SAT expressions by turning them into

trajectories of a special class of dynamical systems.

6. Sequential Dynamical Systems and clause equalization

We now attempt to bring every SAT instance for all four classes under a

common format of a special class of discrete dynamical systems which

will allow processing all literal values in tandem, a mathematical

analogue of parallel processing via a compact, arithmetic fractal object

defined as the bitwise operators of section 2. Notably, this class belongs

to the more general case of so called, Sequential Dynamical Systems

(SDS) of which an in depth analysis can be found in [43] and [44]. The

latter also defines the important notion of permutation complexity which

here takes a particularly simple form. The transcription requires an

indirect relation with the previously introduced hierarchy in order to use

the bitwise operators along different clauses and for this we will have to

bring all clauses to an equivalent encoding of equal length, a feat which

can be accomplished with different protocols for each class as follows.

Let Sm be the interval associated with m = max(pi), the maximal clause

length. Then we ask to find a method for reducing any unequal clauses

without overlaps to equal clauses and the same for unequal, overlapping

clauses. Following the nomenclature reciewed in Table 1, we have the

following two cases

1. SAT1 � SAT0:

If we consider only positive weights for the assignment map,

atoms and literals are identical and the numbering of input

variables allows them to be separated into nC distinct groups of N

literals with L= nA = mnC. All possible inputs can then be put into a

direct correspondence with a sequence of integers{ } nc

mnc S∈νν ,...,1 .

For the case of unequal clauses of SAT1 we can use the invariance

of the truth values kk xxxx ∨∨=∨∨∨ ...)...(111 to show that we can

replace all missing entries for a maximal clause in every literal

with units until we have)max(inN = for all clauses. To give an

example of the procedure we take an arbitrary CNF formula as for

instance () ()654321 xxxxxx ∨∨∧∨∧ . In Table 2 we show the

resulting reduction to the maximal number of three bits per clause.

Notice that the order of appearance of X3 and X4 is irrelevant when

taken uniformly and it could be exchanged so as to have all atom

indices sorted. Evidently, the resulting 3

NS bitwise product of

integers for such a case can be filtered so that only certain bands

inside each interval will be used with a logical mask stabilizing

some of their bits. Logical masks for the excluded subspaces can

be easily precomputed out of the symmetrized 2
9
 search space by

noticing that the particular sorting of significant levels chosen in

Table 2, for any instance of SAT1, since all atom indices are

distinct can always be brought in front of the one blocks so as to be

bounded as i

pP

i

P
pmPi −=−≤≤− +

min

minmin ,1212 ν where pi

the original number of unique atom indices in any clause.

2. SAT3 � SAT2:

Any such one-to-many assignments can be accommodated with the

demand of certain intermediate bits of the encoding integers being

identical in any interval SN or the equivalent method of (26) and

(27) for building a logical mask. With regards to the previous

example we may now write a similar formula for such cases as

() ()321211 xxxxxx ∨∨∧∨∧ . Again, we show the corresponding

reduction scheme in Table 3.

With the aid of the bitwise operators we can now construct a basic

recursive formula for a universal Conjunctor following the definitions

and identities of section 2, where we also use an additional bit σ for CNF

(0) and DNF (1) as

()()1210 ,,...,,),...,(ννννν ∨∨= RRU mm (28a)

We can similarly write a complementary universal Disjunctor directly.

()()1211 ,,...,),...,(ννννν ∧∧= RRU mm (28b)

Satisfiability is now translated in the following conditions for the m-step

trajectories while the same conditions hold for each individual step

12},...,{,12),...,(110 −<−= m

m

m

mU νννν (29a)

12},...,{,12),...,(111 −=−< m

m

m

mU νννν (29b)

Inclusion of non-positive weights for literals is directly applicable via the

same methods used in the previous section. We notice the

complementarity between CNF/DNF conditions which appear extremely

restrictive on the set of either the terminal or the initial conditions

respectively. We can now reformulate the answer to the general

satisfiability problem as the existence of a basin of attraction of each of

the two complementary domains for all trajectories starting from their

complement. This can also be interpreted with conditions (28a-b) taken as

a sequence of binary filters for the uniform expressions of the ∨∧,R

associated matrices. In figure 7, we show the form of the bitwise

conjunctive operator for both conditions of (28) while the equivalent form

for the bitwise disjunction is trivial with only one zero or non-zero

position at the boundary value R(2
m
-1,2

m
-1). Since, the problem is

answerable for both SAT0 and SAT1 classes; the reduction performed via

the equalization process only leaves the SAT2 case to be explored.

To understand the particular type of dynamics associated with (28a-b) we

recall that both bitwise conjunction and disjunction can be reduced

algebraically into the single bitwise difference (exclusive disjunction)

operator ∧∨⊕ −= RRR which has been proven equivalent to uniform

permutations.

