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Abstract

In this paper it is proved the existence of a prime number in the
interval between the square of any natural number greater than one, and
the number resulting from adding or subtracting this natural number to
its square (Oppermann’s Conjecture). As corollaries of this proof, they are
proved three classical prime number’s conjectures: Legendre’s, Brocard’s,
and Andrica’s. It is also defined a new maximum interval between any
natural number and the nearest prime number. Finally, it is stated as
corollary the existence of infinite prime numbers equal to the square of a
natural number, plus a natural number inferior to that natural number,
and minus a natural number inferior to that natural number.
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1 Oppermann’s Conjecture
Oppermann’s Conjecture[1] can be expressed as follows:

Vn > 1€N,3P,, Py/n®* —n < P, <n®> < Py <n’+n (1)

Expressed in words, it could be enunciated in the following manner: it exists
at least one prime number in the interval between the square of any natural
number greater than one, and the number resulting from adding or subtracting
this natural number to its square.



1.1 Proof

1.1.1 Previous propositions and considerations

The intervals involved by Oppermann’s Conjecture are the following:
A= (n*n*—n) (2)
B = (n*,n*+n) (3)

Intervals A and B have (n — 1) natural numbers.

Proposition 1. Any compound number can be expressed as a product of two
factors, whether prime or compound.

Proposition 1 is trivial, because if any natural number could not be expressed
as a product of natural numbers greater than one, then it would be prime by
definition.

Proposition2. Compound numbers of intervals A and B cannot be expressed
neither a) as the product of two natural numbers greater than n, nor b) as the
product of two natural numbers smaller than n; since in those cases their product
would be outside the intervals A and B.

Proposition 2 can be verified easily with the minimum product of two natural
numbers greater than n:

(n+Dx(n+1)=n*+2n+1>n’+n (4)
And with the minimum product of two natural numbers smaller than n:
n—Dsxn—-1)=n>-2n+1<n’>—-n (5)

Therefore,

Proposition 3. Fach compound number of the intervals A and B can be ex-
pressed as a product of a) a number lower than n, and b) a number greater than
n.

Proposition 3 is a corollary of propositions 1 and 2.

We can express this product as:
(n—k)*(n+m) (6)

If we focus on the factor lower than n, in order for this product to be a compound
natural number, and to be in the intervals A or B,

n>Mn-—k) >1 (7)



We will call C to this interval. Interval C can be expressed also as follows:
C=(,n) (8)

Interval C has (n — 2) natural numbers.

Proposition 4. Every natural number contained in interval C has a multiple
in A and B.

Proposition 4 is almost trivial because the intervals A and B are wider than the
interval C; thus, every number contained in C has a multiple in interval A and
another multiple in interval B.

Proposition 5. For all the odd numbers of intervals A and B to be compound
numbers, then there must be at least two odd numbers of interval A which are
multiple of the same odd number of interval C, and two odd numbers of interval
B which are multiple of the same odd number of interval C.

Proposition 5 can be stated from Proposition 3 and from the Pigeonhole Prin-
ciple (Dirichlet’s principle)[2], which can be stated as follows:

Pigeonhole Principle . Let it be two sets X (with n elements) and Y (with k
elements) and an application
f: X->Y

Then, despite of which application f are we considering, if n > k there are at
least two elements of X, 1 and xo (x1 # x2), such that f(x1) = f(z2).

In our case, set X would be interval A or interval B, and Y interval C. As there
is one more element in interval A and oner more element in interval B than
in interval C, in order for this element to be compound, there must exist an
element of interval C which is factor of two elements of interval A, and another

(or the same) element of interval C which is factor of two elements of interval
B.

Proposition 6. Fvery three consecutive odd numbers ni,ns,ng are coprime
numbers two to two. Therefore, mem (ny,ne, ng) = ny * Ng * ns.

If nq1, ne, n3 are consecutive odd numbers, then they can be renowned as ny, n1+
2, ni1 —|— 4

As 24 nq, then subsequently:

ged (n1,n1 +2) = ged(ny,ng +4) =ged(ng +2,n1 +4) =1



Therefore, they are coprime two to two, and therefore mem (n1,n2,n3) = nq *
No * N3.

