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Abstrat

In this paper it is proved the existene of a prime number in the

interval between the square of any natural number greater than one, and

the number resulting from adding or subtrating this natural number to

its square (Oppermann's Conjeture). As orollaries of this proof, they are

proved three lassial prime number's onjetures: Legendre's, Broard's,

and Andria's. It is also de�ned a new maximum interval between any

natural number and the nearest prime number. Finally, it is stated as

orollary the existene of in�nite prime numbers equal to the square of a

natural number, plus a natural number inferior to that natural number,

and minus a natural number inferior to that natural number.
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1 Oppermann's Conjeture

Oppermann's Conjeture[1℄ an be expressed as follows:

∀n > 1∈N, ∃Pa, Pb/n
2 − n < Pa < n2 < Pb < n2 + n (1)

Expressed in words, it ould be enuniated in the following manner: it exists

at least one prime number in the interval between the square of any natural

number greater than one, and the number resulting from adding or subtrating

this natural number to its square.
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1.1 Proof

1.1.1 Previous propositions and onsiderations

The intervals involved by Oppermann's Conjeture are the following:

A = (n2, n2 − n) (2)

B = (n2, n2 + n) (3)

Intervals A and B have (n− 1) natural numbers.

Proposition 1. Any ompound number an be expressed as a produt of two

fators, whether prime or ompound.

Proposition 1 is trivial, beause if any natural number ould not be expressed

as a produt of natural numbers greater than one, then it would be prime by

de�nition.

Proposition2. Compound numbers of intervals A and B annot be expressed

neither a) as the produt of two natural numbers greater than n, nor b) as the

produt of two natural numbers smaller than n; sine in those ases their produt

would be outside the intervals A and B.

Proposition 2 an be veri�ed easily with the minimum produt of two natural

numbers greater than n:

(n+ 1) ∗ (n+ 1) = n2 + 2n+ 1 > n2 + n (4)

And with the minimum produt of two natural numbers smaller than n:

(n− 1) ∗ (n− 1) = n2 − 2n+ 1 < n2 − n (5)

Therefore,

Proposition 3. Eah ompound number of the intervals A and B an be ex-

pressed as a produt of a) a number lower than n, and b) a number greater than

n.

Proposition 3 is a orollary of propositions 1 and 2.

We an express this produt as:

(n− k) ∗ (n+m) (6)

If we fous on the fator lower than n, in order for this produt to be a ompound

natural number, and to be in the intervals A or B,

n > (n− k) > 1 (7)
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We will all C to this interval. Interval C an be expressed also as follows:

C = (1, n) (8)

Interval C has (n− 2) natural numbers.

Proposition 4. Every natural number ontained in interval C has a multiple

in A and B.

Proposition 4 is almost trivial beause the intervals A and B are wider than the

interval C; thus, every number ontained in C has a multiple in interval A and

another multiple in interval B.

Proposition 5. For all the odd numbers of intervals A and B to be ompound

numbers, then there must be at least two odd numbers of interval A whih are

multiple of the same odd number of interval C, and two odd numbers of interval

B whih are multiple of the same odd number of interval C.

Proposition 5 an be stated from Proposition 3 and from the Pigeonhole Prin-

iple (Dirihlet's priniple)[2℄, whih an be stated as follows:

Pigeonhole Priniple . Let it be two sets X (with n elements) and Y (with k

elements) and an appliation

f : X�Y

Then, despite of whih appliation f are we onsidering, if n > k there are at

least two elements of X, x1 and x2 (x1 6= x2), suh that f(x1) = f(x2).

In our ase, set X would be interval A or interval B, and Y interval C. As there

is one more element in interval A and oner more element in interval B than

in interval C, in order for this element to be ompound, there must exist an

element of interval C whih is fator of two elements of interval A, and another

(or the same) element of interval C whih is fator of two elements of interval

B.

Proposition 6. Every three onseutive odd numbers n1, n2, n3 are oprime

numbers two to two. Therefore, mcm (n1, n2, n3) = n1 ∗ n2 ∗ n3.

If n1, n2, n3 are onseutive odd numbers, then they an be renowned as n1, n1+
2, n1 + 4.

As 2 ∤ n1, then subsequently:

gcd (n1, n1 + 2) = gcd (n1, n1 + 4) = gcd (n1 + 2, n1 + 4) = 1
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Therefore, they are oprime two to two, and therefore mcm (n1, n2, n3) = n1 ∗
n2 ∗ n3.