The system of (28a-b) has a unique and interesting property that the total

map can be split into a linear combination of a pair of simpler “local” and

a non linear, “non-local” map, of which the first additive one acts

“locally” in any individual trajectory while the second, is conservative

only when taken as a permutation in the “non local” uniform direction. In

App. A, we discuss how the second part could also be localized by

replacing the difference operator with a restricted 2-integer partition of

one of the two arguments as () 2/),(),(1011101 iiiiii ννκννκνν +++ ±+ m but no

efficient sieve has been found as yet for choosing the appropriate

localizing pair out of the total set.

We observe that the permutations are controlled in a different manner

depending which of the two arguments is used as the equivalent negation

code so that given a pair of vectors v = [0,…,2
m
-1] we can write the

equivalent expressions for the uniform row-wise or column-wise action

of ⊕R respectively

() ()[] ()[] vv ⋅









=⋅










= ∏∏

==
++⊕

+)(

1

)(

1

11

212

,,,
ii s

j

i

s

j

iii jPjPR
νν

νηνηνν

The matrices ()],[jP νη are permutation matrices of order controlled by

the successive bits in the binary expansion of each argument and each

method differs in complexity unless kss ii == +)()(122 νν when the two

integer expansions belong to the same combinatoric subgroup 








k

m
. We

can still choose all trajectories to conform to a minimal complexity

definition by switching between the alternative branches of (30). Then

the total permutation complexity for any trajectory as defined in [44] is

given by the frequencies of different permutation classes which are here

directly analogous to the digit-sum. Since Shannon entropies are also

analogous to the same quantity for binary expansions, the overall

permutation complexity for all trajectories is analogous to H({νi}).

Since the totality of (28) is a conservative operation for any uniform

deployment, one can consider an alternative expression of (28a-b) as

2/)(1 kii ννν ±++ with k here being a dummy index running on all possible

triplets with the constraint that the first 2-summand must belong to the

same congruency (mod 2) with νk, a property which was built in the

original definition of the bitwise operators by construction. We can then

reconstruct a hierarchical classification of all possible trajectories with

the aid of the higher radix hierarchies defined near the end of section 2, as

{ }()i

mb

m

Pb

m

b

m plPbSbWS max,,2:},{ 2max

)(

max

)()(===

for any SAT expression with m equalized clauses of maximal atoms

population. Since the new intervals and dictionaries are defined on

powers of 2, they are “resonant” with an equivalent binary dictionary

)(b

mPS . This makes any total encoding of a SAT expression as

1

1 ... −++= m

mS bννν equivalent to a simple concatenation of all νi binary

expansions.

Next, we create a new mapping σΠ from any number of equalized

clauses to any trajectory of the form of (28a-b) as an index interpolation

scheme of the form

,...,,,,,...,,, 5432103210 ννννννµννννν ′′′′′′=→→ Π
s (30a)

),...,(,),,(22423102 νννννννν σσ ′=′=′=′ RR (30b)

The new mapping associates any member of any original hierarchy with

an extended one as

{ } { } 12,,,...2,,:)()()()(−=→=Π jkWSjWS
b

k

b

k

b

j

b

jσ

The representation in (30a-b) is privileged in that any answer to any SAT

expression becomes directly visible in the uniform deployment in the new

enlarged alphabet. Thus for any two clauses, the answer can be directly

“read” from the third digit, for three clauses we get the answer at the

fourth digit, and so on. For any number of j clauses, the extended

sequence will contain exactly j-1 steps of the original recursions in (18a-

b). The simplicity of the above scheme allows derivation of the original

conditions (29a-b) in the simpler symbolic forms for any total codes

() ())()(, b

jS

b

jS SS σσ νµν Π∈∈ as

()() ()
() 12,12

2
12,

12

0 −<−=




=− −
jP

S

P

jP

S
Sb j ν

νµ
νµη (35a)

()() ()
() 12,12

2
12,

12

1 −=−<




=− −
jP

S

P

jP

S
Sb j ν

νµ
νµη (35b)

The conditions can be compacted into a compound, universal Boolean

discriminant as

()
() () 










−
−−

Θ=
−−

12

2)1(121

P

S

jP

SU
νµσ

ν σ
σ

σ (36)

The above immediately provides an effective algorithm for locating all

possible answers given any method by which the σΠ map would be at

least uniformly if individually computable. A more technical analysis of

the algebraic structure of the original recursion and its relation with the

sequences (32a-b) is given in App. B.

