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Abstract: We utilize a previously reported methodological framework 

[5], to find a general set of mappings for any satisfiability (SAT) problem 

to a set of arithmetized codes allowing a classification hierarchy 

enumerable via integer partition functions. This reveals a unique 

unsatisfiability criterion via the introduction of certain universal indicator 

functions associating the validity of any such problem with a mapping 

between Mersenne integers and their complements in an inclusive 

hierarchy of exponential intervals. Lastly, we present means to reduce the 

complexity of the original problem to that of a special set of binary 

sequences and their bit block analysis via a reduction of any expression to 

a type of a Sequential Dynamical System (SDS) using the technique of 

clause equalization. We specifically notice the apparent analogy of 

certain dynamical properties behind such problems with resonances and 

coherencies of multi-periodic systems leading to the possibility of certain 

fast analog or natural implementations of dedicated SAT-machines. A 

Matlab toolbox is also offered as additional aid in exploring certain 

simple examples. 

1.  Introduction 

The Boolean Satisfiability (SAT) problems comprise a central part of 

both computer science,  mathematical logic and complexity science with 

applications ranging from Artificial Intelligence (AI) as well as circuit 

design and automated theorem proving. It is also one the first proven 

cases of Non-Polynomial (NP) problems [1], [2] for which no general 

algorithm for solving every possible case has been reported as yet. A 

modern review of the problem can be found in [3] and [4]. In this report 

we present a new methodology for tackling these problems which largely 

departs from traditional methods by making use of some analytical 

approaches following certain reduction protocols. The emphasis is not so 

much in accelerating computations for specific cases as it is towards 

deepening our understanding by looking at possible symmetries and 

recursive structures of certain supersets of all possible such expressions.  



In previous work [5], we introduced the notion of Inductive 

Combinatorial Hierarchies (ICH) to provide the means for an organized 

search of questions regarding symbolic patterns and their manipulations 

in a variety of situations including abstract computations and complexity 

measures. One of the main points behind this new setting relies in the 

empirical observation that many indicator functions defined over 

successive exponential integer intervals present a ubiquitous structure 

akin to arithmetic fractal sequences the origin of which can be traced 

back to the period mixing of counter sets. This can also be interpreted as 

a discrete analogue of interference with the main characteristic of the 

associated set of periods forming a lacunary series.  

Given that indicator functions play a major role in both the so called, 

functional [6] as well as purely functional programming framework [7] as 

well as in other areas of machine learning for uniform computability as in 

neural networks where characteristic functions are approximated via 

polytopes [8], [9], [10] the existence of as yet unexplored constraints 

imposing a hidden recursive structure manifesting as scale invariance 

over a hierarchy of domains and to a large extent independently of the 

particular problem at hand, poses a serious challenge in further 

understanding its origin and implications for simplifying a variety of 

problems and hence, achieving an ultimate reducibility in terms of  

complexity measures, either in the sense of Kolmogorov [11], [12], [13] 

or  Rademacher [14], [15] or any other possible. 

An essential step towards this direction is to recognize two major classes 

as in principle two foreign sets of possible morphisms, the first one being 

given always as an algebraic mapping of integers to integers, depending 

solely on some functions over the quantitative content (“value”) of the 

integers, while the second being applied strictly symbol-wise on their 

expansion in some alphabet base (otherwise known as “radix”) b. A 

complete arithmetization of the second class is any attempt in finding a 

correspondence between a member of the second class with one or more 

of the first one, via a set of pattern recognition attacks on a hierarchical 

lay out of the resulting sequences of outputs encoded as integers over 

successive exponential intervals, whenever these can be resolved by some 

analytical methods. As a matter of fact, the one dimensional orderly 

projection used in ICH intends to act as a replacement of probabilistic 



approaches which in cases of a fractal order being present could turn out 

being recursive. 

The current effort is focused on a double target as part of a larger 

program including (a) applications of the “et pluribus unum” principle 

introduced in [16] for finding ways to perform digital computations 

without digital design with possible applications in analog and natural 

computing, (b) reexamination of the status of complexity theory under the 

light of the same principle where large integers are treated like “black 

boxes” with pattern mappings performed via direct arithmetic operations 

and, (c) lastly, the possibility of using such techniques for formal 

verification [17], [18].  

That these same techniques are directly applicable to the case of the 

general satisfiability (SAT) problem is not directly obvious and it gives 

an opportunity for demonstrating the power of the arithmetization 

technique of which one of the main benefits is a serious reduction of the 

Kolmogorov complexity of search algorithms. While the SAT problem 

has a long history and the number of algorithms in circulation are many 

and constantly improving [19], [20], [21] we will concentrate on an 

attempt to completely arithmetize any SAT instances proceeding 

constructively in a series of progressively more general expressions of the 

overall problem starting from the more symmetric ones. 

To this aim, we first introduce the ICH toolbox in section 2 while the 

types of symmetry leading to an overall hierarchical classification and 

enumeration of all possible SAT instances are appropriately quantified in 

section 3. In section 4 we introduce a set of universal indicator functions 

admitting an analytical formulation in terms of bitwise operators. These 

can easily be generalized for problems with a redundant set of atomic 

variables and arbitrary negation literals of which the action becomes 

equivalent to that of a set of logical masks. In section 5, we perform a 

reduction via the introduction of a “clause equalization” protocol leading 

to an association of each SAT instance with the trajectories of a 

Sequential Dynamical System. These are then reduced to analytic series 

representations of some number theoretic functions which finally reveal 

any such instance to be resolvable via the product of at most three 

appropriate indicator functions. In the last section we further discuss the 

significance of fractal sequences that are revealed through the previous 



analysis and their close association with wave-like phenomena which we 

suggest that it calls for a new axiomatic framework. 

2. Inductive combinatorial hierarchies: a How-To 

We consider an inclusive sequence of integer intervals SN:[0,…,2
N
-1] 

satisfying Ν⊂⊂⊂ SSS K21 and the associated lexicographically ordered 

word dictionaries of the binary patterns for each integer in these intervals 

laid as a hierarchy of N x 2
N
 matrices Ν⊂⊂⊂ WWW K21  known also as 

binary designs [ 22]. Alternatively, any such dictionary is identical with 

the ordered set of unfolded paths of a binary tree with L+1 nodes (with 

the root  node not “visible”).These then constitute the members of a well 

formed, naturally self-similar hierarchy of which the rows correspond to 

an increasing set of periodic counters of periods Ν≤< kk 0,2 and the 

columns correspond to the decoded binary expression of each integer 

index in any interval with the least significant bit at the first row and the 

maximal one given by the binary logarithm defined as  )(log1)( 22 νν +=l

. We will consider these two directions as complementary with the row-

wise direction being termed the direction of “uniform computability” and 

the column-wise as that of “individual computability”. Any function 

which contains a coordinatization of the form f(ν,k) will then be 

considered as both uniformly and individually computable in which case 

we shall call it completely resolvable or simply complete over the 

hierarchy. An example of this construct is shown in figure 1. 

In problems of satisfiability, bounded length L expressions result in an 

exponentially large search space which is often treated via the 

introduction of a hypercube{ }L
1,0 . We shall avoid this technique here and 

we shall instead use a type of “uniform deployment” over any interval SN 

forming an integer sequence and in particular a large binary word 

corresponding to any indicator function defined over the same interval. 

We shall also associate every WL dictionary with a discrete time flow of 

the underlying set of counters which is then the equivalent of a 

“successor” function in the uniform direction while the individual 

direction serves as a “rank” map providing an ordered sequence of bits 

corresponding to the associated index of the discrete time flow. An 

“unrank” map then inverts this operation by giving back the index of a 

sequence. This allows a representation corresponding to a hierarchy of 



Boolean Dynamical Systems (BDS) with the operator formula serving as 

the “program” and the Word Dictionary as the underlying BDS providing 

the driving data. The essential property of any such BDS is that for any 

level of a hierarchy with members {SL, WL}, the individual power 

exponents are turned into periods often resulting in an arithmetic fractal 

structure of the resulting sequence. An important distinction concerns two 

classes of sequences which can be characterized as “amending” and “non-

amending” with respect to their evaluation across any level of the 

hierarchy. This depends on the possible sensitivity of any operator 

formula on a new symbol added on top of each level of {SL, WL} which 

forces reevaluation on the whole interval. As a trivial example, simple 

sequences like that of the digit-sum function are non-amending while for 

SAT indicators the opposite must be true.  

The resulting fractality seems ubiquitous and it can be observed in a 

variety of settings including such abstract cases as the set of allowed 

words of a Dyck language [23] (a concrete example can be seen in 

https://github.com/rtheo/Easy-Dyck ). This is also an example of an 

amending sequence. An arithmetized version of such indicator functions 

will then be any individually resolvable analytical expression as a 

function of the integer index solely which avoids any use of the pair of 

rank and unrank bijections entirely. If a unique formula can be proven 

inductively for any two consecutive steps then it is universal which is 

especially useful if a generating function can also be extracted. We shall 

also need to introduce a special map required for the block analysis of 

indicator functions especially in the case of an underlying fractal order. 