1.1.2 Proof framework

For the sake of clarity, we expose briefly the reasoning steps that we are going
to follow through the demonstration basis and development:

1. We make what we denominate a Non-Compliance assumption, Supposing
that Oppermann’s Conjecture is false; we suppose that exists some interval
A or some interval B for which every natural number contained in them
is compound.

2. As even numbers are always compound numbers, we exclude them of the
demonstration and we focus solely on odd numbers defining three sets A,
B and C such that they contain the odd numbers of intervals A, B and C.

3. We state that, if the Non-Compliance assumption holds, then it is possible
to create a system of congruences such that each element of set A is
multiple of any element of set C, and another system of congruences such
that each element of set B is multiple of any element of set C, applying
the Generalization of the Chinese Remainder Theorem|3].

4. We note and demonstrate that the minimum general solution of a system
of congruences such that each element of set A is multiple of any element
of set C is always greater than n? + n, and that the minimum general
solution of a system of congruences such that each element of set B is
multiple of any element of set C is always greater than n? + n.

5. Thus, as there is not a general solution for a system of congruences such
that each element of set A is multiple of any element of set C lower than
n? + n, and as there is not a general solution for a system of congruences
such that each element of set B is multiple of any element of set C lower
than n? + n, we conclude that the Non-Compliance assumption is false,
and therefore we consider demonstrated Oppermann’s Conjecture.

1.1.3 Proof development

Non-compliance assumption: Oppermann’s Conjecture is false; therefore,
it does exist some interval A, some interval B, or both intervals A and B,
for which every natural number contained in them is compound.

Even numbers, except of number 2, are always compound. Therefore, we will
exclude them of the demonstration, and we will focus on odd numbers.

Compound odd numbers can only be product of odd numbers; therefore, and
according to proposition 3, in order to all odd numbers of intervals A and B to
be compound numbers, each of them must be multiple of one odd number of
interval C.



Now we are going to define a set of the odd numbers of interval C as set C;
another set of the odd numbers of interval A as set A; and another set of the
odd numbers of interval B as set B.

Set C could be expressed as:
C=1{3,57,....2m+ 1} eN 9)

Where m is the number of odd numbers of set C (m = | C|).
Let us define E(C); as each element of set C.

Each of sets A and B could be expressed as
A={a,a+2,a+4,...,a+2m} N (10)

B={bb+2,b+4,...,b+2m}eN (11)

For the sake of simplicity, we will develope the demonstration focusing on the
relationship between sets A and C, as the following reasoning and propositions
can be applied quite straightly to the relationship between sets B and C.

If the Non-Compliance assumption holds, then it is possible to create a system
of congruences such that each element of set A is multiple of any element of set
C, applying the Generalization of the Chinese Remainder Theorem as follows:

Generalization of the Chinese Remainder Theorem. Let us consider the
positive integers ni,na, ..., Nk and let them be a1, aq, ..., ar any integers. Then,
the congruence system

z = ai(modny),...,x = ar(modny)

has a solution if, and only if, ged (n;,n;) is divisor of a; — a; for every i # j.

When this condition is satisfied, then the general solution constitutes a sin-
gle congruence class module n, where n is the minimum common multiple of
ny,no,...,Nk.



Applying the Generalization of the Chinese Remainder Theorem to the relation-
ship between sets A and C under the Non-Compliance assumption, the positive
integers ni,na,...,n; are the elements of set C = {3,5,7,...,2m+ 1} € N,
the number x is the first element of set A (a), and the integers a1, as, . .., ai are
the diference between each element of A and its first element. Therefore, the
system would be as follows:

a =0 (mod E(C);)

a=-2(mod E(C);)
a=—4(mod E(C);)

a = —2m (mod E(C);) (12)

Where some E(C); appear two times, as there exists one element of C which is
multiple of two elements of set A.

A lucky (and fast!) conclusion supposition. If the system did not have
a solution, then we could conclude at this point stating that, as the system did
not have a solution, then it would be impossible that each odd number of set
A was multiple of an odd number of set C, and as we stated at Proposition 3
that any odd compound number in set A must be multiple of an odd number of
set C, thus we would be able to affirm that there would be at least one element
of set A which were prime. However, the system has (at least) the following
solution:

a = 0(mod3)
a = —2(mod5)
a=—4(modT)
a=—2m (mod E(C);) (13)

The system can be re-expressed as follows:

a = 0(mod3)
a = 3 (modb)
a=3(mod7)
a=0or3(mod E(C);) (14)

Where E(C); is the element of C which is multiple of two elements of set A.