Finding an efficient, fast sieve for σΠ appears to be of paramount

importance for the generic SAT problem given the above redefinitions of

the original problem where the overall SAT complexity reduces to the

study of the irregularities in the block analysis of the two ()Sνµσ

sequences. Another step to this direction can be made by noticing once

again the significance of restricted 2-integer compositions of any νs in any

relevant interval which can be described with the aid of three additional

integers’ κ, λ, µ in the same interval with the expansions

...0)),,((0),(00

..0000

...00

42121

53

5421

νννννλ

ννµ

ννννκ

η

η

η

RRR→

→

→

 (37)

Obviously any integer in the same interval can be analyzed as ν = κ + µ,
)(b

mS∈ν with a subset for which µ = λ, standing for the νs subset.

A direct method to construct a simple numerical sieve can be given

through the product of three indicators representing the constraints in (37)

where the first separates all κ strings that are (mod 2
jp
) for all indices j =

2k+1, k =1,2,…, the second extracts the complements that are

simultaneously (mod 2
ip
) for all indices i = 0, 1 and i = j - 1, while the

third examines the equality of µ and λ. We extracted the 2-composits for

some simple cases as in figure 8. There is ample visual evidence for

increased symmetry and correlations despite the fact that each integer is

examined as an independent entity. Moreover, one recognize that the

simultaneous application of the constraints in (32b) are equivalent with a

product of independent indicators for each of them and can be computed

separately for further block analysis. Doing so, results in periodic

repetitions of block sizes, alternating as KK |,||,|, 1+− ii cc , satisfying

k

ii cc 2|||| 1 =+ + for some integer k. No formal proof is known at the

moment for this or similar properties.

To explore further, we experimented with this sieve in several bases. An

example of such a subset indicator for the cases of 4 clauses and maximal

length 3 (octal) as well as 3 clauses and length 4 (hexadecimal) is shown

in figure 9 via its block analysis where all valid sequences and their

indices appear in isolated small islands with the CNF and DNF cases

complementary. The resulting sequences are not entirely regular and they

vary with the alphabet base while no single interpolating formula is

known to the author. Using the wavelet based methods developed in [45]

and [46], the Hurst exponents were extracted from the block sequences of

the resulting indicators and a detrending fluctuation analysis was

performed using the methods developed in [47]. A characteristic feature

of all similar block counting structures is that they always comprise

almost stationary positive and strictly non-stationary negative

subsequences respectively. Analyzing them separately show the same

increasingly correlated structure with a characteristic exponents of the

order of aH with an associated Haussdorf dimension estimated as 2 – aH

for the whole sequence and the positive and negative parts respectively as

in Table 5. The existence of persistent correlations in any uniform

deployment shows the inheritance of the underlying order of the counters

discrete time flow which leads to an important conjectured principle of

non-independence of arbitrary integers in the case of symbol-wise

morphisms being also one of the main reasons for departing from purely

probabilistic treatments in this work. This is further discussed in the last

section.

7. SATbox: a MATLAB
®
 toolbox for exploring SAT problems

Our effort in all previous sections was to provide methods that could be

useful from a purely functional programming standpoint. We also provide

prototype code for experimentation in the github account

github.com/rtheo/SATbox. The package contains a number of basic

utilities reviewed in Table 6, for the SAT as well as other similar

problems that can be examined in the context of the combinatorial

hierarchies and the resulting sequences block analysis. It should be

stressed that this prototype demo serves only as an example of the

programming and analytical techniques explained here and it is not a true

production code for expressions with thousands or millions of variables.

Such would demand both special infinite precision codes as well as at

least an MPI protocol for efficient parallelization where several

sequences of which the uniform deployment is required for filtering

should be broken into large chunks. Moreover, any true speed up should

be based on the efficient use of permutations and solely arithmetic

operations for extracting the appropriate indicators in large alphabets.

The main codes are given by the functions sat containing an appropriate

interface for transcription of a standardized format into the arithmetized

codings presented in 3, satassign which performs the assignment map by

explicit construction of the associated connectivity matrix performing

also the necessary arithmetization of rows for overlapping variables if

present, and the core evaluation function sateval with internal calls of the

UIeval function realizing the indicators of (25)-(26) plus the trimmer

function that delivers subsets of any total SL interval whenever the

satassign routine reports the presence of overlaps. The sat routine reads a

simplified file format without distinction between DNF/CNF expressions

since both are treated equally by the sateval function which delivers back

whole GTTs. This is given as a set of rows representing atom indices with

different clauses represented by different rows written in separate lines.

Any negation operators are denoted with a minus sign in front of any

individual atom index. Certain example files and the resulting circulant

fractal GTT matrices are offered with the package in the github account.

There are two additional Boolean flags immediately after the input

filename that sat currently understands. The first is for discriminating

between the cases of a single expression evaluation followed by its block

analysis for a particular user specified negation plan if 0, or computing a

whole GTT in which case any negation signs are ignored if 1. The last, is

for choosing between two alternative methods of computation the first

being the standard indicator functions of (25), (26) if 0 or the satsds

applying the equalization protocol if 1. At the current version, only

individual expressions are computed via the SDS method.