 This is given via some bit block counting method which performs a 

lossless mapping into a higher alphabet of the alternating blocks of same 

bits the simplest such encoding given as an alternating sign sequence { }ic

of varying length satisfying Li

i
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C
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Ν

=
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with NC as the 

“block  dimension” while the sign follows the (mod 2) periodicity for the 

first counter across any SL. We notice that the sign convention can also be 

transferred to a single additional bit given by the (mod 2) operator while 

the first and last counters with negative sign are equivalent to the leading 

and trailing zeros as often mentioned in computer science [24]. By 



construction, the set of block counters for any SL is a subset of the integer 

partitions of L [25]. In fact, one can construct the whole set of the L-

partitions by choosing a sufficiently larger L order.  

The main rule of thumb in all such cases is that an individual formula 

trades time complexity over space complexity in that recursive formulas 

for uniform computability are often simpler at the expense of exponential 

memory consumption, hence satisfying a generic type of inequality like 

CM >τ  where C some arbitrary constant. This is also strongly associated 

with the fact that the uniform direction at any level of a hierarchy is 

always absolutely ordered while any individual direction appears 

increasingly randomized at a varying degree of complexity on different 

zones of any dictionary.  Given recent advances in the Fourier analysis of 

Boolean functions [26], [27], it might be possible to promote the previous 

into a kind of “uncertainty” principle but this lies beyond the scope of the 

present report.  

In what follows, we also introduce an additional tool that we shall call 

“arithmetization”. The fundamental arithmetized operation in the above 

defined hierarchy can be given as the identity 0)( =−Ν ννId  where we 

define the identity operator via the polynomial representation as 

∑
−

=
Ν =

1

0

),(2)(
L

k

k
iId νσν         (1) 

In (1), we use the abstract symbol c(ν,i) for any bit decoding operator at a 

row-wise position k of which a frequently used analytical expression is 

given by  ( )2,2/mod),( k
k ννσ = with  denoting the floor function. In 

what follows, we shall introduce a much simpler, division-free equivalent 

expression which can be constructed from a restriction of a general 

asymmetrically 2-periodic square pulse of the form 

( )),mod(),;( 01110 ppxpppx +−Θ=η      (2) 

The η function represents an asymmetric pulse with an excitation period 

p1 and a silent period p0 giving a total period p = p1 + p0, while Θ stands 

for the modified Heavyside function with Θ(0) = 1. We notice in passing 

that the function is generic even for C∈x where it creates a regular lattice 



for Rp ∈1,0  while there is an equivalent residue based expression as

( ))1,/mod(1 pxpp −Θ .  It is then possible to reproduce the bit decoder via 

the choice  ...1,0,210 === kpp
k

 and either a phase shift of the main 

period or by taking its complement as )2,2,(1),( , kkkc νην −= . We shall 

heretofore adopt the simplified notation )2,2,(1),( kkk νηνη −=  which we 

shall call, the restricted η function. Since periods are symmetric, we can 

also provide the equivalent residue form ( ))1,12mod(2 −Θ −kx . Any matrix 

WN can then be reconstructed as a concatenation of complete constructors 

given as 

( ) NkSjkjW Njk <≤∈= 0,,η       (3) 

An alternative expression can be given with the aid of a phase shift 

120 −= kν performing a bit complement as well as with inversion of the 

Θ argument 

( ) ( ) NkSjjkjW N

kk

jk <≤∈−Θ=+= − 0,,2)2,mod(, 1

0νη  (4) 

Other elementary examples include the well known case of the “Digit-

Sum” function s2(ν) [28] and its trivial derivative, the parity function 

mod(s2(ν), 2) for which we can immediately provide a complete formula 

as 

∑
=

=
)(

0

2

2

),()(
ν

νην
l

k

ks         (5) 

The case of s2(ν) has already being proven to be also equivalent to a 

fractal function F as Fs += 2/)log()(2 ννν [29]. Similar formulas can be 

written for other important quantities as the Hamming distance which 

simply replaces the single term in (5) with the absolute difference of two 

terms. We should stress here the fact that objects like WL matrices are 

here treated as samplings of an underlying dynamics in the uniform 

direction which can be periodically extended in an infinite interval. This 

then can also be interpreted as an extension of the well known 

orthonormal Rademacher system [30] consisting of a sampling of a so 

called, lacunary sequence of harmonic oscillator signs. This also allows 



generalizing the Walsh system comprising products of the previous [31], 

[32]. Hence, any of the operators and formulas defined below can also be 

considered as particular filters sampling an underlying continuous flow.  

A set of important object expressible in a similar way are bitwise 

operators that play a major role in the expression of some universal 

indicator functions and their reduction to equivalent BDS in the analysis 

that follows. We may give beforehand a compact representation of the 

basic form of any bitwise operator denoted here as R(ν,µ) as a binary 

expansion of the form 

{ }{ }
L

L
i SrR ∈=∑

−

=
∨∧ µνπµηπνηµν

π

,,),(),,(2),(
1

0

,        (6) 

In (6) we use r to denote either a standard Boolean AND (∧ ) and OR (∨ ) 

operator. Using the periodic η function representation as in (8) we can 

perform a dissection of the above formula for any SL to show that all 

terms are superpositions of the same scaled square grids which then 

attains the form of an “interference” pattern as  

∑
−

=
∧ =

1

0

),(),(2),(
L

iR
π

πµηπνηµν                  (7a) 

),(),( µνµνµν ∧∨ −+= RR             (7b) 

The second formula is derived from the known identity 

( ) )1)(1(1 µν ηη −−−≅¬∧¬¬=∨ yxyx which when applied to each summand 

takes the form µνµν ηηηη −+ . The two operators commute over any pair of 

integers {ν, µ} with the additional “edge” properties over any intervals 

 ( ) ( ) ( ) ( ) νννννν =−∧−=−∨=∧=∨ 12,,1212,,0,,00, LLL RRRR  

and the fixed points ( ) ννν =∨∧ ,,R . Interestingly, (7b) may be used to 

define the notion of a “complement over a plane”. Computation over any 

hierarchy has the amending property.  

A mostly useful operator in the SAT analysis that follows is the bitwise 

difference or exclusive disjunction operation which can be defined via the 

expansion  



 ∑
−

=
⊕ ⊕=

1

0

),(),(2),(
L

i

i
R

π

πµηπνηµν              (8) 

where ji xx ⊕ denotes the individual XOR of each pair of bits. It is 

possible to derive it algebraically from a product of the two previous 

operators in (7) corresponding to a product of summands as

µνµνµν ηηηηηη 2|| 2 −+=− .  Using the explicit forms from (7) results in 

the identity 

  ),(2),( µνµνµν ∧⊕ −+= RR       (9) 

Hence, the bitwise exclusive disjunction is identical with the difference 

operator ∧∨ − RR . With the aid of (7a-b) and (9) we can then write the 

equivalent forms  

( ) ( )( )νµνµνµ ,
2

1
, ⊕∨ −+= RR               (10a) 

( ) ( )( )νµνµνµ ,
2

1
, ⊕∧ ++= RR               (10b) 

An important property of many such objects when expressed as 2
L
 x 2

L
 

matrices over exponential integer intervals has already been recognized 

as the origin of many arithmetic fractals by others [33], [34], [35]. Some 

uses of arithmetic fractals appeared recently in [36]. The block analysis of 

successive rows of fractal matrices reveals a complicated pattern of 

modulated block periods with no obvious expressions for p0 and p1 and 

leads to the need for special interpolation methods.  

A fundamental property of these operators associates (8) with a special 

subgroup of the permutation group. Let then a triplet of integers as {λ, µ, 

ν} such that λ + µ = ν. Let also their binary expansions be given as

{ }νµλ σσσ ,, . Since the two first form a restricted 2-integer partition of ν, it 

must hold that  

)()(,1)()( iiii µλµλ σσσσ ≠∀=+  



We may then call λ and µ the “partial negation codes” of ν as each of 

them can be used to invert certain bits of ν via νλ σσ −  or νµ σσ − . The 

action of any negation bits is a bitwise operation in any pair (µ, ν) which 

is identical with a bitwise exclusive disjunction hence it is straightforward 

to extract the total action of any bitwise negation in SL via an additional 

operator applied as a transformation on all inputs of (21a-b) in the form

),( νµνν µ ⊕=→ R . This also leads to the simultaneous identities 

( )( ) ( )µννµνµ 22 ,),( sRsh == ⊕ for the Hamming distance h of any two 

positive integers.  

Let then, an arbitrary exponential interval SL and a negation mask coded 

as an integer LS∈µ with a binary logarithm λ = l2(µ). For the case of the 

marginal value of 12 −= L

Lµ , it acts as a total negation operator 

satisfying the known identity 12 −−= νν L  while for all other cases it 

corresponds to a partial negation. Let then νµ be the greatest integer in any 

SL such that for any ν in the same interval we have 






+=
λµ

ν
νν

2
         (11) 

Then νµ has the same most significant bit at the level of any partial 

negation the rest of the bits of any ν being invariant under µ. Let then µν

be the result of any partial negation in which case we immediately have 

the following obvious identities 

12||,||||,0,0 −=−=== λ
λλλµµ µµµ SSS       (12) 

For any 2
L
 x 2

L
 matrix over all pairs of (ν, µ) values, (12) fixes the main 

diagonal and the first and last columns of inverse order. We may also 

classify separately the cases of µ = 2
i
, i=0,…,L-1 for which the sole action 

is the reversal of the corresponding period at the same significance level i 

resulting always to a permutation class analogous to the corresponding 

period. Hence, for µ = 1 we get an action isomorphic to a swap matrix 

between even and odd indices giving simply LS∈−+= ννν ν ,)1(1 .  

