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"Entia non sunt multipli
anda praeter ne
essitatem" (O
kam,

W.)

Abstra
t

In this paper it is proved the existen
e of a prime number in the

interval between the square of any natural number greater than one, and

the number resulting from adding or subtra
ting this natural number to

its square (Oppermann's Conje
ture). As 
orollaries of this proof, they are

proved three 
lassi
al prime number's 
onje
tures: Legendre's, Bro
ard's,

and Andri
a's. It is also de�ned a new maximum interval between any

natural number and the nearest prime number. Finally, it is stated as


orollary the existen
e of in�nite prime numbers equal to the square of a

natural number, plus a natural number inferior to that natural number,

and minus a natural number inferior to that natural number.
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1 Oppermann's Conje
ture

Oppermann's Conje
ture[1℄ 
an be expressed as follows:

∀n > 1∈N, ∃Pa, Pb/n
2 − n < Pa < n2 < Pb < n2 + n (1)

Expressed in words, it 
ould be enun
iated in the following manner: it exists

at least one prime number in the interval between the square of any natural

number greater than one, and the number resulting from adding or subtra
ting

this natural number to its square.
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1.1 Proof

1.1.1 Previous propositions and 
onsiderations

The intervals involved by Oppermann's Conje
ture are the following:

A = (n2, n2 − n) (2)

B = (n2, n2 + n) (3)

Intervals A and B have (n− 1) natural numbers.

Proposition 1. Any 
ompound number 
an be expressed as a produ
t of two

fa
tors, whether prime or 
ompound.

Proposition 1 is trivial, be
ause if any natural number 
ould not be expressed

as a produ
t of natural numbers greater than one, then it would be prime by

de�nition.

Proposition2. Compound numbers of intervals A and B 
annot be expressed

neither a) as the produ
t of two natural numbers greater than n, nor b) as the

produ
t of two natural numbers smaller than n; sin
e in those 
ases their produ
t

would be outside the intervals A and B.

Proposition 2 
an be veri�ed easily with the minimum produ
t of two natural

numbers greater than n:

(n+ 1) ∗ (n+ 1) = n2 + 2n+ 1 > n2 + n (4)

And with the minimum produ
t of two natural numbers smaller than n:

(n− 1) ∗ (n− 1) = n2 − 2n+ 1 < n2 − n (5)

Therefore,

Proposition 3. Ea
h 
ompound number of the intervals A and B 
an be ex-

pressed as a produ
t of a) a number lower than n, and b) a number greater than

n.

Proposition 3 is a 
orollary of propositions 1 and 2.

We 
an express this produ
t as:

(n− k) ∗ (n+m) (6)

If we fo
us on the fa
tor lower than n, in order for this produ
t to be a 
ompound

natural number, and to be in the intervals A or B,

n > (n− k) > 1 (7)
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We will 
all C to this interval. Interval C 
an be expressed also as follows:

C = (1, n) (8)

Interval C has (n− 2) natural numbers.

Proposition 4. Every natural number 
ontained in interval C has a multiple

in A and B.

Proposition 4 is almost trivial be
ause the intervals A and B are wider than the

interval C; thus, every number 
ontained in C has a multiple in interval A and

another multiple in interval B.

Proposition 5. For all the odd numbers of intervals A and B to be 
ompound

numbers, then there must be at least two odd numbers of interval A whi
h are

multiple of the same odd number of interval C, and two odd numbers of interval

B whi
h are multiple of the same odd number of interval C.

Proposition 5 
an be stated from Proposition 3 and from the Pigeonhole Prin-


iple (Diri
hlet's prin
iple)[2℄, whi
h 
an be stated as follows:

Pigeonhole Prin
iple . Let it be two sets X (with n elements) and Y (with k

elements) and an appli
ation

f : X�Y

Then, despite of whi
h appli
ation f are we 
onsidering, if n > k there are at

least two elements of X, x1 and x2 (x1 6= x2), su
h that f(x1) = f(x2).