1.1.2 Proof framework

For the sake of larity, we expose brie�y the reasoning steps that we are going

to follow through the demonstration basis and development:

1. We make what we denominate a Non-Compliane assumption, supposing

that Oppermann's Conjeture is false; we suppose that exists some interval

A or some interval B for whih every natural number ontained in them

is ompound.

2. As even numbers are always ompound numbers, we exlude them of the

demonstration and we fous solely on odd numbers de�ning three sets A,

B and C suh that they ontain the odd numbers of intervals A, B and C.

3. We state that, if the Non-Compliane assumption holds, then it is possible

to reate a system of ongruenes suh that eah element of set A is

multiple of any element of set C, and another system of ongruenes suh

that eah element of set B is multiple of any element of set C, applying

the Generalization of the Chinese Remainder Theorem[3℄.

4. We note and demonstrate that the minimum general solution of a system

of ongruenes suh that eah element of set A is multiple of any element

of set C is always greater than n2 + n, and that the minimum general

solution of a system of ongruenes suh that eah element of set B is

multiple of any element of set C is always greater than n2 + n.

5. Thus, as there is not a general solution for a system of ongruenes suh

that eah element of set A is multiple of any element of set C lower than

n2 + n, and as there is not a general solution for a system of ongruenes

suh that eah element of set B is multiple of any element of set C lower

than n2 + n, we onlude that the Non-Compliane assumption is false,

and therefore we onsider demonstrated Oppermann's Conjeture.

1.1.3 Proof development

Non-ompliane assumption: Oppermann's Conjeture is false; therefore,

it does exist some interval A, some interval B, or both intervals A and B,

for whih every natural number ontained in them is ompound.

Even numbers, exept of number 2, are always ompound. Therefore, we will

exlude them of the demonstration, and we will fous on odd numbers.

Compound odd numbers an only be produt of odd numbers; therefore, and

aording to proposition 3, in order to all odd numbers of intervals A and B to

be ompound numbers, eah of them must be multiple of one odd number of

interval C.
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Now we are going to de�ne a set of the odd numbers of interval C as set C;

another set of the odd numbers of interval A as set A; and another set of the

odd numbers of interval B as set B.

Set C ould be expressed as:

C = {3, 5, 7, . . . , 2m+ 1}∈N (9)

Where m is the number of odd numbers of set C (m = �C�).

Let us de�ne E(C)i as eah element of set C.

Eah of sets A and B ould be expressed as

A = {a, a+ 2, a+ 4, . . . , a+ 2m}∈N (10)

B = {b, b+ 2, b+ 4, . . . , b+ 2m}∈N (11)

For the sake of simpliity, we will develope the demonstration fousing on the

relationship between sets A and C, as the following reasoning and propositions

an be applied quite straightly to the relationship between sets B and C.

If the Non-Compliane assumption holds, then it is possible to reate a system

of ongruenes suh that eah element of set A is multiple of any element of set

C, applying the Generalization of the Chinese Remainder Theorem as follows:

Generalization of the Chinese Remainder Theorem. Let us onsider the

positive integers n1, n2, . . . , nk and let them be a1, a2, . . . , ak any integers. Then,

the ongruene system

x ≡ a1(modn1), . . . , x ≡ ak(modnk)

has a solution if, and only if, gcd (ni, nj) is divisor of ai − aj for every i 6= j.

When this ondition is satis�ed, then the general solution onstitutes a sin-

gle ongruene lass module n, where n is the minimum ommon multiple of

n1, n2, . . . , nk.
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Applying the Generalization of the Chinese Remainder Theorem to the relation-

ship between sets A and C under the Non-Compliane assumption, the positive

integers n1, n2, . . . , nk are the elements of set C = {3, 5, 7, . . . , 2m+ 1} ∈ N ,

the number x is the �rst element of set A (a), and the integers a1, a2, . . . , ak are

the diferene between eah element of A and its �rst element. Therefore, the

system would be as follows:

a ≡ 0 (modE(C)i)

a ≡ −2 (modE(C)i)

a ≡ −4 (modE(C)i)

...

a ≡ −2m (modE(C)i) (12)

Where some E(C)i appear two times, as there exists one element of C whih is

multiple of two elements of set A.