Similarly, for µ = 2, for which we can write a scaled version as 

LS∈−−= ννηνν ],1)2,2;(2[2~
2 and so on. For all other cases, we will have 



a mixture of swaps creating a total permutation. For instance, in case of 

µ= 3 we first find the uniform deployment of all partial 1-negations as the 

sequence 1 0 3 2 5 4 7 6… followed by the partial 2-negations giving as a 

total the new sequence 3 2 1 0 7 6 5 4… This way every one of the 

intermediate partial negation codes in every SL can be classified 

accordingly. The level of the most significant bit also determines the 

“locality” or neighborhood dependence for each particular µ code. Αn 

alternative treatment is given in App. A, where a direct relationship is 

proven between individual permutation elements and 2-integer 

compositions of any µ code.  

An additional property directly associated with the internal mirror 

symmetry of any WL array can be given through the restricted 2-integer 

partitions of any 2
L
 – 1 integer of which the binary expansions are always 

the total bitwise not-complement of each other. When the total 

complementation is used in any of the arguments of any of the three R 

operators defined previously, it performs either a left right or an up-down 

flip of the resulting matrix for all 2
L
 inputs. We can numerically verify 

that any total summand of the form ),(),(),(),( νµνµνµνµ RRRR +++ will 

evaluate in a constant matrix with its unique value being always )12( −Ls

with s = 3, 2, 1 for bitwise disjunction, exclusive disjunction and 

conjunction respectively. We notice that the s integer is the number of 

truth values in the elementary symbol-wise version of each operator. The 

three separate summands that result are equivalent to three linear 

functional equations. Using also the decompositions (10a-b), one can 

verify that they are compatible with the total summands. One is then left 

with a unique functional equation for the exclusive disjunction operator 

of the form 

( ) ( ) ( ) ( ) 022)(),()(,),(, 1 =+−+++ +
⊕⊕⊕⊕

L
ffRfRfRR µνµνµνµν  (13) 

In (13) we used 12)( −−= νLvf  for the total complement over any SL to 

emphasize the resulting functional forms while the order L can also be 

taken as ( )},max{2 µνl . We would like to stress the importance of (10) and 

(13) as well as the restricted integer partition property of App. A for 

further development of a bitwise calculus that could reveal the existence 

of register-less logical machines with as yet unknown types of fast, 

analog implementations. 



Last, we provide a useful extension of the binary hierarchy on higher 

alphabets that can be given with an inclusive sequence of larger interval

]1,...,0[:)( −Lb

L bS . A complete hierarchy shall comprise the objects 

{ })()( , b

L

b

L WS where )(b

LW  shall be an associated matrix from a lexicographical 

ordering of multiple step counters with a scaling of order b
i
. To provide 

an analytical form we expand the previous definitions appropriately. 

Consider then any set of b-counters as constructors of an associated )(b
W  

matrix given as  
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We can replace (13) with a new division-free version of a generalized ηb 

function where a standard η function replaces the scaling factor as 

( )∑
−

=

−− −==
1

1

11)(
)(,;),(

b

k

jj

b

b

ij bkbkbijiW ηη      (14) 

In the above we use an accumulator of ones for the reconstruction of each 

symbol while periods form a restricted 2-integer partition of the scaling 

factor b
j-1

. Using the residue form of the original η function we can also 

write the expansion terms as ( ))1,)/mod(( 1 kbkxb j −Θ −
. 

The generic expression in (14) leads to a curious algebraic structure when 

one uses the alternative expression of the Heaviside function in the 

original definition of the η function as ( ) 2//1)( xxx +=Θ , by noticing the 

fact that the absolute value in the denominator of the sign equivalent is 

restricted to the ternary alphabet thus making possible the identification

( ) 1)(,3 −≅ xjxx η . Using the original definition as ( ) 2//11),,( xxpp +−=′νη  

where x stands for the internal function ),mod( ppp ′+− ν  then leads to 

an additional identity where every base expansion term ηb can be 

expressed with the aid of a modulated version of η3 solely, including η3 

itself. Using an appropriate match f(j,k) for the original periods in (10) 

and the equivalent (mod 1) form of η results in a summation formula as 
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The presence of poles in the above suggests that these objects should be 

studied as a set of merorphisms in the complex plane rather than the 

restricted integer domain we are interested here. The significance of the 

above goes beyond the scope of the present work so we only mention it 

here for the integrity of the presentation of the new generalized ηb 

functions.  

Let now )(νbs  be the higher order digit-sum function exhausting all 

values in any bounded interval{ } )(Nb,…0, b

NS∈∀ν . We shall also need to 

define a pair of΄”even/odd digit-sums” satisfying )()()( 01 ννν bbb sss +=  

written symbolically as 

( )∑
−
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−=
1)(

0
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bb bkbkbs                 (15a)

( ) }1,0{,)(,;)(
1)(
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We shall also define another auxiliary sequence as )()()( 0110 νννδ bbb sss −=

.As these are relevant for the SDS analysis of section 5, we are interested 

in resolving them based on their internal regularities which have a natural 

recursive structure and self-similarity. These allow their uniform 

deployment via concatenative operators and simple reproducing maps 

{K1,…,Km} acting on an initial core sequence s0 as  

[ ])(),...,(, 1111 −−−← nmnnn sKsKss  

It is then possible to resolve their individually computable expressions via 

a set of standard elementary number theoretic functions where modulo 

operations capture periodicities and different types of scaling are used for 

repetitive indices. Using these techniques one can isolate successive 

subsequences until the complexity of the original sequence is exhausted. 

Applying this technique into the uniform evaluation of both )(νbs  and 

)(10 νδ bs  sequences shows that they can be interpolated with the formulas 
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We have heretofore, described a toolbox that shall be of aid in an effort to 

make a full transcription of SAT problems into their arithmetized forms 

where further analytical manipulation can be made possible. 

3. Hierarchical classification of SAT problems  

Next, we proceed to a hierarchical classification of both Conjuctive and 

Disjunctive Normal Forms (CNF/DNF) for any SAT problem which is to 

be applied at any level of the ICH defined in the sense of the previous 

section. To this aim we have to introduce an intermediate assignment map 

as follows. Let us assume a set of nC “slots” for each clause over L total 

positions and a set of nA arbitrary Boolean variables referred to as the 

“atoms” of a CNF/DNF expression to be assigned to each slot 

accommodating a number of {ni} positions conforming to one of the 

integer partitions of L  

∑
=

=
Cn

i

inL
1

  

Then any CNF/DNF proposition can be abstracted to a set of nC 

parentheses as {(x,y,…),(z,…),…,(w,…)} before the specific order of 

logical operators being applied for evaluation which is effectively, only 

one more bit. Such a case corresponds to a diagrammatic network 

characterized by a specific connectivity matrix under the additional 

constraint that each map of input atoms to the literals codomain of any 

clause being non-injective and surjective but with many-to-one 

connections disallowed. The presence of negation operators in the 

translation of atoms to literals (‘x’ vs ‘~x’) inside any clause can then be 

taken care of by the use of a weighting factor {-1,+1} in any connection 

arrow from atoms to slots.  

Given any particular connectivity diagram we may then discriminate 

between different cases with the following characteristics. For any set of 



nC slots we can have either a 1-1 mapping with no overlap between 

clauses or a redundant mapping where several initial atoms are used in 

multiple positions in different clauses. Any set of expressions can also be 

parametrized by the number of negative weights so that for any 

expression we can have up to 2
L
 distinct “negation codes” which can be 

encoded as integers including the identity of atoms and literals (0-code).  

To properly characterize any given SAT instance we need to separate 

between instances of exactly k distinct atoms in all clauses (k-SAT) or 

less. To this aim we introduce a total overlap ratio 10,/ ≤<= iAi Ln λλ  

where nA the number of input atoms with the case λ =1 corresponding to a 

unique 1-1 assignment. This particular parameters serve to define an 

amount of non-uniqueness in the set of unique Boolean variables entering 

any such expression with the symmetric ones being given for λ = 1. 

Notably, due to a well known Local Lemma of Lovasz [37], any k-CNF 

formula is satisfiable if every one of its clauses has a common overlap in 

at most 2
k-2

 positions or equivalently, the same number of non-zero 

entries in a connectivity matrix rows. Recent work by Moser [38] as well 

as Moser and Tardos [39] revealed a randomized algorithm based on a 

new lemma according to which there is always some constant k0 such that 

when the overlap does not exceed 2
k-k0

 the k-CNF problem is satisfiable 

and a satisfying assignment can be found in polynomial time τ ~ p(nC).  

