Breaking a Multi-Layer Crypter through
Reverse-Engineering, A case study into the
MANT Crypter

Jason Reaves

February 21, 2016

Abstract

Crypters and packers are common in the malware world, lots of tech-
niques have been invented over the years to help people bypass security
measures commonly used. One such technique where a crypter will use
multiple, sometimes dynamically generated, layers to decode and unpack
the protected executable allows a crypter to bypass common security mea-
sures such as Antivirus. While at the end of this paper we will have con-
structed a working proof of concept for an unpacker it is by no means
meant as a production level mechanism, the goal is simply to show the
reversing of routines found in a crypter while using a reverse-engineering
framework that is geared towards shellcode analysis to our benefit for
malware analysis.

1 Introduction

A Multi-Layer crypter is simply a crypter or packer that uses multiple stages
of executable layers to achieve it’s purpose of loading a final protected exe-
cutable. Reversing these things is usually considered pointless by researchers
unless they’re employing some sort of a new anti-analysis trick or exploit for
privilege escalation as normally the interesting thing to look at will be the un-
packed data.

This crypter which will be nicknamed MANT1 for the purpose of this paper is
one that I have followed for a long time. It’s used by a particular group/actor
and has been used by them as they moved around large malware families. The
group/actor in question has been involved in Vawtrak, Dyre, Nymaim, ZeusVM
and ReactorBot to name a few.

2 First and Second Layers

The first layer isn’t really hidden as well as the others, it’s basically a block of
code that is XORd. This section however contains most of the more important
routines that will be used during the unpacking process. This layer will decode
and pass execution to the second layer, but both of these layers use the same
routines so we will only go through the routines in a general overview manner
since our primary concern is pulling out the unpacked payload.

The main purpose of these layers is to reconstruct the next layer and then
call it. By ’reconstruct’ I'm referring to a process by which the data that has
been broken into chunks, encoded and sometimes compressed with a header of
encoded values on the top of the data will be decoded and put back together.
This routine will find these chunks and piece them back together, I refer to these
chunks as a set for the purpose of this paper because there is an identifying
number assigned to each set of chunks with each chunk having an index number
into the set.

2.1 Main Loop

Each layer begins in roughly the same fashion with a loop that will enumerate
through each index of the set that corresponds to the next layer of data it is to
unpack(Figure 1). The biggest difference with the last layer being that it has
code to check and load the payload after it has been unpacked as opposed to
just jumping to the next layer.

2.2 Finding a Set Chunk

The first notable routine is used very frequently used, it’s to find the first oc-
currence in a given data blob for a header with the proper set number. Some
psuedo C code for this can be see in Figure 2. After all the checks pass an
int value is passed off to a function for decoding and compared against the set
number that was passed in.

call GetHIndexChunk E38

add esp, 18h

mov [ebp+var_24], eax

cmp [ebp+var_24], @

jz short loc_1442

D
¥

EA Nl EEN L
mov ecx, [ebp+setIndex]
add ecx, 1 loc_14h42:
mov [ebp+setIndex], ecx mov edx, [ebp+arg_14]
lea edx, [ebp+var_18] mov eax, [ebp+var_24d]
push edx mov [ed=], eax
mov eax, [ebp+var_1C] mov eax, [ebp+var_C]
push eax mov esp, ebp
mou ecx, [ebp+arg_#@] pop ebp
push eCx retn
mowv edx, [ebp+var_24] RebuilData_ 13A8 endp
push edx
call Decode_1278
add esp, 18h
mov [ebp+var_8], eax
mov eax, [ebp+var C]
add eax, [ebp+var_20]
mov [ebp+var_28], eax
mowv ecx, [ebp+var_18]
push ecx
mov edx, [ebp+var_8]
push edx
mov eax, [ebp+uvar_28]
push eax
call CopyData_558
mni ary Fehn+uar 701

Figure 1: Main Loop from Crypter Layer

2.3 Decoding the Header

The function mentioned for decoding a header value can be seen as psuedo C
code in Figure 3. There’s some obvious areas where this function could throw
a division by 0 error which could be the reason for the previous check values
and code. As can be seen from the main loop of the program this routine is
used to decode all the values of the header and using this plus following out
the values as they're parsed we can start to put together a structure for the
header(Figure 4).