The additional satnegation offered in the utilities folder, is an interface

for the unixor routine which implements the uniform bitwise difference

(XOR) operator as a set of successive permutations and is in fact

equivalent with the internal built-in bitxor function. We notice that the

particular structure of swapping permutations associated with negations is

in fact equivalent to separate phase shifts of each counter in the uniform

dimension of each constructor of a binary word dictionary WL and as such

they could alternatively be implemented in a similar manner as the one

used in identity (4) of section 2 to express the difference between the

original η function and its complement.

8. Discussion and Conclusions

We presented a new, methodological framework for the treatment of

complex problems based on the complementarity of lexicographically

ordered word dictionaries which allow trading between individually

computable formulas and a multi-periodic, self-similar totality resembling

a discrete time flow of a sequential dynamical system, and which in

certain cases appears to being able of significant reduction of the

complexity of requested computations. This in turn, allows an argument

on a kind of relativity of complexity which may appear different when a

totality of objects is treated in a holistic frame. This comes from a very

simple, fundamental observation that in many cases of discrete structures

when these can be resolved as mappings from the integers to the integers,

expressions for obtaining the totality of a codomain might exhibit lower

complexity than those for obtaining or “choosing” particular subsets, yet

finding the same subsets becomes also easier only after resolution of the

totality. This also brings about the issue of “locality” which we discuss

later on with a concrete, mechanistic example.

The author believes that the intuitive approach introduced here, is

complementary to standard approaches in a manner akin to the way

analytical geometry is complementary to the standard Euclidean one. The

method when applied into the satisfiability problem, leads naturally to

certain purely functional, analytical expressions for a set of universal

characteristic functions totally describing the subset of all solutions and

opening new avenues in the search for optimized algorithms. It is the

hope of the author that future research in this direction will permit to

visualize the totality of SAT problems in a particularly elegant and useful

way given more specialized codes than the elementary examples

presented herein.

Since, there exist at least two analytical reformulations of any SAT based

either on special indicator functions or the equalization protocol and the

SDS presented in the last section, it is possible to expand this theme by

further studying the fractality and the possible regularities of the resulting

sequences in future work for real time savings in actual applications. A

symbolic algorithm for efficient interpolation of fractal sequences

following methods as those explained in the previous sections is under

investigation. Notably, certain kinds of indicators as for instance, the case

of ())(

12

b

mS +Π subset show an increasing irregularity when moving to higher

alphabet bases. This suggests the possibility of using Machine Learning

methods as possible predictors for large samples of similar sequences.

Notably, many such methods can be considered as purely functional

machines due to their use of convex polytopes as a means to approximate

true indicator functions of subsets of solutions.

An important issue with possible applications in parallel computations

concerns the observations of the last section for certain mappings of the

associated dynamical system reductions exhibiting simultaneously a kind

of both local and non-local behavior along their discrete time evolution

where large scale permutations intervene across the uniform discrete time

flow axis mixing “future” and “past” states. We stress the fact that no

formal proof has been given for this particular case and it could turn out

that there is always a possibility of interpolating with some contrived

expressions that would resolve such non-localities, yet the example can

be abstracted in a much more general and potentially useful way, using a

particular class of parallel computing machines with a special “pseudo-

quantum” protocol, the choice of the term being due to an intriguing

similarity between this mechanism and the well known, Feynman

interpretation [48].

Assume then, a set of interconnected simple processing cores to which a

certain execution tree is delivered for multiple evaluations on a large

domain. Assume also an internal, localized protocol shared by all cores

estimating an objective cost function such that for as long as an individual

computation is less costly, each core can choose not to share any data and

proceed on its own up to a point where the costs exceed some threshold in

which case the particular core ceases to follow a specific path and

instead, it immediately delivers control to a supervising mechanism that

shares information from all the other same level nodes of the execution

tree before returning control to individual cores. Moreover, one could add

to the definition of the cost as used here, the avoidance in using encoders

and decoders for accessing individual digit patterns at intermediate stages

for any pre-specified radix.

Additionally, the observations at the end of section 5, relate to the

particular classification of maps over the integers that led to the

arihtmetization strategy as originally introduced in section 2. Given two

distinct classes of algebraic and symbol-wise maps, the existence of any

direct equivalence between members of the two delineates the existence

of a special algebraic sub-class that can be used to affect similar changes

into underlying patterns while still treating its inputs as “solid”,

indecomposable objects. The appearance of correlations in any uniform

arrangement of seemingly independent entities which is in fact inherited

from a “hidden” underlying flow could still be manifested under different

cases of random samplings thus making this sub-class important in any

physical applications that could hide equivalent pattern based

computations. This possibility is also in accord with a previous proposal

for turning back to analog machines with non-Leibnizian architectures

[16]. The prospect of building analog SAT machines then presents an

appealing possibility for hybrid A.I. and general cyber-physical systems

[49] with the internal capacity of automated proofs and it will be further

explored in future work.