We can now separate SAT instances into at most four distinct classes 

which allow their parametrization to be given in terms of appropriate 

indicator functions and integer codes over any member of a combinatorial 

hierarchy. Specifically, we may discriminate between (a) 1-1 k-SAT 

expressions with equal length clauses, (b) 1-1 SAT with unequal clauses, 

(c) k-SAT with overlapping, equal clauses and, (d) SAT with overlapping 

and unequal clauses. The additional parametrization of each expression 

with a Boolean negation code can be given as an independent dimension 

of each problem via a separate integer encoding. This allows the direct 

visualization of the influence of all possible negation codes as a 2
L
 x 2

L
 

Boolean matrix. In order to make this algorithmically tractable we need to 

devise a method of applying each expression as an appropriately 

parametrized operator to all the elements of a WL matrix as defined in (3) 

or (4) for each separate negation code corresponding to a row of the final 

matrix. To this aim, we utilize the weight encoding of the original 



assignment map which can be brought to a strict binary format in {0,1}
L
 

with each one denoting the presence of a negation operator in the 

associated literal. 

To provide a complete integer encoding for the previous classification we 

start from the two 1-1 classes (a) and (b) with the observation that for 

each total length L for any interval SL, the set of all possible clauses 

coincides with the set of integer partitions of L, hence for each and every 

member {SL, WL} of the associated binary ICH, the number of possible 

SAT expressions grows according to the well known integer partition 

function P(ν) [25] (sequence A000041 in Sloan’s OEIS). If we use the 

notation {ν} for the set of tuples {n1,…,nk} comprising all members of the 

set of partitions and { } νν ≤< kk 0, for any particular member of k elements 

from an ordered list then it is possible to provide a fully arithmetized 

code for each member of a SAT class with L total atoms as a unique pair 

(L, {L}k) mapping from the set of all such tuples to the integers  

{ } 1,...0, 00

0

−=<<<≅∑
=

LnnnLnL k

k

i

i

ik   (17) 

For instance, the partitions of 4, given as {3+1, 2+2, 2+1+1, 1+1+1+1} 

are mapped to the sequence { } { }85,22,10,74 → with the maximal element 

always giving the trivial, all ones partition in class (a). Notice that an 

inverse sorting of ni resulting in a different subset of pairs of partitions 

per base L. In figure 3 we show the result of computing all such valid 

encodings for different bases L > 2 for both sorting types. The same code 

can be used as a partition generator under the constraints of monotonicity 

and non-zero coefficients as in (14). We also checked the inverse method 

of producing SAT codes from each partition with an independent 

partition generator based on block counting revealing a similar 

distribution as in figure(3). Details of the methods are reported in section 

6. The above method characterizes uniquely and exhaustively all SAT 

expressions of the two first classes corresponding to any particular 

member of a hierarchy, the length of any particular partition member 

given also as the L-ary decoding of the associated integer code. Hence, all 

members of the classes (a) and (b) can be derived from the tuple 

{ }{ } Lk SL ∈µµ ,, where µ stands for the associated negation code. We 

mention in passing that the presence of fractality in the set of integer 



partitions has been recently proved by Folsom et al.[40 ], as well as  

Brunier et al. [41]. A uniform indicator function over any exponential 

interval becomes now a map{ } { }1,0→× Lk SL .  

For the last two classes (c) and (d), the numbers of nA input atoms, nC 

clauses, and separate populations of literals per clause { } Cn

i

C

ip
1=  are 

independent parameters. In such a case, the connectivity matrix of the 

assignment map ceases being a mere permutation. Let then, mi stand for 

the multiplicity degree (number of one bits) in any column of the nA x L 

connectivity matrix in the associated assignment map from atoms to 

literals. For κ such degenerate rows with nA – κ single atom inputs taking 

into account the structure of map from atoms to literals not allowing 

many-to-one connections, every mi must count a unique literal so that we 

must have  

Lmnn
i
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n
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i
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This simplifies using the overlap ratio λ as 

κλ
κ

+−=∑
=

Lm
i

i )1(
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             (19) 

We can now associate members of the (c) and (d) classes with the set of 

partitions{ } AnL <<+ ρρ 0,  where we have introduced the parameter 

κρ −= An as a new dimension of the total search space. Notice that in the 

case of  nA = κ, we have just two different partitions of L which is still an 

incomplete description. To find a complete mapping to any level of {SL, 

WL} we need to complete a tuple { } { }{ } Lk SLL ∈+ µµρ ,,, with an additional 

encoding sufficient to cover all the information of a degenerate 

assignment map uniquely identifying each and every row of the relevant 

connectivity matrix. Each and every such row maps an atom to one or 

more literals. If all such rows are interpreted as separate, distinct integers 

{νi} then, the previously introduced multiplicities are associated as

)(2 ii sm ν= while every such integer is sampled from the corresponding 



combinatoric subset 








im

L
in the relevant expansion of 2

L
 when 

unconstrained. W can now prove that for any such matrix w and a pair of 

an 1 x L vector v with elements vi = 2
i
, I = 0,…,L-1, and a nC x 1 vector 1, 

the identity 
L2=⋅⋅ vw1  holds.  

The proof is a direct consequence of the map from atoms to literals in 

each clause corresponding to rows and their integer codes νi. By the same 

token that led us to the identity (17), each separate row of any such 

random matrix must not have one bits in the same column for all 

corresponding columns. Moreover, the previous property of no common 

one bits is essentially the same as the requirement in App. A on the 

Hamming distances between all κ(κ-1)/2 pairs satisfying 

( ){ } 2/)1(

},{22 )()(,
−

−=−=
κκ

νννν
ji

jijiji mmssh          (20) 

Hence, addition of any pair of such integers increases the sum of digits 

additively as already mentioned in App. A. As a result, any integer codes 

for the rows of a connectivity matrix must be a subset of the restricted 2-

integer compositions of 2
L
-1. We shall denote the maximal subset of 

these partitions as { }{ }12 −L
. 

It is then in principle possible to construct a sieve using (20) as a filter 

which given two partitions of L as { } { }
mC LL ρ+× the first being used to 

decode the number of clauses nC and the second for deriving the 

multiplicities mi. The filter can be used to extract only the relevant 

partitions out of the { }{ }12 −L
 subset. The most direct way for 

exhaustively enumerating the subset of all possible matrices can be given 

through a special indicator function over the interval LnA
S where strings 

are interpreted as a sequential concatenation of each such matrix rows, 

each of them being valid when it satisfies the condition 
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These can be further classified according to the number of isolated 

periods (powers of 2) in each substring of length nA. Results for the case 

of such a classification are shown in figure 4 for an example of nA = 3 and 

L = 4.  A complete identification of the last two classes can then be given 

with a tuple { } { } { }{ }{ }µρ ,12,, −+ L

mC LL . In Table 1, we review the basics 

of the classification presented here with some additional properties that 

shall be proven in the next section where we also complete the 

examination of appropriate indicator functions for all the classes 

separately. 

4. Universal Indicator Functions 

We proceed with the construction of analytical formulas of appropriate 

indicator functions for the arithmetized version of any CNF/DNF 

expression. To begin with, we shall ignore overlaps and consider only the 

first two classes SAT0-1 following the nomenclature of Table 1. 

Evaluation of any similar expression is a two stage process, the first part 

being the assignment mapping atoms to literals in a sequence of nC 

parentheses ( )
iikj pkpj =+= − ,1,,..., 1σσ followed by evaluation of each. 

At the second stage, bits from each clause evaluation shall form a new 

word of nC bits for final evaluation. Each parenthesis can then be 

interpreted as a binary expansion associated with a unique new integer

Ci ni ,...,1, =µ  such that all clauses can be arithmetized. The complete 

arithmetization of the input expression will then be given by the total 

code
Lnc

piSp

S S∈+++= µµµν )(

2

1

1 2...2  where we used S(pi) to 

denote the partial summands of all clauses atom populations with the 

convention S(n0) = 0. Negations can be encoded as separate integer codes 

or logical masks translating the original { 1± } weights of the assignment 

map into {0, 1} codes and identify them as a new unique integer. Overlap 

codes can also be given as separate integers with ones indicating all pairs 

of logical variables with the same index. In this section we provide a pure 

analytical expression for indicator functions over any SL in the absence of 

negations and overlaps restricting attention to the relevant classes SAT0 

and SAT1, while the rest shall be treated separately in the next section 

with one additional special indicator associated with unsatisfiability. 



Each clause number µi has to be processed separately so that we need an 

inverse map for extracting the whole tuple from any integer in SL via the 

below equivalent operators 

( ) )(0,,22,
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Processing each clause integer separately requires finding an arithmetic 

alternative for a recursion of the form kjmxxx jmnn ,...,1,, 11 +==←+ σσo . 