2.4 Decoding the Data

After a piece of the next section is found in the set it will be decoded. The part
of the code that does the decoding is just another smaller set to be found that is

int FindSetChunk (char xdata, int setNum)
{
int i = 0;
while(i < strlen(data)—1)
{
int increment = 1;
unsigned short CheckVall = *((unsigned shortx)data);
if (CheckVall > 1500 && CheckVall < 4000)
{
unsigned short CheckVal2 = x((unsigned shortx)(data+2));
if (CheckVal2 >= CheckVall+700 &&
CheckVal2 <= CheckVall+CheckVall+1967)
{

unsigned short offset = #((unsigned shortx)(data+4));
if(i + offset + 6 < strlen (data) &&
*((unsigned short«)(datatoffset+6)) —
offset 4+ CheckVall + 2xCheckVal2)
{

increment += offset +8;
if (DecodeHdrVal (*((unsigned intx*)(data+6))) = setNum)
return i+6;
}

}
}
i 4= increment;
data += increment;

}

return O0;

}

Figure 2: Find Set Chunk

the byte code of a function. The interesting part is that this byte code appears
to change between samples which means it’s probably dynamically generated
as part of the stub which will then probably encode the layers and payload as
part of the build process. Using Miasm[3] which is a reverse-engineering python
framework focused on shellcode analysis we can disassemble this byte code after
finding it(this code comes from a Pony sample) to see the relevant decoding
section of this code in Figure 5.

3 Putting it all together

As I mentioned at the beginning the layers all use the same methods for retriev-
ing data so in order to automate pulling out the final unpacked payload we only

int DecodeHdrVal(int val)
{
int result = 0;
int temp = val;
if (LOWORD(val) > 3200)
temp = val — 3200;

int reml = LOWORD(temp) % 100;
int rem2 = LOWORD(temp) % 100;
if (reml > 50)

rem2 = rem2 >> 1;

result = LOWORD(temp — reml — HIWORD(val) / rem2) / rem2;
result += (LOWORD(temp — reml — HIWORD(val) / rem2) % rem2) << 16;

return result;

Figure 3: Decode Header Values

struct DataBlob {
unsigned short CheckVall;
unsigned short CheckVal2;
unsigned short CheckOffset;
struct ChunkHeader {
unsigned int SetNum;
unsigned int length;
unsigned int SetIndex;
unsigned int check;
unsigned int key;
unsigned int compressedflag;
unsigned int uncompressedSize;
}chunk;
char data[chunk.length];

Figure 4: Header Structure

need the routines that we have mentioned thus far and the set number of the
payload data which is 0 for the samples I went through.

Finding the data and pulling out the relevant header values we will need isn’t
a difficult process(Figure 6). However, how do we go about accounting for the
embedded byte code function that changes between samples? There are many

loc_ BEEBOGEREOGOAG2E
BEBEEEZE MOV EAX, DWORD PTR [EBP+Bx8]
BEAEBEAIL ADD EAX, DWORD PTR [EBP=8xFFFFFFF4]
BEAEEE3Y MOVSH ECX, BYTE PTR [EAX]
BEOEBEAIT MOV EAX, DWORD PTR [EBP=@x18]
BEBEEAIA ADD EAX, Bxd
BEEEBAID CODO
BEBEBEEIE MOV ESI, 6x3
BEAEER4S IDIV ESI
BEBEBRAS XOR EDX, DWORD PTR [EBP+8x18]
BEGEBRAE MOV EAX, DWORD PTR [EBP+8x18]
BEEEBR4E ADD EAX, DWORD PTR [EBP=8xFFFFFFFC]
BEBBBRAE XOR EDX, EAX
BEGRBASE XOR ECX, EDX
BEBEBESZ MOV EDX, DWORD PTR [EBP+Bx8]
BEREBASS ADD EDX, DWORD PTR [EBP+BxFFFFFFF4]
BEBRBASE MOV BYTE PTR [EDX], CL
BEBRBASA CMP DWORD PTR [ERP+Bx18], Bx8
BEBEBBBSE INE loc_REAEEREEEEGBEATA : BxBEEEEAT
L iy
.'ll
r r "y
loc_BEEBOEORGEOBGEGE