References

[1] S. Cook, "The complexity of theorem proving procedures", Proc. 3rd Ann. ACM

Symposium, Theory of Computing. (1971) 151–158.

[2] L. Levin, “Universal search problems”, in "A survey of Russian approaches

to perebor (brute-force searches) algorithms". Annals of the History of

Computing. 6(4), (1984) 384–400.

[3] E. Giunchiglia, A. Tacchella, (2004) "Theory and Applications of Satisfiability

Testing". Lecture Notes in Computer Science. 2919. E. Giunchiglia, A. Tacchella.

eds.

[4] Y. Vizel, G. Weissenbacher, S. Malik, "Boolean Satisfiability Solvers and Their

Applications in Model Checking". Proc. IEEE. 103(11) (2015).

[5] T. E .Raptis, “'Viral' Turing Machines, Computation from Noise and

Combinatorial Hierarchies” (submitted) (2017). Preprint: arxiv:1702.06000 [cs.AI].

[6] P. Hudak, “Conception, evolution, and application of functional programming

languages”, ACM Comp. Surveys, 21(3), (1989), 359 – 411.

[7] A. Sabry, "What is Purely Functional Language ?". J. Functional

Programming. 8(1), (1993) 1–22.

[8] V. N. Vapnik, (1989). Statistical Learning Theory. Wiley-Interscience.

[9] V. N. Vapnik, (2000). The Nature of Statistical Learning Theory. Information

Science and Statistics. Springer-Verlag.

[10] A. Feraz, “Polytopes as vehicles of informational content in feedforward neural

networks”, Phil. Psych., 29(5), (2015).

[11] A. Kolmogorov, "On Tables of Random Numbers".Sankhyā Ser. A. 25 (1963)

369–375.

[12] Kolmogorov, A.N. (1965). "Three Approaches to the Quantitative Definition of

Information". Problems Inform. Transmission. 1(1): 1–7.

[13] M. Li, P. M.B. Vitányi, (2009). An Introduction to Kolmogorov Complexity and

Its Applications. Springer Science & Business Media.

[14] P. L. Bartlett, S. Mendelson Rademacher and Gaussian Complexities: Risk

Bounds and Structural Results. J. M. L. Res, 3, (2002) 463-482.

[15] S. Shalev-Shwartz, S. Ben-David, (2014). Understanding Machine Learning -

from Theory to Algorithms. Cambridge univ. press.

[16] T. E. Raptis, “Spectral Representations and Global Maps of Cellular Automata

Dynamics”, 91, (2015), 503 – 510.

[17] E. Clarke, O. Grumberg, K. McMillan, X. Zhao. “Efficient generation of

counterexamples and witnesses in symbolic model checking.” Proc. of Design

Automation Conf., 1995.

[18] F. DeMarco, J. Xuan, D. Le Berre, M. Monperrus, "Automatic Repair of Buggy If

Conditions and Missing Preconditions with SMT".Proc. 6th Int. Workshop on

Constraints in Software Testing, Verification, and Analysis (CSTVA 2014).

[19] J. Argelich, C. M. Li, F. Manya, J. Planes, “Analyzing the Instances of the

MaxSAT Evaluation.” SAT 2011: 360-361

[20] J. Argelich, C. M. Li, F. Manya, J. Planes, “Experimenting with the Instances of

the MaxSAT Evaluation.” CCIA 2011: 31-40

[21] J. Argelich, C. M. Li, F. Manya, J. Planes, “The First and Second Max-SAT

Evaluations.” J. Sat., Bool. Modell. Comp., 4 (2008), 251-278.
 [22] D. Raghavarao, Damaraju, L.V. Padgett, (2005) Block Designs: Analysis,

Combinatorics and Applications. World Sci.

[23] J. Daintith, E. Wright, (2008) “A Dictionary of Computing”, 6
th

 ed., Oxford

Univ. press.

[24] M. E. Jane (2008), The Chicago Guide to Writing about Numbers, Chicago Univ.

Press

[25] G. E. Andrews, K. Eriksson (2004). Integer Partitions. Cambridge Univ. Press.

[26] R. De Wolf, “A brief Introduction to Fourier Analysis on the Boolean Cube”,

Theory of Computing Library, Graduate Surveys, TCGS (2008), 1-20.

[27] R. O’Donell, (2014) Analysis of Boolean Functions, Cambridge Univ. Press.

[28] P. J. Grabner, T. Herendi, R. F. Tichy, "Fractal Digital Sums and Codes." Appl.