To this aim, we introduce a generalization of the parity function which is 

normally derived from the sequential exclusive disjunction of successive 

bits in any binary word, introducing a “C-parity” and a “D-parity”, 

denoted as )(),( νν ∧∨ pp which can be typically written as 
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The second form results from the algebraic expression of the logical 

identity ( )yxyx ¬∧¬¬=∨ which when applied simultaneously to all bits 

in an expansion turning D-parity to an equivalent C-parity for total 

complements. It is then trivial to show that for any interval SL the only 

non-zero value of )(ν∨p is a Mersenne number 2
L
 – 1 as any other pattern 

contains zeros which falsify the specific clause. Similarly, only the zero 

word satisfies )(ν∧p . To construct a global indicator function over any SL 

we shall then need two auxiliary characteristic functions over the integers 

as 
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An equivalent analytic form of a Mersenne number detector can be given 

as  )12/(),( −= l

C l ννχ  and the use of complements makes χC sufficient 

for both cases. We then straightforwardly identify )(ν∨p with

( ))(, 2 ννχ lC and )(ν∧p  with ( ) )(1)(, 2 νννχ ∨−= plD . The use of χC 

only is suggested from the crisp truth values over any interval allowing 

the use of a Mersenne number detector. 



The previous definitions allow us to derive analytical expressions for the 

two main indicators in a purely functional approach by noticing that the 

second processing stage is simply { }( )nc

ipp
1

)( =∧∨ ιµ and { }( )nc

ipp
1

)( =∨∧ ιµ for 

the CNF and DNF cases respectively, resulting in the following explicit 

forms for any Ls S∈ν   
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The forms in (23) can be further simplified by noticing that it is sufficient 

for each separate indicator per clause to be one for the CNF case or their 

summand to be nonzero for the DNF case. Using also the cumulant 

summand S(pi - 1) of all clause values reduced by one to fit into the form 

of the σ operator of (22) leads in the expressions 
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Since (24a-b) contains only summands of single bits and all divisions 

correspond to single bit shifts the overall complexity depends mainly on 

the modulo function. Current implementations for arbitrarily large 

integers and infinite precision have a logarithmic complexity such that we 

can propose an estimated total complexity of the above indicators of the 

order of ( )Cn
)(log~ νΟ  apart from some minor overhead. We notice that 

there is a kind of “resonance” mechanism involved in the evaluation of 

(21) in that every exponential interval represents a full “phase coherency 

interval” for the underlying counters while any intermediate uniform 



column of any WL will also have partial coherency intervals at positions 

given by a sequence like 120,2 −−+ ≤< jLji
kk for any intermediate column in 

bit positions Ljijii <+ ,),,...( . Falsification of the total expression can only 

result as a loss of all coherencies between the nC individual indicators.  

5. Negations, overlaps and unsatisfiability 

Next we move to examine the significance of the additional negation and 

overlap arithmetized codes where any such code distorts the original 

coherencies of the {SL, WL} hierarchy thus acting as a cut-off filter by 

exclusion of certain subsets and nullification of the original indicator 

functions in the remaining allowed sub-intervals. To this aim, we keep 

the original direct association of any SAT expression clauses with the 

rows of a WL array without removing the redundant variables. By doing 

so we choose to work again with an overall search space of 2
L
 instead of 

2
λL

, which is to be restricted with the introduction of some intermediate 

maps M(ν)over any SL interval acting as logical masks in the uniform 

direction and filtering out the appropriate subset. These can be computed 

for any specific overlap ratio λ < 1, and any particular assignment map 

under the demand that specific columns of the WL must conform to the 

condition of certain bits being identical at different significance levels for 

each column. We keep the negation as a mapping between indices and 

apply both operations as a total mapping ( ) ))(,( ννµνν µ
O

SRM 1⊕=→

where µ stands for the arithmetized negation code using the bitwise 

formalism introduced in section 2 and the product with the overlap 

indicator discarding indices out of the particular sub-class. 

Assume then 1−im  independent pairs of literals each with a degree of 

degeneracy di, among all clauses that have to be constrained with the 

disjunction or conjunction of a total of logical conditions of the form

{ } Ljixx ji ≤<= ,0, applied in every individual column of any WL. This is 

equivalent to the not-complement of the exclusive disjunction of any two 

bits which leads to the additional logical mask as a product over all the 

numbers of pairs in the form 
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Since, any uniform deployment turns different significance levels into 

periods this can be redefined as a total synchronization function or 

multiple bitwise conjunctions between remote periods for each literal. 

The above can be greatly simplified with mi bitwise conjunction operators 

acting on each integer index in any SL via a set of arithmetized overlap 

codes. These are to be extracted by the direct translation of the associated 

mi binary rows in the connectivity matrix of the original assignment map 

into their integer values as{ } im

i

O

i 1=κ . Both one bit and zero bit coincidences 

can be incorporated utilizing the internal mirror symmetry of the total SL 

interval to obtain 

( ) ( ){ }







+= ∑

−

=
∨∨

1

1

},{
,,

1
),(

i

ii

m

i

O

i

O

i

i

ld

i

O

S RR
m

m νκνκν1
        (26) 

Having completed the construction of the appropriate indicators and the 

necessary logical masks, we proceed with the construction of Global 

Truth Tables (GTT) as 2
L
 x 2

L
 matrices corresponding to a map 

{ }1,0→×× LLL SSS where the second SL domain will contain all possible 

assignments of atoms to literals, the associated new integers LS∈µ  

standing for the “negation code” and the third one containing the 

relevant overlap codes so as to cover the additional SAT2 and SAT3 

classes. We use σ = 0, 1 for CNF or DNF forms from now on.  A 

definition comprising all the necessary problem data can be given as a 

functional composition of the form 

( )( )( )},{)()( ,, ii
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SS mR ννµσσ 11T ⊕=          (27) 

We shall readily show that each such matrix is an ordered object with the 

main information contained in the first “root” raw corresponding to µ = 0, 

the rest being simply permutations.  

The uniform permutation classes guarantee that for all possible negation 

codes on the same instance of any SAT expression the initial number of 

truth values is conserved thus leaving any true values untouched.  



Let f(ν): Z � {0,1} be any Boolean function and consider the composite 

( )( )νµ,⊕Rf . For µ=1, the action of any negation code is trivial 

consisting of swapping permutations between adjacent bits of the output 

of f for any uniform deployment. The block analysis of f in any SL shall 

evidently remain invariant if no block counts start and/or end at odd 

positions with every swapping taking place internally to each block 

otherwise the block vector length shall increase. Any such permutation 

depends on the binary expansion of µ and commutes always a block of 

numbers of exponential order analogous to the periods in the µ expansion. 

Thus, for any block structure to contain an invariant block at position i, 

the partial summands must satisfy  
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Using any large random binary vectors one can verify numerically that 

the above results in a fractal structure for any matrix over all µ in any SL. 

We conclude that all SAT expressions in the first two classes must be 

satisfiable if they are satisfiable for µ=0 and the addition of any negation 

code is in fact a redundant operation. It is only after imposing additional 

constraints due to overlapping clauses that satisfiability is threatened.  

Next we observe that the additional overlap filter in (26) is increasingly 

restrictive as any term of lower periodicity is trimming the total interval 

by excluding certain subsets much like the recursion leading to a Cantor 

set but in more irregular ways. This in turn reveals a simple criterion for 

unsatisfiability immediately retrievable by inspection of the connectivity 

matrix structure in the assignment map. Specifically, we recall that all 

overlap codes and their binary expansions are by construction made so as 

to form a restricted integer composition of 2
L
 – 1, having no common one 

bits. Whenever the overlap codes cover all significance levels of 2
L
 – 1 

the trimming filter in (26) will exclude all input indices in any SL interval 

apart from the zero and ones words of length L. Hence, we conclude that 

the sole responsible for complete unsatisfiability of any SAT expression in 

the last two classes is the case of the overlap codes leaving no non-empty 

subset for applying the indicators in (23) or (24).  



Both the interaction of periodic functions like η, as well as the trimming 

operators of (26) always results into multi-periodic structures which then 

act as filters on a similar structure produced by the universal indicator 

functions making satisfiability a kind of “resonance” effect where one or 

more periods preserve a degree of coherency between them. These effects 

pointing again to a certain relation with dynamical models and BDS 

implied a particular reduction technique in the next section adding more 

flexibility in handling arbitrary SAT expressions by turning them into 

trajectories of a special class of dynamical systems. 

6. Sequential Dynamical Systems and clause equalization 

We now attempt to bring every SAT instance for all four classes under a 

common format of a special class of discrete dynamical systems which 

will allow processing all literal values in tandem, a mathematical 

analogue of parallel processing via a compact, arithmetic fractal object 

defined as the bitwise operators of section 2. Notably, this class belongs 

to the more general case of so called, Sequential Dynamical Systems 

(SDS) of which an in depth analysis can be found in [43] and [44]. The 

latter also defines the important notion of permutation complexity which 

here takes a particularly simple form. The transcription requires an 

indirect relation with the previously introduced hierarchy in order to use 

the bitwise operators along different clauses and for this we will have to 

bring all clauses to an equivalent encoding of equal length, a feat which 

can be accomplished with different protocols for each class as follows.  

Let Sm be the interval associated with m = max(pi), the maximal clause 

length. Then we ask to find a method for reducing any unequal clauses 

without overlaps to equal clauses and the same for unequal, overlapping 

clauses. Following the nomenclature reciewed in Table 1, we have the 

following two cases 

1. SAT1 � SAT0:  

 

If we consider only positive weights for the assignment map,  

atoms and literals are identical and the numbering of input 

variables allows them to be separated into nC distinct groups of N 

literals with L= nA = mnC. All possible inputs can then be put into a 

direct correspondence with a sequence of integers{ } nc

mnc S∈νν ,...,1 .  



