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Abstract. We present an approach to analyze time dilation in the theory of special relativity, starting 
out from a variant of the Lorentz transformation. The concepts of symmetry and simultaneity are 
essential in these investigations. We also stress the importance of the observational principle, i.e., the 
location of clocks used for the clock comparisons of the two reference frames (RFs) moving relative to 
each other. For a specific RF we may follow just a single clock (SC), or we can use multiple clocks 
(MC) to follow a single clock on the other RF. In addition to these standard cases, we consider an 
approach, utilizing an auxiliary RF, which – in combination with symmetry considerations – provides a 
consistent definition of ‘simultaneity at a distance’. We use the overall approach to discuss the travelling 
twin paradox, (now providing corrections to previous versions of the paper).  
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1 Introduction 
The present work presents basic features of time dilation in special relativity. In particular, we explore 
the use of the Lorentz transformation (LT) for one spatial parameter. We start out by providing a 
reformulation of the LT, being suitable for a graphical presentation. It also facilitates the specification 
of which clocks to apply for the clock comparisons between the two inertial reference frames (RFs). We 
will refer to the specification of clocks as the observational principle. 

Symmetry is important when we discuss time dilation within special relativity. It may appear 
paradoxical that- at the same time as we have complete symmetry between the two RFs – we will also 
‘take the perspective’ of one of them, apparently destroying symmetry. For instance the common 
statement that the ‘moving clock goes slower’ represent such an apparent paradox, which is handled 
somewhat differently in the literature. Some authors apply the expression 'as seen' by the observer on 
the other reference system, perhaps indicating that it is an apparent effect, not a physical reality. 
Actually, Giulini, [1] in his Section 3.3 states: ‘Moving clocks slow down’ is ‘potentially misleading 
and should not be taken too literally’. Others stress that 'everything goes slower' on the 'moving system', 
not only the clocks; truly stating that the time dilation represents a physical reality also under the 
conditions of special relativity, (i.e. no gravitation etc.) However, for instance Pössel [2] points out that 
it is the procedure related to clock comparison (‘observational principle’) that decides which reference 
system has the time which is ‘moving faster’, resp. ‘slower’.  

Simultaneity at a distance is another important issue in special relativity. Using synchronized clocks of 
a specific reference frame we can define simultaneity of events ‘in the perspective’ of any RF, but the 
various RFs will give different specifications of simultaneity. However, we will introduce an auxiliary 
reference frame, which – in combination with symmetry requirements – provides a useful tool for 
specifying simultaneity at a distance.  

We present an approach to meet these challenges in the analysis of time dilation, and also apply the 
suggested approach to provide a discussion of the ‘travelling twin’ example (under the strict conditions 
‘of special relativity); demonstrating how various specifications regarding the ‘reunion’ of the twins will 
give different results.  

Actually, some authors also question the validity of the theory of special relativity (TSR) and the LT, 
(e.g. see McCausland [3], Phipps [4], Robbins [5]); and perhaps we should include Serret [6]. In 
particular Ref. [3] reviews various controversies on the topic (related to H. Dingle) during several 
decades, and gives many references. Ref. [5] also treats the Bergson-Einstein controversy, dating back 
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to 1922. The scope of the present work, however, is more restricted, accepting the validity of the TSR 
as a premise. Our objective is mainly to investigate the logical implications of the Lorentz transformation 
and thereby provide an approach for analyzing relative time and simultaneity within the framework of 
the TSR.  

2 The Lorentz transformation and some special cases 
We first specify some basic notation and assumptions. Then we provide a variant of the LT as the basis 
for our investigations. 