It can be seen that, ordered the way above, a;—a; = 0 for every ged (n;,n;) > 1;
thus, the system has a solution, as every gcd (n;,n;) > 1 is divisor of 0, and
every ged (n;,nj) = 1 is divisor of a; — a; independently of the value of a; — a;.

Therefore, we can not assume A lucky (and fast!) conclusion supposition as
true.

Proposition 7. It does not exist any set A such that each of their elements is
multiple of any element of a set C such that C has less than three elements.

Case ||C|| =1
The set C of one element is defined as C' = {3}.
As set C has one element, set A has two elements; thus, A = {a, a + 2}.

According to the Pigeonhole Principle, both a and a + 2 must be multiples of
3. Notwithstanding, if 3 | a, then 31 a + 2.

Therefore, it can not exist any set A such that each of its elements is multiple
of any element of a set C of one element.

Case ||C|| =2
The set C of two elements is defined as C' = {3,5}.
As set C has two elements, set A has three elements; thus, A = {a, a + 2, a + 4}.

According to the Pigeonhole Principle, at least two of the elements of set A
must be multiples of the same element of set C.

The distance between a and a + 4 is less than 5; therefore, there can not exist
two elements of set A multiples of 5.

There is no distance between the elements of set A which is multiple of 3.
Therefore, if any of the three is multiple of 3, then the remaining two elements
can not be multiples of 3.

As there can not be two elements of set A multiples of 5, and there can not be
two elements of set A multiples of 3, it can not exist any set A such that each
of its elements is multiple of any element of a set C of two elements.

Therefore, Proposition 7 is demonstrated.



Proposition 8. The minimum common multiple of the elements of a set C
equal or greater than 8 is always greater than n? + n.

According to Proposition 7, set C must be at least of 3 elements.

According to (9), set C was defined as C = {3,5,7,...,2m + 1} € N. Therefore,
1C]| = m.

As set C is formed by the odd numbers of interval C' = (1,n), then n must be
lower than the odd number next to the last element of set C. That is,

n<2m+3 (15)
Therefore, we can state that:
max (n) = 2m + 2 (16)
Consequently, substituting, we can state that:
maz (n* +n) = (2m +2)* +2m + 2 (17)

Operating,
maz (n? +n) = 4m? + 10m + 6 (18)

Thus, Proposition 8 is affirming that:
mem (3,5,7,...,2m +1) > 4m? + 10m + 6 (19)

As the minimum common multiple of the elements of set C is calculated as the
product of their prime factors raised to their greatest exponent, and as according
to Proposition 6 we know that the three last elements of set C are coprime, the
product of the three last elements of set C is equal or lower than the minimum
common multiple of the elements of set C.

Expressed synthetically,
mem (3,5,7,...,2m+1) > mem (2m — 3, 2m — 1, 2m + 1) (20)
According to Proposition 6,

mem (2m—3,2m—1,2m4+1) = (2m—3)*(2m—1)%(2m+1) = 8m3—12m*—2m+3

(21)
Substituting on (21),
8m?® — 12m? — 2m + 3 > 4m? + 10m + 6 (22)
Operating, this expression is equivalent to:
8m? —8m* —12m -3 >0 (23)



It is easy to verify that this inequation has the following critic point:
1

For every m > i(?) + v/21), the inequation holds true. As we have stated in
Proposition 7 that min (m) = 3, and §(3++v/21) < 3, then the inequation holds
true for every number of elements of set C equal or greater than 3.

Subsequently, it is proved that the minimum common multiple of the elements
of set C is greater than n? + n for every number of elements of set C equal or
greater than 3. Therefore, it is proved Proposition 8.

Proposition 9. The minimum general solution of a system of congruences
such that each element of set A is multiple of any element of set C is always
greater than n? +n.