Algebra Engrg. Comm. Comput. 8, (1997) 33-39,

[29] H. DeLonge, H. Delange, Sur la fonction sommatoire de la fonction “Somme des

Chiffres”,Enseign.Math.(2)21(1975)31-47.

[30] E. Grosswald, “Rademacher Functions” in Encyclopedia of Statistical

Sciences, (2006) Wiley Online Library, DOI: 10.1002/0471667196.ess2155.pub2.

[31] J. L. Walsh, "A closed set of normal orthogonal functions". Amer. J.

Math. 45 (1923) 5–24

[32] N. J. Fine, (1949). "On the Walsh functions". Trans. Amer. Math. Soc. 65

(1949) 372–414.

[33] H. Peitgen, H. Jurgens, D. Saupe, (2004) “Chaos and Fractals”, 2nd ed.,

SpringerVerlag, NY.

[34] Konvalina, “Combinatorial fractal geometry with a biological application”,

Fractals, 14 (2006) 133-142.

[35] M. J. Patitz, S. M. Summers, “Self-assembly of discrete self-similar fractals”,

Natural Computing, 9(1), (2010) 135-172.

[36] V. Garcia-Morales, “Fractal surfaces from simple arithmetic operations”,

Physica A 447, 535 (2016).

[37] N. Alon, J. H. Spencer, (2000). The probabilistic method (2nd ed.) Wiley-

Intersci.

[38] R. A. Moser. “A constructive proof of the lovasz local lemma.” In STOC ’09:

Proc. 41st annual ACM symp. on Theory of computing, NY, (2009) 343–350.

[39] R. A. Moser and G. Tardos. “A constructive proof of the general lovasz local

lemma.” J. ACM, 57(2):1–15, 2010.

[40] A. Folsom, Z. A. Kent, K. Ono, “ℓ-Adic properties of the partition

function.”, Adv. Math, 229(3), (2012) 1586-1609.

[41] J. H. Bruinier, K. Ono, “Algebraic formulas for the coefficients of half-

integral weight harmonic weak Maas from.”, Adv. Math. 246(20) (2013) 198-

219.

[42]C.Kimberling, "Fractal sequences and interspersions",. Ars

Combinatoria. 45,(1997). 157–168.

 [43] H. S. Mortveit, C. M. Reidys, (2008) “Introduction to Sequential Dynamical

Systems”, Springer Sci. NY.

[44] J. M. Amigo, (2010), “Permutation Complexity in Dynamical Systems”, Springer

Series in Synergetics, Springer-Verlag, Berlin.

[45] I.Simonsen, A.Hansen, O.Nes, "Determination of the Hurst exponent by use of

wavelet transforms”, Physical Review E 58, (1998) 2779-2787.

[46] R.Weron, I.Simonsen, P.Wilman (2004) Modeling highly volatile and seasonal

markets: evidence from the Nord Pool electricity market, in "The Application of

Econophysics", ed. H. Takayasu, Springer, 182-191.

[47] M. Little, P. McSharry, I. Moroz, S. Roberts (2006), “Nonlinear, Biophysically-

Informed Speech Pathology Detection” in 2006 IEEE Int. Conf. Acoustics, Speech

and Signal Processing, 2006. ICASSP 2006 Proc., Toulouse, France. pp. II-1080- II-

1083.

[48] R. P. Feynman, A. R. Hibbs, (1965) Quantum Mechanics and Path Integrals.

NY, McGraw-Hill.

[49] S. K. Khaitan, J. D. McCalley, "Design Techniques and Applications of Cyber

Physical Systems: A Survey", IEEE Sys. J., (2014).

Appendix A: swapping permutations and integer compositions

We notice that the negation operation can be written as an individual

abstract formula of the form

),(),(1001 µνκµνκνν −+= (A1)

The essence of (A1) is that in the general case, different one bits of µ will

affect simultaneously both zeros and ones of the ν expansion allowing to

split µ in two integers κ01 and κ10 forming an appropriate subset of the

restricted 2-integer compositions 1001 κκµ += . Since negation is here

equivalent with the bitwise XOR operator we also find from () in section

the complementary action of the bitwise AND operator as

()),(),(
2

1
),(1001 µνκµνκµνµ +−=⊗R (A2)

Eliminating each pair member using the composition property we find the

important constraint

()),(3),(2),(2 1001 µνκµνκµνµ =+=⊗R (A3)

 There are certain important constraints on the choice of these pairs from

the total of µ possible 2-decompositions including the degenerate ones

(µ,0) and (0,µ) the most important being that of non-coincidence of bits in

the expansion of any such pair leading to a natural equality of their

Hadamard L1 distance and their sum of digits as

)(),(21010 µκµκ sh =− (A4)