In our 
ase, set X would be interval A or interval B, and Y interval C. As there

is one more element in interval A and oner more element in interval B than

in interval C, in order for this element to be 
ompound, there must exist an

element of interval C whi
h is fa
tor of two elements of interval A, and another

(or the same) element of interval C whi
h is fa
tor of two elements of interval

B.

Proposition 6. Every three 
onse
utive odd numbers n1, n2, n3 are 
oprime

numbers two to two. Therefore, mcm (n1, n2, n3) = n1 ∗ n2 ∗ n3.

If n1, n2, n3 are 
onse
utive odd numbers, then they 
an be renowned as n1, n1+
2, n1 + 4.

As 2 ∤ n1, then subsequently:

gcd (n1, n1 + 2) = gcd (n1, n1 + 4) = gcd (n1 + 2, n1 + 4) = 1
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Therefore, they are 
oprime two to two, and therefore mcm (n1, n2, n3) = n1 ∗
n2 ∗ n3.

1.1.2 Proof framework

For the sake of 
larity, we expose brie�y the reasoning steps that we are going

to follow through the demonstration basis and development:

1. We make what we denominate a Non-Complian
e assumption, supposing

that Oppermann's Conje
ture is false; we suppose that exists some interval

A or some interval B for whi
h every natural number 
ontained in them

is 
ompound.

2. As even numbers are always 
ompound numbers, we ex
lude them of the

demonstration and we fo
us solely on odd numbers de�ning three sets A,

B and C su
h that they 
ontain the odd numbers of intervals A, B and C.

3. We state that, if the Non-Complian
e assumption holds, then it is possible

to 
reate a system of 
ongruen
es su
h that ea
h element of set A is

multiple of any element of set C, and another system of 
ongruen
es su
h

that ea
h element of set B is multiple of any element of set C, applying

the Generalization of the Chinese Remainder Theorem[3℄.

4. We note and demonstrate that the minimum general solution of a system

of 
ongruen
es su
h that ea
h element of set A is multiple of any element

of set C is always greater than n2 + n, and that the minimum general

solution of a system of 
ongruen
es su
h that ea
h element of set B is

multiple of any element of set C is always greater than n2 + n.

5. Thus, as there is not a general solution for a system of 
ongruen
es su
h

that ea
h element of set A is multiple of any element of set C lower than

n2 + n, and as there is not a general solution for a system of 
ongruen
es

su
h that ea
h element of set B is multiple of any element of set C lower

than n2 + n, we 
on
lude that the Non-Complian
e assumption is false,

and therefore we 
onsider demonstrated Oppermann's Conje
ture.

1.1.3 Proof development

Non-
omplian
e assumption: Oppermann's Conje
ture is false; therefore,

it does exist some interval A, some interval B, or both intervals A and B,

for whi
h every natural number 
ontained in them is 
ompound.

Even numbers, ex
ept of number 2, are always 
ompound. Therefore, we will

ex
lude them of the demonstration, and we will fo
us on odd numbers.

Compound odd numbers 
an only be produ
t of odd numbers; therefore, and

a

ording to proposition 3, in order to all odd numbers of intervals A and B to

be 
ompound numbers, ea
h of them must be multiple of one odd number of

interval C.
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Now we are going to de�ne a set of the odd numbers of interval C as set C;

another set of the odd numbers of interval A as set A; and another set of the

odd numbers of interval B as set B.

Set C 
ould be expressed as:

C = {3, 5, 7, . . . , 2m+ 1}∈N (9)

Where m is the number of odd numbers of set C (m = �C�).

Let us de�ne E(C)i as ea
h element of set C.

Ea
h of sets A and B 
ould be expressed as

A = {a, a+ 2, a+ 4, . . . , a+ 2m}∈N (10)

B = {b, b+ 2, b+ 4, . . . , b+ 2m}∈N (11)

For the sake of simpli
ity, we will develope the demonstration fo
using on the

relationship between sets A and C, as the following reasoning and propositions


an be applied quite straightly to the relationship between sets B and C.