For the case of unequal clauses of SAT1 we can use the invariance 

of the truth values kk xxxx ∨∨=∨∨∨ ...)...( 111 to show that we can 

replace all missing entries for a maximal clause in every literal 

with units until we have )max( inN = for all clauses. To give an 

example of the procedure we take an arbitrary CNF formula as for 

instance ( ) ( )654321 xxxxxx ∨∨∧∨∧ . In Table 2 we show the 

resulting reduction to the maximal number of three bits per clause. 

Notice that the order of appearance of X3 and X4 is irrelevant when 

taken uniformly and it could be exchanged so as to have all atom 

indices sorted. Evidently, the resulting 3

NS  bitwise product of 

integers for such a case can be filtered so that only certain bands 

inside each interval will be used with a logical mask stabilizing 

some of their bits. Logical masks for the excluded subspaces can 

be easily precomputed out of the symmetrized 2
9
 search space by 

noticing that the particular sorting of significant levels chosen in 

Table 2, for any instance of SAT1, since all atom indices are 

distinct can always be brought in front of the one blocks so as to be 

bounded as i

pP

i

P
pmPi −=−≤≤− +

min

minmin ,1212 ν where pi 

the original number of unique atom indices in any clause.  

 

2. SAT3 � SAT2: 

 

Any such one-to-many assignments can be accommodated with the 

demand of certain intermediate bits of the encoding integers being 

identical in any interval SN or the equivalent method of (26) and 

(27) for building a logical mask. With regards to the previous 

example we may now write a similar formula for such cases as

( ) ( )321211 xxxxxx ∨∨∧∨∧ . Again, we show the corresponding 

reduction scheme in Table 3.  

With the aid of the bitwise operators we can now construct a basic 

recursive formula for a universal Conjunctor following the definitions 

and identities of section 2, where we also use an additional bit σ for CNF 

(0) and DNF (1) as 

( )( )1210 ,,...,,),...,( ννννν ∨∨= RRU mm              (28a) 



We can similarly write a complementary universal Disjunctor directly.  

( )( )1211 ,,...,),...,( ννννν ∧∧= RRU mm              (28b) 

Satisfiability is now translated in the following conditions for the m-step 

trajectories while the same conditions hold for each individual step  

12},...,{,12),...,( 110 −<−= m

m

m

mU νννν          (29a) 

12},...,{,12),...,( 111 −=−< m

m

m

mU νννν             (29b) 

Inclusion of non-positive weights for literals is directly applicable via the 

same methods used in the previous section. We notice the 

complementarity between CNF/DNF conditions which appear extremely 

restrictive on the set of either the terminal or the initial conditions 

respectively. We can now reformulate the answer to the general 

satisfiability problem as the existence of a basin of attraction of each of 

the two complementary domains for all trajectories starting from their 

complement. This can also be interpreted with conditions (28a-b) taken as 

a sequence of binary filters for the uniform expressions of the ∨∧,R

associated matrices. In figure 7, we show the form of the bitwise 

conjunctive operator for both conditions of (28) while the equivalent form 

for the bitwise disjunction is trivial with only one zero or non-zero 

position at the boundary value R(2
m
-1,2

m
-1). Since, the problem is 

answerable for both SAT0 and SAT1 classes; the reduction performed via 

the equalization process only leaves the SAT2 case to be explored. 

To understand the particular type of dynamics associated with (28a-b) we 

recall that both bitwise conjunction and disjunction can be reduced 

algebraically into the single bitwise difference (exclusive disjunction) 

operator ∧∨⊕ −= RRR  which has been proven equivalent to uniform 

permutations.  

The system of (28a-b) has a unique and interesting property that the total 

map can be split into a linear combination of a pair of simpler “local” and 

a non linear, “non-local” map, of which the first additive one acts 

“locally” in any individual trajectory while the second, is conservative 

only when taken as a permutation in the “non local” uniform direction. In 



App. A, we discuss how the second part could also be localized by 

replacing the difference operator with a restricted 2-integer partition of 

one of the two arguments as ( ) 2/),(),( 1011101 iiiiii ννκννκνν +++ ±+ m  but no 

efficient sieve has been found as yet for choosing the appropriate 

localizing pair out of the total set.  

We observe that the permutations are controlled in a different manner 

depending which of the two arguments is used as the equivalent negation 

code so that given a pair of vectors v = [0,…,2
m
-1] we can write the 

equivalent expressions for the uniform  row-wise or column-wise action 

of ⊕R  respectively 
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The matrices ( )],[ jP νη are permutation matrices of order controlled by 

the successive bits in the binary expansion of each argument and each 

method differs in complexity unless kss ii == + )()( 122 νν  when the two 

integer expansions belong to the same combinatoric subgroup 








k

m
. We 

can still choose all trajectories to conform to a minimal complexity 

definition by switching between the alternative branches of (30).  Then 

the total permutation complexity for any trajectory as defined in [44] is 

given by the frequencies of different permutation classes which are here 

directly analogous to the digit-sum. Since Shannon entropies are also 

analogous to the same quantity for binary expansions, the overall 

permutation complexity for all trajectories is analogous to H({νi}).  

Since the totality of (28) is a conservative operation for any uniform 

deployment, one can consider an alternative expression of (28a-b) as 

2/)( 1 kii ννν ±++ with k here being a dummy index running on all possible 

triplets with the constraint that the first 2-summand must belong to the 

same congruency (mod 2) with νk, a property which was built in the 

original definition of the bitwise operators by construction. We can then 

reconstruct a hierarchical classification of all possible trajectories with 

the aid of the higher radix hierarchies defined near the end of section 2, as 
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for any SAT expression with m equalized clauses of maximal atoms 

population. Since the new intervals and dictionaries are defined on 

powers of 2, they are “resonant” with an equivalent binary dictionary

)(b

mPS . This makes any total encoding of a SAT expression as 

1

1 ... −++= m

mS bννν  equivalent to a simple concatenation of all νi binary 

expansions. 

Next, we create a new mapping σΠ  from any number of equalized 

clauses to any trajectory of the form of (28a-b) as an index interpolation 

scheme of the form  

,...,,,,,...,,, 5432103210 ννννννµννννν ′′′′′′=→→ Π
s   (30a) 

),...,(,),,( 22423102 νννννννν σσ ′=′=′=′ RR    (30b) 

The new mapping associates any member of any original hierarchy with 

an extended one as 
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j
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The representation in (30a-b) is privileged in that any answer to any SAT 

expression becomes directly visible in the uniform deployment in the new 

enlarged alphabet. Thus for any two clauses, the answer can be directly 

“read” from the third digit, for three clauses we get the answer at the 

fourth digit, and so on. For any number of j clauses, the extended 

sequence will contain exactly j-1 steps of the original recursions in (18a-

b). The simplicity of the above scheme allows derivation of the original 

conditions (29a-b) in the simpler symbolic forms for any total codes 
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The conditions can be compacted into a compound, universal Boolean 

discriminant as 
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The above immediately provides an effective algorithm for locating all 

possible answers given any method by which the σΠ map would be at 

least uniformly if individually computable. A more technical analysis of 

the algebraic structure of the original recursion and its relation with the 

sequences (32a-b) is given in App. B.  

Finding an efficient, fast sieve for σΠ appears to be of paramount 

importance for the generic SAT problem given the above redefinitions of 

the original problem where the overall SAT complexity reduces to the 

study of the irregularities in the block analysis of the two ( )Sνµσ  

sequences. Another step to this direction can be made by noticing once 

again the significance of restricted 2-integer compositions of any νs in any 

relevant interval which can be described with the aid of three additional 

integers’ κ, λ, µ in the same interval with the expansions 
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Obviously any integer in the same interval can be analyzed as ν = κ + µ,
)(b

mS∈ν  with a subset for which µ = λ, standing for the νs subset.  

A direct method to construct a simple numerical sieve can be given 

through the product of three indicators representing the constraints in (37) 

where the first separates all κ strings that are (mod 2
jp
) for all indices j = 

2k+1, k =1,2,…, the second extracts the complements that are 

simultaneously (mod 2
ip
) for all indices i = 0, 1 and i = j - 1, while the 

third examines the equality of µ and λ. We extracted the 2-composits for 

some simple cases as in figure 8. There is ample visual evidence for 

increased symmetry and correlations despite the fact that each integer is 

examined as an independent entity. Moreover, one recognize that the 

simultaneous application of the constraints in (32b) are equivalent with a 



product of independent indicators for each of them and can be computed 

separately for further block analysis. Doing so, results in periodic 

repetitions of block sizes, alternating as KK |,||,|, 1+− ii cc , satisfying 

k

ii cc 2|||| 1 =+ + for some integer k. No formal proof is known at the 

moment for this or similar properties.  