A luky (and fast!) onlusion supposition . If the system did not have

a solution, then we ould onlude at this point stating that, as the system did

not have a solution, then it would be impossible that eah odd number of set

A was multiple of an odd number of set C, and as we stated at Proposition 3

that any odd ompound number in set A must be multiple of an odd number of

set C, thus we would be able to a�rm that there would be at least one element

of set A whih were prime. However, the system has (at least) the following

solution:

a ≡ 0 (mod 3)

a ≡ −2 (mod 5)

a≡− 4 (mod 7)

...

a≡− 2m (modE(C)i) (13)

The system an be re-expressed as follows:

a ≡ 0 (mod 3)

a ≡ 3 (mod 5)

a≡ 3 (mod 7)

...

a≡ 0 or 3 (modE(C)i) (14)

Where E(C)i is the element of C whih is multiple of two elements of set A.
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It an be seen that, ordered the way above, ai−aj = 0 for every gcd (ni, nj) > 1;
thus, the system has a solution, as every gcd (ni, nj) > 1 is divisor of 0, and

every gcd (ni, nj) = 1 is divisor of ai − aj independently of the value of ai − aj .

Therefore, we an not assume A luky (and fast!) onlusion supposition as

true.

Proposition 7. It does not exist any set A suh that eah of their elements is

multiple of any element of a set C suh that C has less than three elements.

Case ‖C‖ = 1

The set C of one element is de�ned as C = {3}.

As set C has one element, set A has two elements; thus, A = {a, a+ 2}.

Aording to the Pigeonhole Priniple, both a and a + 2 must be multiples of

3. Notwithstanding, if 3 | a, then 3 ∤ a+ 2.

Therefore, it an not exist any set A suh that eah of its elements is multiple

of any element of a set C of one element.

Case ‖C‖ = 2

The set C of two elements is de�ned as C = {3, 5}.

As set C has two elements, set A has three elements; thus, A = {a, a+ 2, a+ 4}.

Aording to the Pigeonhole Priniple, at least two of the elements of set A

must be multiples of the same element of set C.

The distane between a and a+ 4 is less than 5; therefore, there an not exist

two elements of set A multiples of 5.

There is no distane between the elements of set A whih is multiple of 3.

Therefore, if any of the three is multiple of 3, then the remaining two elements

an not be multiples of 3.

As there an not be two elements of set A multiples of 5, and there an not be

two elements of set A multiples of 3, it an not exist any set A suh that eah

of its elements is multiple of any element of a set C of two elements.

Therefore, Proposition 7 is demonstrated.
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Proposition 8. The minimum ommon multiple of the elements of a set C

equal or greater than 3 is always greater than n2 + n.

Aording to Proposition 7, set C must be at least of 3 elements.

Aording to (9), set C was de�ned as C = {3, 5, 7, . . . , 2m+ 1}∈N . Therefore,

‖C‖ = m.

As set C is formed by the odd numbers of interval C = (1, n), then n must be

lower than the odd number next to the last element of set C. That is,

n < 2m+ 3 (15)

Therefore, we an state that:

max (n) = 2m+ 2 (16)

Consequently, substituting, we an state that:

max (n2 + n) = (2m+ 2)2 + 2m+ 2 (17)

Operating,

max (n2 + n) = 4m2 + 10m+ 6 (18)

Thus, Proposition 8 is a�rming that:

mcm (3, 5, 7, . . . , 2m+ 1) > 4m2 + 10m+ 6 (19)

As the minimum ommon multiple of the elements of set C is alulated as the

produt of their prime fators raised to their greatest exponent, and as aording

to Proposition 6 we know that the three last elements of set C are oprime, the

produt of the three last elements of set C is equal or lower than the minimum

ommon multiple of the elements of set C.

Expressed synthetially,

mcm (3, 5, 7, . . . , 2m+ 1) ≥ mcm (2m− 3, 2m− 1, 2m+ 1) (20)

Aording to Proposition 6,

mcm (2m−3, 2m−1, 2m+1) = (2m−3)∗(2m−1)∗(2m+1) = 8m3−12m2−2m+3
(21)

Substituting on (21),

8m3 − 12m2 − 2m+ 3 > 4m2 + 10m+ 6 (22)

Operating, this expression is equivalent to:

8m3 − 8m2 − 12m− 3 > 0 (23)
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It is easy to verify that this inequation has the following riti point:

m >
1

4
(3 +

√
21) (24)

For every m > 1

4
(3 +

√
21), the inequation holds true. As we have stated in

Proposition 7 that min (m) = 3, and 1

4
(3+

√
21) < 3, then the inequation holds

true for every number of elements of set C equal or greater than 3.

Subsequently, it is proved that the minimum ommon multiple of the elements

of set C is greater than n2 + n for every number of elements of set C equal or

greater than 3. Therefore, it is proved Proposition 8.

Proposition 9. The minimum general solution of a system of ongruenes

suh that eah element of set A is multiple of any element of set C is always

greater than n2 + n.