Using a known equivalent expression for the lhs and the additivity forced

in the digit-sum for this particular case we also have

())()(),(01210210102 κκκκ ssRs +=⊕ (A5)

Finding the roots of either leads naturally to another fractal matrix which

can be given as one branch of a multi-labeled indicator introduced to

separate the two degenerate cases as










=−

<

=+

=

∑
∑
∑

0,1

)(,0

)(,1

);(2

2

2

µ
ν

µ
ν

µ
ν

σ

µσ
µσ

µν s

s

J
 (A6)

In (A6), the shorthand
µ

ν
σ∑ simply denotes the selective summand of µ-

masked bits of ν. The middle branch then immediately identifies all

mixed cases where a non-trivial 2-integer composition should apply.

From the data of the resulting matrices it becomes evident that the trivial

cases diminish with increasing µ. No interpolation scheme is known as

yet to the author that would allow direct use of (A1) and no efficient sieve

for individual computability of the appropriate pair for each ν to replace

uniform permutation classes seems to exist. Any further progress shall be

reported elsewhere.

Appendix B: Series expansion of the equalized clause recursions

To gain further understanding on the structure of the σΠ map we

examine the algebraic structure of any individual trajectories. To

complete the derivation we shall need another intermediate map ⊕Π

which we define as in (32a-b)

,...,,,,,...,,, 6543214321 ννννννλννννν ′′′′′′=→→ Π
s (C1-a)

),...),,((,),,(321534213 ννννννννν ⊕⊕⊕ =′=′=′ RRR (C1-b)

The essential difference in (C1) is that it does not contain the results of

any recursion directly but allows deriving their algebraic form.

Manipulation of the recursions in (30a-b) by repetitive evaluation of their

algebraic forms leads to a type of series of dyadic fractions as shown in

Table 4 where now the digits νi correspond to the rhs of (35a). These are

again members of an extended { })(

22

)(

22 , b

j

b

j WS −− hierarchy for any initial

clause index j. In figure 9, we show the block analysis of the relevant ⊕Π

indicator.

Due to the regular appearance of all symbols with different exponential

weightings it is preferable to rephrase them as summands over the

fundamental sequences)}(),(),({ 01 ννν bbb sss which have been resolved in

section 2. We can do so by writing the same expressions as differences

of the form

KK

)...(2)...(2)...(2)...(2)...(2

)...(2)...(2)...(2

51

2

71

2

31

3

51

3

31

4

31

1

51

1

31

2

νννννννννν

νννννν

++−+++++−+++++

++−+++++
−−−−−

−−−

Regrouping same terms leads to coefficients from common powers of 2

and can be denoted using the digit-sum function and the auxiliary

notation

()






≥

<=
−−

−

11

1

,,mod

,,

kk

k

k

bb

b

νν

ννν (C2)

to denote the number of significant symbols present as

())(2)()22()(22
7

2

5

12

3

24 ννν bbb sss −−−−− +−+−

The DNF formulas can be treated similarly with the additional restriction

that the first term has to be extracted due to a gap in signs so as to make

full use of both even and odd digit-sums. Introducing the auxiliary

function)()()(0110 νννδ bbb sss −= we can find inductively the terminal value

of any trajectory for any set of j equalized clauses as a series expansion

for any member of the set ())(

22)(b

jS S −⊕Π∈νλ in the form

()),(
2

1
)(0 jsU CNFb λδλλ −= (C3-a)

()∑
=

+=
j

n
jb

n

jCNF sj
1

21
2

2

1
),(λλδ (C3-b)

()),(
2

),mod(

2

1
)(

2

10

1 j
b

sU DNFjb λδ
λ

λδλ −+= (C3-c)

()∑
=

+=
j

n
nb

n

jDNF sj
1

2

10

1
2

2

1
),(λδλδ (C3-d)

Since, any terminal values of (37a) and (37c) by construction must have

the same properties as those of (33a-b) we obtain the summation formulas

()() ()() ()
() 




=− −
∨+

=

+∑ 32

2

1
2

1

2
22

jP

Sj
j

n
jSb

n

Sb ss
νµ

νλνλ (C4-a)

()() ()() () ()
() 




=+− −
∧+

=

+∑ 32

13

1
2

10210

2
2),mod(2

jP

Sj

S

j

n
jSb

nj

Sb bss
νµ

νλνλδνλδ (C4-

b)

The relations (38) constrain the mapping between the two different sieves

())(

22

b

jS −⊕Π and ())(

,

b

jS∨∧Π .