To explore further, we experimented with this sieve in several bases. An 

example of such a subset indicator for the cases of 4 clauses and maximal 

length 3 (octal) as well as 3 clauses and length 4 (hexadecimal) is shown 

in figure 9 via its block analysis where all valid sequences and their 

indices appear in isolated small islands with the CNF and DNF cases 

complementary. The resulting sequences are not entirely regular and they 

vary with the alphabet base while no single interpolating formula is 

known to the author. Using the wavelet based methods developed in [45] 

and [46], the Hurst exponents were extracted from the block sequences of 

the resulting indicators and a detrending fluctuation analysis was 

performed using the methods developed in [47]. A characteristic feature 

of all similar block counting structures is that they always comprise 

almost stationary positive and strictly non-stationary negative 

subsequences respectively. Analyzing them separately show the same 

increasingly correlated structure with a characteristic exponents of the 

order of aH with an associated Haussdorf dimension estimated as 2 – aH  

for the whole sequence and the positive and negative parts respectively as 

in Table 5. The existence of persistent correlations in any uniform 

deployment shows the inheritance of the underlying order of the counters 

discrete time flow which leads to an important conjectured principle of 

non-independence of arbitrary integers in the case of symbol-wise 

morphisms being also one of the main reasons for departing from purely 

probabilistic treatments in this work. This is further discussed in the last 

section. 

7. SATbox: a MATLAB
®
 toolbox for exploring SAT problems 

Our effort in all previous sections was to provide methods that could be 

useful from a purely functional programming standpoint. We also provide 

prototype code for experimentation in the github account 

github.com/rtheo/SATbox.  The package contains a number of basic 

utilities reviewed in Table 6, for the SAT as well as other similar 



problems that can be examined in the context of the combinatorial 

hierarchies and the resulting sequences block analysis. It should be 

stressed that this prototype demo serves only as an example of the 

programming and analytical techniques explained here and it is not a true 

production code for expressions with thousands or millions of variables. 

Such would demand both special infinite precision codes as well as at 

least an MPI protocol for efficient parallelization where several 

sequences of which the uniform deployment is required for filtering 

should be broken into large chunks. Moreover, any true speed up should 

be based on the efficient use of permutations and solely arithmetic 

operations for extracting the appropriate indicators in large alphabets. 

The main codes are given by the functions sat containing an appropriate 

interface for transcription of a standardized format into the arithmetized 

codings presented in 3, satassign which performs the assignment map by 

explicit construction of the associated connectivity matrix performing 

also the necessary arithmetization of rows for overlapping variables if 

present, and the core evaluation function sateval with internal calls of the 

UIeval function realizing the indicators of (25)-(26) plus the trimmer 

function that delivers subsets of any total SL interval whenever the 

satassign routine reports the presence of overlaps. The sat routine reads a 

simplified file format without distinction between DNF/CNF expressions 

since both are treated equally by the sateval function which delivers back 

whole GTTs. This is given as a set of rows representing atom indices with 

different clauses represented by different rows written in separate lines. 

Any negation operators are denoted with a minus sign in front of any 

individual atom index. Certain example files and the resulting circulant 

fractal GTT matrices are offered with the package in the github account. 

There are two additional Boolean flags immediately after the input 

filename that sat currently understands. The first is for discriminating 

between the cases of a single expression evaluation followed by its block 

analysis for a particular user specified negation plan if 0, or computing a 

whole GTT in which case any negation signs are ignored if 1. The last, is 

for choosing between two alternative methods of computation the first 

being the standard indicator functions of (25), (26) if 0 or the satsds 

applying the equalization protocol if 1. At the current version, only 

individual expressions are computed via the SDS method.  



The additional satnegation offered in the utilities folder, is an interface 

for the unixor routine which implements the uniform bitwise difference 

(XOR) operator as a set of successive permutations and is in fact 

equivalent with the internal built-in bitxor function. We notice that the 

particular structure of swapping permutations associated with negations is 

in fact equivalent to separate phase shifts of each counter in the uniform 

dimension of each constructor of a binary word dictionary WL and as such 

they could alternatively be implemented in a similar manner as the one 

used in identity (4) of section 2 to express the difference between the 

original η function and its complement. 

8. Discussion and Conclusions 

We presented a new, methodological framework for the treatment of 

complex problems based on the complementarity of lexicographically 

ordered word dictionaries which allow trading between individually 

computable formulas and a multi-periodic, self-similar totality resembling 

a discrete time flow of a sequential dynamical system, and which in 

certain cases appears to being able of significant reduction of the 

complexity of requested computations. This in turn, allows an argument 

on a kind of relativity of complexity which may appear different when a 

totality of objects is treated in a holistic frame. This comes from a very 

simple, fundamental observation that in many cases of discrete structures 

when these can be resolved as mappings from the integers to the integers, 

expressions for obtaining the totality of a codomain might exhibit lower 

complexity than those for obtaining or “choosing” particular subsets, yet 

finding the same subsets becomes also easier only after resolution of the 

totality. This also brings about the issue of “locality” which we discuss 

later on with a concrete, mechanistic example. 

The author believes that the intuitive approach introduced here, is 

complementary to standard approaches in a manner akin to the way 

analytical geometry is complementary to the standard Euclidean one. The 

method when applied into the satisfiability problem, leads naturally to 

certain purely functional, analytical expressions for a set of universal 

characteristic functions totally describing the subset of all solutions and 

opening new avenues in the search for optimized algorithms. It is the 

hope of the author that future research in this direction will permit to 

visualize the totality of SAT problems in a particularly elegant and useful 



way given more specialized codes than the elementary examples 

presented herein.  

Since, there exist at least two analytical reformulations of any SAT based 

either on special indicator functions or the equalization protocol and the 

SDS presented in the last section, it is possible to expand this theme by 

further studying the fractality and the possible regularities of the resulting 

sequences in future work for real time savings in actual applications. A 

symbolic algorithm for efficient interpolation of fractal sequences 

following methods as those explained in the previous sections is under 

investigation. Notably, certain kinds of indicators as for instance, the case 

of ( ))(

12

b

mS +Π subset show an increasing irregularity when moving to higher 

alphabet bases. This suggests the possibility of using Machine Learning 

methods as possible predictors for large samples of similar sequences. 

Notably, many such methods can be considered as purely functional 

machines due to their use of convex polytopes as a means to approximate 

true indicator functions of subsets of solutions. 

An important issue with possible applications in parallel computations 

concerns the observations of the last section for certain mappings of the 

associated dynamical system reductions exhibiting simultaneously a kind 

of both local and non-local behavior along their discrete time evolution 

where large scale permutations intervene across the uniform discrete time 

flow axis mixing “future” and “past” states. We stress the fact that no 

formal proof has been given for this particular case and it could turn out 

that there is always a possibility of interpolating with some contrived 

expressions that would resolve such non-localities, yet the example can 

be abstracted in a much more general and potentially useful way, using a 

particular class of parallel computing machines with a special “pseudo-

quantum” protocol, the choice of the term being due to an intriguing 

similarity between this mechanism and the well known, Feynman 

interpretation [48].   

Assume then, a set of interconnected simple processing cores to which a 

certain execution tree is delivered for multiple evaluations on a large 

domain. Assume also an internal, localized protocol shared by all cores 

estimating an objective cost function such that for as long as an individual 

computation is less costly, each core can choose not to share any data and 



proceed on its own up to a point where the costs exceed some threshold in 

which case the particular core ceases to follow a specific path and 

instead, it immediately delivers control to a supervising mechanism that 

shares information from all the other same level nodes of the execution 

tree before returning control to individual cores. Moreover, one could add 

to the definition of the cost as used here, the avoidance in using encoders 

and decoders for accessing individual digit patterns at intermediate stages 

for any pre-specified radix.  

Additionally, the observations at the end of section 5, relate to the 

particular classification of maps over the integers that led to the 

arihtmetization strategy as originally introduced in section 2. Given two 

distinct classes of algebraic and symbol-wise maps, the existence of any 

direct equivalence between members of the two delineates the existence 

of a special algebraic sub-class that can be used to affect similar changes 

into underlying patterns while still treating its inputs as “solid”, 

indecomposable objects. The appearance of correlations in any uniform 

arrangement of seemingly independent entities which is in fact inherited 

from a “hidden” underlying flow could still be manifested under different 

cases of random samplings thus making this sub-class important in any 

physical applications that could hide equivalent pattern based 

computations. This possibility is also in accord with a previous proposal 

for turning back to analog machines with non-Leibnizian architectures 

[16]. The prospect of building analog SAT machines then presents an 

appealing possibility for hybrid A.I. and general cyber-physical systems 

[49] with the internal capacity of automated proofs and it will be further 

explored in future work. 
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Appendix A: swapping permutations and integer compositions 

We notice that the negation operation can be written as an individual 

abstract formula of the form  

),(),( 1001 µνκµνκνν −+=                        (A1) 

The essence of (A1) is that in the general case, different one bits of µ will 

affect simultaneously both zeros and ones of the ν expansion allowing to 

split µ in two integers κ01 and κ10 forming an appropriate subset of the 

restricted 2-integer compositions 1001 κκµ += . Since negation is here 

equivalent with the bitwise XOR operator we also find from () in section 

the complementary action of the bitwise AND operator as 

( )),(),(
2

1
),( 1001 µνκµνκµνµ +−=⊗R            (A2) 

Eliminating each pair member using the composition property we find the 

important constraint 

( ) ),(3),(2),(2 1001 µνκµνκµνµ =+=⊗R           (A3) 

 There are certain important constraints on the choice of these pairs from 

the total of µ possible 2-decompositions including the degenerate ones 

(µ,0) and (0,µ) the most important being that of non-coincidence of bits in 

the expansion of any such pair leading to a natural equality of their 

Hadamard L1 distance and their sum of digits as 

)(),( 21010 µκµκ sh =−                  (A4) 

Using a known equivalent expression for the lhs and the additivity forced 

in the digit-sum for this particular case we also have 



( ) )()(),( 01210210102 κκκκ ssRs +=⊕           (A5) 

Finding the roots of either leads naturally to another fractal matrix which 

can be given as one branch of a multi-labeled indicator introduced to 

separate the two degenerate cases as  
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In (A6), the shorthand 
µ

ν
σ∑ simply denotes the selective summand of µ-

masked bits of ν. The middle branch then immediately identifies all 

mixed cases where a non-trivial 2-integer composition should apply. 