Aording to the Generalized Chinese Remainder Theorem,

a ≡ c (modmcm (3, 5, 7, . . . , 2m+ 1)) (25)

Where c is the partiular solution to the system of ongruenes. Therefore, the

minimum general solution of the system of ongruenes suh that eah element

of set A is multiple of any element of set C an be expressed as:

a = c+mcm (3, 5, 7, . . . , 2m+ 1)t ∀t ∈ Z (26)

Aording to Proposition 8,

mcm (3, 5, 7, . . . , 2m+ 1) > n2 + n (27)

Therefore, a > n2 + n.

Subsequently, it is proved that it is impossible that eah element of set A is

multiple of an element of set C.

Thus, the Non-Compliane assumption is false, and it is proved that at least

one number of interval A is prime.

The Proof Development setion is entirely appliable to the relationship between

sets B and C, as set B is de�ned exatly as set A. Therefore, applying the

Proof Development setion to set B (simply substituting the letters”a, A” with

”b, B”), it is proved that it is impossible that eah element of set B is multiple

of an element of set C.

Thus, the Non-Compliane assumption is false, and it is proved that at least

one number of interval B is prime. Therefore, it is demonstrated Oppermann's

Conjeture.
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2 COROLLARIES

2.1 First orollary: Legendre's Conjeture

Legendre's Conjeture[4℄ states that for every natural number n, exists at least

a prime number p suh that n2 < p < (n+ 1)2.

As (n + 1)2 = n2 + 2n+ 1, and aording to Oppermann's Conjeture proved,

we know that:

n2 < Pa < n2 + n < Pb < (n+ 1)2 (28)

Therefore,

n2 < Pa < Pb < (n+ 1)2 (29)

Therefore, it is demonstrated Legendre's Conjeture.

2.2 Seond orollary: Broard's Conjeture

Broard's Conjeture[5℄ states that, if pn and pn+1 are two onseutive prime

numbers greater than two, then between p2n and p2n+1 exist at least four prime

numbers.

Aording to the onjeture's statement,

2 < pn < pn+1 (30)

As the minimum distane between primes is two, we an state that:

pn < M < pn+1 (31)

Where M is some natural number between pn and pn+1.

Subsequently,

p2n < M2 < p2n+1 (32)

As M ≥ pn + 1, and aording to the demonstrated Oppermann's onjeture,

p2n < Pa < p2n + pn < Pb < M2
(33)

Idem, as pn+1 ≥ M + 1, and aording to Oppermann's Conjeture proved,

M2 < Pc < M2 +M < Pd < p2n+1 (34)

Therefore,

p2n < Pa < Pb < Pc < Pd < p2n+1 (35)

Therefore, it is demonstrated Broard's Conjeture.
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2.3 Third orollary: Andria's Conjeture

Andria's Conjeture[6℄ states that for every pair of onseutive prime numbers

pn and pn+1,
√
pn+1 −

√
pn < 1

Aording to the demonstrated Oppermann's Conjeture, the maximum dis-

tane between pn and pn+1 is:

n2 + n+ 1 ≤ Pn < (n+ 1)2 < pn+1 ≤ n2 + 3n+ 1 (36)

It is easily veri�able that:

√

n2 + 3n+ 1−
√

n2 + n+ 1 < 1 (37)

For every value of n. As n2 + 3n + 1 ≥pn+1, and Pn ≥ n2 + n + 1, then√
pn+1 −

√
pn < 1

Therefore, it is demonstrated Andria's Conjeture.

2.4 Fourth orollary: a new maximum interval between

every natural number and the nearest prime number

Aording to the exposed in the third orollary, it an be stated that the max-

imum distane between every natural number and the nearest prime number

will be:

n2 + 3n− (n2 + n+ 1) = 2n− 1 (38)

Therefore, and stating that:

n =
√

n2 + n+ 1 (39)

It an be determined that:

∀n ∈ N, ∃Pa, Pb/(n− (2
√
n− 1)) ≤ Pa ≤ n ≤ Pb ≤ (n+ (2

√
n− 1)) (40)

And therefore, we an de�ne a new maximum interval between every natural

number and the nearest prime number as:

∀n∈N, ∃P/n ≤ P ≤ (n+ (2
√
n− 1)) (41)

2.5 Fifth orollary: the existene of in�nite prime num-

bers of the form n2 ± k/0 < k < n

Aording to the demonstrated Oppermann's Conjeture, it an be stated that

every prime number pi will be of the following form:

pi = n2 ± k/0 < k < n (42)
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Subsequently, as it is widely proved the existene of in�nite prime numbers, and

every prime number an be expressed as n2 ± k/0 < k < n, then it is proved

the existene of in�nite prime numbers of the form n2 ± k/0 < k < n.
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