If the Non-Complian
e assumption holds, then it is possible to 
reate a system

of 
ongruen
es su
h that ea
h element of set A is multiple of any element of set

C, applying the Generalization of the Chinese Remainder Theorem as follows:

Generalization of the Chinese Remainder Theorem. Let us 
onsider the

positive integers n1, n2, . . . , nk and let them be a1, a2, . . . , ak any integers. Then,

the 
ongruen
e system

x ≡ a1(modn1), . . . , x ≡ ak(modnk)

has a solution if, and only if, gcd (ni, nj) is divisor of ai − aj for every i 6= j.

When this 
ondition is satis�ed, then the general solution 
onstitutes a sin-

gle 
ongruen
e 
lass module n, where n is the minimum 
ommon multiple of

n1, n2, . . . , nk.
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Applying the Generalization of the Chinese Remainder Theorem to the relation-

ship between sets A and C under the Non-Complian
e assumption, the positive

integers n1, n2, . . . , nk are the elements of set C = {3, 5, 7, . . . , 2m+ 1} ∈ N ,

the number x is the �rst element of set A (a), and the integers a1, a2, . . . , ak are

the diferen
e between ea
h element of A and its �rst element. Therefore, the

system would be as follows:

a ≡ 0 (modE(C)i)

a ≡ −2 (modE(C)i)

a ≡ −4 (modE(C)i)

...

a ≡ −2m (modE(C)i) (12)

Where some E(C)i appear two times, as there exists one element of C whi
h is

multiple of two elements of set A.

A lu
ky (and fast!) 
on
lusion supposition . If the system did not have

a solution, then we 
ould 
on
lude at this point stating that, as the system did

not have a solution, then it would be impossible that ea
h odd number of set

A was multiple of an odd number of set C, and as we stated at Proposition 3

that any odd 
ompound number in set A must be multiple of an odd number of

set C, thus we would be able to a�rm that there would be at least one element

of set A whi
h were prime. However, the system has (at least) the following

solution:

a ≡ 0 (mod 3)

a ≡ −2 (mod 5)

a≡− 4 (mod 7)

...

a≡− 2m (modE(C)i) (13)

The system 
an be re-expressed as follows:

a ≡ 0 (mod 3)

a ≡ 3 (mod 5)

a≡ 3 (mod 7)

...

a≡ 0 or 3 (modE(C)i) (14)

Where E(C)i is the element of C whi
h is multiple of two elements of set A.
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It 
an be seen that, ordered the way above, ai−aj = 0 for every gcd (ni, nj) > 1;
thus, the system has a solution, as every gcd (ni, nj) > 1 is divisor of 0, and

every gcd (ni, nj) = 1 is divisor of ai − aj independently of the value of ai − aj .

Therefore, we 
an not assume A lu
ky (and fast!) 
on
lusion supposition as

true.

Proposition 7. It does not exist any set A su
h that ea
h of their elements is

multiple of any element of a set C su
h that C has less than three elements.

Case ‖C‖ = 1

The set C of one element is de�ned as C = {3}.

As set C has one element, set A has two elements; thus, A = {a, a+ 2}.

A

ording to the Pigeonhole Prin
iple, both a and a + 2 must be multiples of

3. Notwithstanding, if 3 | a, then 3 ∤ a+ 2.

Therefore, it 
an not exist any set A su
h that ea
h of its elements is multiple

of any element of a set C of one element.

Case ‖C‖ = 2

The set C of two elements is de�ned as C = {3, 5}.

As set C has two elements, set A has three elements; thus, A = {a, a+ 2, a+ 4}.

A

ording to the Pigeonhole Prin
iple, at least two of the elements of set A

must be multiples of the same element of set C.

The distan
e between a and a+ 4 is less than 5; therefore, there 
an not exist

two elements of set A multiples of 5.

There is no distan
e between the elements of set A whi
h is multiple of 3.