From the data of the resulting matrices it becomes evident that the trivial 

cases diminish with increasing µ. No interpolation scheme is known as 

yet to the author that would allow direct use of (A1) and no efficient sieve 

for individual computability of the appropriate pair for each ν to replace 

uniform permutation classes seems to exist. Any further progress shall be 

reported elsewhere. 

Appendix B: Series expansion of the equalized clause recursions 

To gain further understanding on the structure of the σΠ  map we 

examine the algebraic structure of any individual trajectories. To 

complete the derivation we shall need another intermediate map ⊕Π

which we define as in (32a-b) 

,...,,,,,...,,, 6543214321 ννννννλννννν ′′′′′′=→→ Π
s   (C1-a) 

),...),,((,),,( 321534213 ννννννννν ⊕⊕⊕ =′=′=′ RRR   (C1-b) 

The essential difference in (C1) is that it does not contain the results of 

any recursion directly but allows deriving their algebraic form. 

Manipulation of the recursions in (30a-b) by repetitive evaluation of their 

algebraic forms leads to a type of series of dyadic fractions as shown in 

Table 4 where now the digits νi correspond to the rhs of (35a). These are 

again members of an extended  { })(

22

)(

22 , b

j

b

j WS −−  hierarchy for any initial 



clause index j. In figure 9, we show the block analysis of the relevant ⊕Π

indicator. 

Due to the regular appearance of all symbols with different exponential 

weightings it is preferable to rephrase them as summands over the 

fundamental sequences )}(),(),({ 01 ννν bbb sss which have been resolved in 

section 2.  We can do so by writing the same expressions as differences 

of the form 

KK

)...(2)...(2)...(2)...(2)...(2

)...(2)...(2)...(2

51

2

71

2

31

3

51

3

31

4

31

1

51

1

31

2

νννννννννν

νννννν

++−+++++−+++++

++−+++++
−−−−−

−−−

Regrouping same terms leads to coefficients from common powers of 2 

and can be denoted using the digit-sum function and the auxiliary 

notation 
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to denote the number of significant symbols present as  

( ) )(2)()22()(22
7

2

5

12

3

24 ννν bbb sss −−−−− +−+−  

The DNF formulas can be treated similarly with the additional restriction 

that the first term has to be extracted due to a gap in signs so as to make 

full use of both even and odd digit-sums. Introducing the auxiliary 

function )()()( 0110 νννδ bbb sss −= we can find inductively the terminal value 

of any trajectory for any set of j equalized clauses as a series expansion 

for any member of the set ( ))(
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jS S −⊕Π∈νλ  in the form   
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Since, any terminal values of (37a) and (37c) by construction must have 

the same properties as those of (33a-b) we obtain the summation formulas 
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The relations (38) constrain the mapping between the two different sieves 

( ))(

22
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Table 1 

Classes Clauses Overlap 1-1 nA/L Connectivity 

Matrix 

{SL,WL} 

Satisfiability 

(a) 

SAT0 

Equal 0 1 1 Permutation Full 

(b) 

SAT1 

Unequal 0 1 <1 Non-Square 

Permutation 

Full 

 (c)  

SAT2 

Equal 1 0 1 Square Partial 

 (d) 

SAT3 

Unequal 1 0 <1 nA x L Partial  

 



Table 2: Clause Equalization  

 2
0 

2
1 

2
2 

Ni S∈ν  

1
st
  Clause  X1 X2 X4 ν1 

2
nd

 Clause 1 X3 X5 ν2 

3
rd

 Clause 1 1 X6 ν3 

 

Table 3: Clause equalization with overlaps 

 2
0 

2
1 

2
2 

Ni S∈ν  

1
st
  Clause  X1 1 1 ν1 

2
nd

 Clause X1 X2 1 ν2 

3
rd

 Clause X1 X2 X3 ν3 
 

Table 4: SDS recursive series  

Recursion 

Depth 

CNF  

Expression over )(b

ncW row Index in )(

12

b

mS −  

2 )(2)(2 54

1

321

2 ννννν ++++ −−  4

51 ... bννν ++=  

3 )(2)(2)(2 76

1

54

2

321

3 ννννννν ++++++ −−−  6

71 ... bννν ++=  

 DNF  

2 )(2)(2 54

1

321

2 ννννν −+−+ −−  4

51 ... bννν ++=  

3 )(2)(2)(2 76

1

54

2

321

3 ννννννν −+−+−+ −−−  6

71 ... bννν ++=  

 

 

Table 5: Hurst Exponents and Fractal Dimensions 

 Block Seq. Positive Blocks Negative Blocks 

(4, 3)    aH 0.787 0.620 0.828 

2 - aH 1.217 1.380 1.172 

D.F.A. 0.5619 0.630 0.605 

(3, 4)    aH 0.781 0.642 0.802 

2 - aH 1.218 1.358 1.218 

D.F.A. 0.613 0.641 0.654 

 

 

 



 

Τable 6: SATbox utilities 

Function Description 

blockanalysis Block counting method for large 

binary sequences. 

composits Extracts 2-integer compositions of 

the recursive SAT-SDS sequences. 

eta The η function of section 2 

ipart Generator of integer partitions 

  

isMersenne Equivalent to isShift( x + 1) 

isShift Locates all powers of  two in any 

interval SL 

logb b-ary logarithm of integers.  

rotor A special permutation map serving 

as individual decoder of any integer 

in arbitrary radix. 

Rsymmetries Used to find the symmetries of 

bitwise operators leading to (13) of 

section 2. 

satnegate Alternative realization of bitwise 

exclusive disjunction using 

permutations. 

Sdb Uniform deployment of the Digit-

Sum function in arbitrary radix. 

trimmer Realization of the overlap filter 

(26) of section 5. 

unixor Core routine of satnegate for all 

swapping permutations. 

WD Word Dictionary constructor in 

arbitrary alphabet bases ( ηb 

function, the binary version being 

equivalent to built-in ff2n) 

WDserial Alternative Dictionary constructor   

(Switching Automaton) avoiding 

large memory use and overflows 

 



  

 

 

          SL     SL+1 

Fig. 1. Schematic of two consecutive members of an Inductive Combinatorial 

Hierarchy with an example of a lexicographically ordered L x 2
L
 Word Dictionary 

WL=5 attached in every interval SL.  

 

 

 

 

 

 

 

 

Fig. 2. Example of an Assignment Map from Atoms to Literals inside every clause in 

the 2-SAT sentence ( ) ( )( ) ( )( ) ( )( )( )42313241 xxxxxxxx ⋅⋅⋅⋅ ooo  with the symbols{ }o,⋅
serving as substitutes for alternating conjuction and disjunction symbols for both 

DNF/CNF expressions. The set of slots on the right is in 1-1 correspondence with the 

columns of W8 in a hierarchy like that of Fig. 1. 

 

 

 

X1 

X2 

X3 

X4 



 

Fig. 3. The infinite subset of valid integer encodings of the two first SAT(0-1) classes 

with inverted colormap (black for 1, white for 0) limited in the [0 x 255]
2
 space. 

 

 

Fig. 4. (a) An example of 2-integer compositions as representations of connectivity 

matrices for the last two SAT(2-3) classes, further classified according to their 

complementary multiplicity parameter ρ.(b) Block analysis of the indicator function 

over S12. 

 

 

(a)                                                               (b) 

 



 

(c)                                                                 (d) 

Fig 6. Examples of DNF and CNF truth tables for the SAT0 and SAT1 cases of ((1,2), 

(3,4), (5,6)) in (a)-(b) and ((1), (2,3), (4,5,6,7)) in (c)-(d) expressions respectively over 

all 64, 128, possible  negation codes including zero words, showing certain repetitive 

regularities and fractality due to the underlying swapping permutations.  

 

 

Fig 7. The χC filtered bitwise conjunction and disjunction matrix for conditions (27a) 

and (27b) respectively as not complements of each other. 

 

 

 



Fig 8. The 2-integer compositions of ( ))(b

jSΠ  for the CNF with j = 4 and 3 clauses of 

maximal length of 3 bits in the extended base b = 8.  

 

Fig 9. Complementary block analysis of the ( ))(b

jSΠ indicators for the CNF and DNF 

problems respectively for 3 clauses of maximal length of 2 bits in the higher base b = 4.  

 

 