BROGERGE MOV EAX, DWORD PTR [EBP+8x8]

BBOBBBES ADD EAX, DWORD PTR [EBP+8xFFFFFFF4]

BRABBRGE MOVSH ECX, BYTE PTR [EAX]

BRAGBRGD XOR ECX, Bx2

BERBBBEC MOV EDX, DWORD PTR [EBP+Bx8]

BEABBBEF ADD ED¥, DWORD PTR [EBP:BxFFFFFFF4]

BEAEBBETZ MOV BYTE PTR [EDX], CL

o, -

1

Figure 5: Disassembled Byte Code from Miasm

ways to go about solving the problem by using other executables but I decided
to keep it in python as much as I could so I went back to Miasm because I
had read an article[4] where someone had walked through shellcode in memory
with it through dynamic analysis. Miasm comes with an example script that
performs pretty much what we’re looking for(example/jitter/x86_32.py) and
studying how they capture the end by pushing a bogus address on the stack we
can figure out how to call our byte code with parameters(Figure 7)!

Armed with all of this constructing an unpacker is very possible, I've put one

i
t

1
1

ret = ""
while t != 0:
t = main_loop(@, i, data, False)
if t 1= 0:
temp = scode(str{t[2]), len(t[2]), t[®], binascii.unhexlify(shellcode))
if t[3] = 1 or t[3] == 2:
temp = LZNT decompress(temp, ©)
ret += stritemp[:t[1]])
if t[1] > len(temp):
ret += "\x88' * (t[1] - len(temp))
i+=1

Figure 6: Loop Through Payload Set Overview

myjit = Machine("x86 32").jitter("tcc")
myjit.init stack()

run_addr = 0x40000000
myjit.vm.add memory page(run_addr, PAGE READ | PAGE_WRITE, shellcode)

#myjit.jit.log regs = True
#myjit.jit.log mn = True
#myjit.jit.log newbloc = True

myjit.add breakpoint(@x1337beef, code sentinelle)
myjit.vm.add memory page(0x10800800, PAGE_READ | PAGE WRITE, data)
myjit.push uint32 t(key)

myjit.push uint32 t(len(data))

myjit.push uint32 t(0x100008080)

myjit.push_uint32 t(0x1337beef)

myjit.init run(run_addr)

myjit.continue run()

return myjit.cpu.get mem(0x10000000,1len(data))

Figure 7: Decoding with Miasm

on github that follows the flow of the packer pretty closely and left some of
my comments in it from when I was reversing the flow of the routines (https:
//github.com/sysopfb/Unpackers/blob/master/Manl/manlunpack.py.) As
I mentioned this is not production code as it is a highly unoptimized approach
using python, making it faster is entirely possible in many different ways.

4 Conclusions

Pony Sample SHA256:
£51d9f113a2935fe4663ef4f4f8db2c26¢7426e3859ed94afdd3115e69b4091d
Nymaim Samples SHA256:

2143492a9¢898377a0dc9680cbe2cal 3f7bcc0cd59d551769a5461514db7520e0

1d759e89749603dbbce2ac2dafaale89238¢17411a392{d3af78809a965¢f692
Vawtrak Sample SHA256:
616db219c¢9618139709e3356ec242f8dbdbel81£e92022c015b2fb270c6eell¢

References
[1] IDA, https://www.hex-rays.com/products/ida/
[2] Python, https://www.python.org/

[3] Miasm - Reverse engineering framework in Python, https://github.com/cea-
sec/miasm

[4] Dynamic shellcode analysis - Miasm’s Dblog, hitp
/Jwww.miasm.re/blog/2016/02/12/dynamicshellcode,nalysis.html