Therefore, if any of the three is multiple of 3, then the remaining two elements


an not be multiples of 3.

As there 
an not be two elements of set A multiples of 5, and there 
an not be

two elements of set A multiples of 3, it 
an not exist any set A su
h that ea
h

of its elements is multiple of any element of a set C of two elements.

Therefore, Proposition 7 is demonstrated.
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Proposition 8. The minimum 
ommon multiple of the elements of a set C

equal or greater than 3 is always greater than n2 + n.

A

ording to Proposition 7, set C must be at least of 3 elements.

A

ording to (9), set C was de�ned as C = {3, 5, 7, . . . , 2m+ 1}∈N . Therefore,

‖C‖ = m.

As set C is formed by the odd numbers of interval C = (1, n), then n must be

lower than the odd number next to the last element of set C. That is,

n < 2m+ 3 (15)

Therefore, we 
an state that:

max (n) = 2m+ 2 (16)

Consequently, substituting, we 
an state that:

max (n2 + n) = (2m+ 2)2 + 2m+ 2 (17)

Operating,

max (n2 + n) = 4m2 + 10m+ 6 (18)

Thus, Proposition 8 is a�rming that:

mcm (3, 5, 7, . . . , 2m+ 1) > 4m2 + 10m+ 6 (19)

As the minimum 
ommon multiple of the elements of set C is 
al
ulated as the

produ
t of their prime fa
tors raised to their greatest exponent, and as a

ording

to Proposition 6 we know that the three last elements of set C are 
oprime, the

produ
t of the three last elements of set C is equal or lower than the minimum


ommon multiple of the elements of set C.

Expressed syntheti
ally,

mcm (3, 5, 7, . . . , 2m+ 1) ≥ mcm (2m− 3, 2m− 1, 2m+ 1) (20)

A

ording to Proposition 6,

mcm (2m−3, 2m−1, 2m+1) = (2m−3)∗(2m−1)∗(2m+1) = 8m3−12m2−2m+3
(21)

Substituting on (21),

8m3 − 12m2 − 2m+ 3 > 4m2 + 10m+ 6 (22)

Operating, this expression is equivalent to:

8m3 − 8m2 − 12m− 3 > 0 (23)
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It is easy to verify that this inequation has the following 
riti
 point:

m >
1

4
(3 +

√
21) (24)

For every m > 1

4
(3 +

√
21), the inequation holds true. As we have stated in

Proposition 7 that min (m) = 3, and 1

4
(3+

√
21) < 3, then the inequation holds

true for every number of elements of set C equal or greater than 3.

Subsequently, it is proved that the minimum 
ommon multiple of the elements

of set C is greater than n2 + n for every number of elements of set C equal or

greater than 3. Therefore, it is proved Proposition 8.

Proposition 9. The minimum general solution of a system of 
ongruen
es

su
h that ea
h element of set A is multiple of any element of set C is always

greater than n2 + n.

A

ording to the Generalized Chinese Remainder Theorem,

a ≡ c (modmcm (3, 5, 7, . . . , 2m+ 1)) (25)

Where c is the parti
ular solution to the system of 
ongruen
es. Therefore, the

minimum general solution of the system of 
ongruen
es su
h that ea
h element

of set A is multiple of any element of set C 
an be expressed as:

a = c+mcm (3, 5, 7, . . . , 2m+ 1)t ∀t ∈ Z (26)

A

ording to Proposition 8,

mcm (3, 5, 7, . . . , 2m+ 1) > n2 + n (27)

Therefore, a > n2 + n.

Subsequently, it is proved that it is impossible that ea
h element of set A is

multiple of an element of set C.

Thus, the Non-Complian
e assumption is false, and it is proved that at least

one number of interval A is prime.

The Proof Development se
tion is entirely appli
able to the relationship between

sets B and C, as set B is de�ned exa
tly as set A. Therefore, applying the

Proof Development se
tion to set B (simply substituting the letters”a, A” with

”b, B”), it is proved that it is impossible that ea
h element of set B is multiple

of an element of set C.