According to the Generalized Chinese Remainder Theorem,
a = ¢(modmem (3,5,7,...,2m+ 1)) (25)

Where c is the particular solution to the system of congruences. Therefore, the
minimum general solution of the system of congruences such that each element
of set A is multiple of any element of set C can be expressed as:

a=c+mem(3,5,7,....2m+ 1)tVt € Z (26)
According to Proposition 8§,
mem (3,5,7,...,2m+1) >n? +n (27)
Therefore, a > n? + n.

Subsequently, it is proved that it is impossible that each element of set A is
multiple of an element of set C.

Thus, the Non-Compliance assumption is false, and it is proved that at least
one number of interval A is prime.

The Proof Development section is entirely applicable to the relationship between
sets B and C, as set B is defined exactly as set A. Therefore, applying the
Proof Development section to set B (simply substituting the letters”a, A” with
"b, B"), it is proved that it is impossible that each element of set B is multiple
of an element of set C.

Thus, the Non-Compliance assumption is false, and it is proved that at least
one number of interval B is prime. Therefore, it is demonstrated Oppermann’s
Conjecture.



2 COROLLARIES

2.1 First corollary: Legendre’s Conjecture

Legendre’s Conjecture[4] states that for every natural number n, exists at least
a prime number p such that n? <p < (n+ 1)2.

As (n+1)%2 = n% +2n + 1, and according to Oppermann’s Conjecture proved,
we know that:
n? < P,<n®+n<Py<(n+1)? (28)

Therefore,
n? < P, < Py < (n+1)? (29)

Therefore, it is demonstrated Legendre’s Conjecture.

2.2 Second corollary: Brocard’s Conjecture

Brocard’s Conjecture[5] states that, if p, and p,4+1 are two consecutive prime
numbers greater than two, then between p? and p? 41 exist at least four prime
numbers.

According to the conjecture’s statement,

2 < pp < Pnt (30)
As the minimum distance between primes is two, we can state that:

Pn <M < ppi1 (31)

Where M is some natural number between p,, and p,+1.

Subsequently,
ph < M? < pi-‘,—l (32)

As M > p, + 1, and according to the demonstrated Oppermann’s conjecture,
pr < P, <p:+p,<P,<M? (33)

Idem, as p,+1 > M + 1, and according to Oppermann’s Conjecture proved,
M?<P.<M*+M<Py<p,, (34)

Therefore,
P2 < Pu<Py<P.<Py<p’,, (35)

Therefore, it is demonstrated Brocard’s Conjecture.
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2.3 Third corollary: Andrica’s Conjecture

Andrica’s Conjecture[6] states that for every pair of consecutive prime numbers

Pn and ppi1, \/Pnr1 — /Pn <1

According to the demonstrated Oppermann’s Conjecture, the maximum dis-
tance between p, and p,41 is:

n4n+1<P,<(n+1)2<pyy1<n®+3n+1 (36)

It is easily verifiable that:

V24+3n+1—yn24+n+1<1 (37)
For every value of n. As n? +3n + 1 >p,.1, and P, > n? + n + 1, then

P+l — /Pn <1

Therefore, it is demonstrated Andrica’s Conjecture.

2.4 Fourth corollary: a new maximum interval between
every natural number and the nearest prime number

According to the exposed in the third corollary, it can be stated that the max-
imum distance between every natural number and the nearest prime number
will be:

n’+3n—(n*+n+1)=2n-1 (38)

Therefore, and stating that:
n=vn?+n+1 (39)
It can be determined that:
Vn € N,3P,,P/(n— (2yn—1)) < P, <n< P, < (n+(2y/n—1)) (40)

And therefore, we can define a new maximum interval between every natural
number and the nearest prime number as:

VneN,3P/n < P < (n+ (2y/n—1)) (41)

2.5 Fifth corollary: the existence of infinite prime num-
bers of the form n?> £+ k/0 <k <n

According to the demonstrated Oppermann’s Conjecture, it can be stated that
every prime number p; will be of the following form:

pi=n*+k/0<k<n (42)
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Subsequently, as it is widely proved the existence of infinite prime numbers, and
every prime number can be expressed as n? £ k/0 < k < n, then it is proved
the existence of infinite prime numbers of the form n? + k/0 < k < n.
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