Table 1

Classes Clauses Overlap 1-1 nA/L Connectivity

Matrix

{SL,WL}

Satisfiability

(a)

SAT0

Equal 0 1 1 Permutation Full

(b)

SAT1

Unequal 0 1 <1 Non-Square

Permutation

Full

 (c)

SAT2

Equal 1 0 1 Square Partial

 (d)

SAT3

Unequal 1 0 <1 nA x L Partial

Table 2: Clause Equalization

 2
0

2
1

2
2

Ni S∈ν

1
st
 Clause X1 X2 X4 ν1

2
nd

 Clause 1 X3 X5 ν2

3
rd

 Clause 1 1 X6 ν3

Table 3: Clause equalization with overlaps

 2
0

2
1

2
2

Ni S∈ν

1
st
 Clause X1 1 1 ν1

2
nd

 Clause X1 X2 1 ν2

3
rd

 Clause X1 X2 X3 ν3

Table 4: SDS recursive series

Recursion

Depth

CNF

Expression over)(b

ncW row Index in)(

12

b

mS −

2)(2)(2 54

1

321

2 ννννν ++++ −− 4

51 ... bννν ++=

3)(2)(2)(2 76

1

54

2

321

3 ννννννν ++++++ −−− 6

71 ... bννν ++=

 DNF

2)(2)(2 54

1

321

2 ννννν −+−+ −− 4

51 ... bννν ++=

3)(2)(2)(2 76

1

54

2

321

3 ννννννν −+−+−+ −−− 6

71 ... bννν ++=

Table 5: Hurst Exponents and Fractal Dimensions

 Block Seq. Positive Blocks Negative Blocks

(4, 3) aH 0.787 0.620 0.828

2 - aH 1.217 1.380 1.172

D.F.A. 0.5619 0.630 0.605

(3, 4) aH 0.781 0.642 0.802

2 - aH 1.218 1.358 1.218

D.F.A. 0.613 0.641 0.654

Τable 6: SATbox utilities

Function Description

blockanalysis Block counting method for large

binary sequences.

composits Extracts 2-integer compositions of

the recursive SAT-SDS sequences.

eta The η function of section 2

ipart Generator of integer partitions

isMersenne Equivalent to isShift(x + 1)

isShift Locates all powers of two in any

interval SL

logb b-ary logarithm of integers.

rotor A special permutation map serving

as individual decoder of any integer

in arbitrary radix.

Rsymmetries Used to find the symmetries of

bitwise operators leading to (13) of

section 2.

satnegate Alternative realization of bitwise

exclusive disjunction using

permutations.

Sdb Uniform deployment of the Digit-

Sum function in arbitrary radix.

trimmer Realization of the overlap filter

(26) of section 5.

unixor Core routine of satnegate for all

swapping permutations.

WD Word Dictionary constructor in

arbitrary alphabet bases (ηb

function, the binary version being

equivalent to built-in ff2n)

WDserial Alternative Dictionary constructor

(Switching Automaton) avoiding

large memory use and overflows

 SL SL+1

Fig. 1. Schematic of two consecutive members of an Inductive Combinatorial

Hierarchy with an example of a lexicographically ordered L x 2
L
 Word Dictionary

WL=5 attached in every interval SL.

Fig. 2. Example of an Assignment Map from Atoms to Literals inside every clause in

the 2-SAT sentence () ()() ()() ()()()42313241 xxxxxxxx ⋅⋅⋅⋅ ooo with the symbols{ }o,⋅
serving as substitutes for alternating conjuction and disjunction symbols for both

DNF/CNF expressions. The set of slots on the right is in 1-1 correspondence with the

columns of W8 in a hierarchy like that of Fig. 1.

X1

X2

X3

X4

Fig. 3. The infinite subset of valid integer encodings of the two first SAT(0-1) classes

with inverted colormap (black for 1, white for 0) limited in the [0 x 255]
2
 space.

Fig. 4. (a) An example of 2-integer compositions as representations of connectivity

matrices for the last two SAT(2-3) classes, further classified according to their

complementary multiplicity parameter ρ.(b) Block analysis of the indicator function

over S12.

(a) (b)

(c) (d)

Fig 6. Examples of DNF and CNF truth tables for the SAT0 and SAT1 cases of ((1,2),

(3,4), (5,6)) in (a)-(b) and ((1), (2,3), (4,5,6,7)) in (c)-(d) expressions respectively over

all 64, 128, possible negation codes including zero words, showing certain repetitive

regularities and fractality due to the underlying swapping permutations.

Fig 7. The χC filtered bitwise conjunction and disjunction matrix for conditions (27a)

and (27b) respectively as not complements of each other.

Fig 8. The 2-integer compositions of ())(b

jSΠ for the CNF with j = 4 and 3 clauses of

maximal length of 3 bits in the extended base b = 8.

Fig 9. Complementary block analysis of the ())(b

jSΠ indicators for the CNF and DNF

problems respectively for 3 clauses of maximal length of 2 bits in the higher base b = 4.