Thus, the Non-Complian
e assumption is false, and it is proved that at least

one number of interval B is prime. Therefore, it is demonstrated Oppermann's

Conje
ture.
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2 COROLLARIES

2.1 First 
orollary: Legendre's Conje
ture

Legendre's Conje
ture[4℄ states that for every natural number n, exists at least

a prime number p su
h that n2 < p < (n+ 1)2.

As (n + 1)2 = n2 + 2n+ 1, and a

ording to Oppermann's Conje
ture proved,

we know that:

n2 < Pa < n2 + n < Pb < (n+ 1)2 (28)

Therefore,

n2 < Pa < Pb < (n+ 1)2 (29)

Therefore, it is demonstrated Legendre's Conje
ture.

2.2 Se
ond 
orollary: Bro
ard's Conje
ture

Bro
ard's Conje
ture[5℄ states that, if pn and pn+1 are two 
onse
utive prime

numbers greater than two, then between p2n and p2n+1 exist at least four prime

numbers.

A

ording to the 
onje
ture's statement,

2 < pn < pn+1 (30)

As the minimum distan
e between primes is two, we 
an state that:

pn < M < pn+1 (31)

Where M is some natural number between pn and pn+1.

Subsequently,

p2n < M2 < p2n+1 (32)

As M ≥ pn + 1, and a

ording to the demonstrated Oppermann's 
onje
ture,

p2n < Pa < p2n + pn < Pb < M2
(33)

Idem, as pn+1 ≥ M + 1, and a

ording to Oppermann's Conje
ture proved,

M2 < Pc < M2 +M < Pd < p2n+1 (34)

Therefore,

p2n < Pa < Pb < Pc < Pd < p2n+1 (35)

Therefore, it is demonstrated Bro
ard's Conje
ture.
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2.3 Third 
orollary: Andri
a's Conje
ture

Andri
a's Conje
ture[6℄ states that for every pair of 
onse
utive prime numbers

pn and pn+1,
√
pn+1 −

√
pn < 1

A

ording to the demonstrated Oppermann's Conje
ture, the maximum dis-

tan
e between pn and pn+1 is:

n2 + n+ 1 ≤ Pn < (n+ 1)2 < pn+1 ≤ n2 + 3n+ 1 (36)

It is easily veri�able that:

√

n2 + 3n+ 1−
√

n2 + n+ 1 < 1 (37)

For every value of n. As n2 + 3n + 1 ≥pn+1, and Pn ≥ n2 + n + 1, then√
pn+1 −

√
pn < 1

Therefore, it is demonstrated Andri
a's Conje
ture.

2.4 Fourth 
orollary: a new maximum interval between

every natural number and the nearest prime number

A

ording to the exposed in the third 
orollary, it 
an be stated that the max-

imum distan
e between every natural number and the nearest prime number

will be:

n2 + 3n− (n2 + n+ 1) = 2n− 1 (38)

Therefore, and stating that:

n =
√

n2 + n+ 1 (39)

It 
an be determined that:

∀n ∈ N, ∃Pa, Pb/(n− (2
√
n− 1)) ≤ Pa ≤ n ≤ Pb ≤ (n+ (2

√
n− 1)) (40)

And therefore, we 
an de�ne a new maximum interval between every natural

number and the nearest prime number as:

∀n∈N, ∃P/n ≤ P ≤ (n+ (2
√
n− 1)) (41)

2.5 Fifth 
orollary: the existen
e of in�nite prime num-

bers of the form n2 ± k/0 < k < n

A

ording to the demonstrated Oppermann's Conje
ture, it 
an be stated that

every prime number pi will be of the following form:

pi = n2 ± k/0 < k < n (42)
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Subsequently, as it is widely proved the existen
e of in�nite prime numbers, and

every prime number 
an be expressed as n2 ± k/0 < k < n, then it is proved

the existen
e of in�nite prime numbers of the form n2 ± k/0 < k < n.
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