2.1 Basic notation and assumptions  
We start out from the standard theoretical experiment: Two co-ordinate systems (inertial reference 
frames), pointing in the same direction are moving relative to each other at speed, v. We consider just 
one space co-ordinate, (x-axis), and investigate the relation between space and time parameters, (x, t) on 
one RF (denoted K), and the corresponding parameters (xv, tv) on the other. Thus, we have the following 
basic simultaneity: At time (i.e. clock reading), t and position, x on the first system, we observe that 
time equals tv and position equals xv on the other. We will base the discussions on the LT, including the 
following specifications: 

 There is a complete symmetry between the two co-ordinate systems.  
 On both RFs there is an arbitrary number of identical, synchronized clocks, located at any positions 

where it is required.  
 We choose the perspective of one of the RFs, which we will denote K. Simultaneity in the perspective 

of this RF, K, means that all clocks on this RF show the same value, t, (and both times are given as 
a function of the position on K). We will refer to K as the primary system, and the other RF as the 
secondary system.   

 Throughout we let SC refer to a RF utilizing a ‘single clock’ (or the ‘same clock’), for the time 
comparisons with other RFs. Similarly, MC will refer to a reference frame, which utilizes ‘multiple 
clocks’ (at various locations) for time comparisons. 

2.2 The standard formulation of the Lorentz transformation 
In the above notation the LT takes the form 

                                                                   𝑡௩ =  
௧ି(௩௫)/మ

ඥଵି(௩/)మ
                                                                     (1) 

                                                                   𝑥௩ =  
௫ି௩௧

ඥଵି(௩/)మ
                                                                    (2) 

These formulas include the length contraction along the x-axis (inverse Lorentz factor): 

                                                                 𝑘௫ = ඥ1 − (𝑣/𝑐)ଶ                                                                (3) 

2.3 An alternative formulation 
At any time, t and position, x we now introduce w equal to w = x/t. By inserting x = wt in (1) we directly 
get that time on the secondary RF at this position equals: 

                                                              𝑡௩ = 𝑡௩(𝑤) =
ଵି ௩௪/మ

ඥଵି(௩/)మ
𝑡                                                         (4) 

Note the change in notation. In eq. (1) we suppressed the dependence of tv on x Now, however, we 
pinpoint its dependence on w, and will – when appropriate write tv(w) rather than tv. The new time 
dilation formula (4) will – for a given time, t on the primary system, K – give the time, 𝑡௩(𝑤) on the 
secondary system, Kv, as a linear, decreasing function of w. The important thing is that we take out t as 
a separate factor. The relation 𝑡௩(𝑤)/𝑡 is given as the ‘general time dilation factor’:  

                                                             𝛾௩(𝑤) = (1 − 
௩௪

మ ) /ට1 − (
௩


)ଶ                                                    
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Figure 1. Clock readings in the perspective of K. Thus, ‘time’ all over K equals, t. while clock readings, tv(w) on the 
other RF is given as a function of w, cf. (4); where w=x/t provides the ‘position’ on K. 

Thus, we can write (4) as 
𝑡௩ = 𝑡௩(𝑤) = 𝛾௩(𝑤) 𝑡. 

Fig.1 provides an illustration of this time dilation formula. Here we give clock reading (‘time’) both on 
K and Kv in the perspective of K. So the figure illustrates an instant when time equals t all over this 
reference frame. The horizontal axis gives the ‘position’ w = x/t on K at which the clock measurements 
are carried out. The vertical axis gives the actual clock readings. So as time on K equals t at any 
‘position’, w, the clock readings on Kv at this instant, 𝑡௩(𝑤), depend on w; see decreasing straight line. 

Now, in analogy to letting x = wt, we also define a wv so that xv = wv∙tv = wv∙tv(w). By inserting both x 
= wt and xv = wv∙tv, in (2), we will obtain 

                                                                      𝑤௩ =  
௫ೡ

௧ೡ(௪)
=

௪ି௩

ଵି
ೢ


∙
ೡ



                                                                        (5) 

Now equations (4), (5) represent an alternative version of the LT, here expressed by parameters (t, w) 
rather than (t, x). The most striking feature of this new version is that it is the single equation, (4), which 
involves the time parameters, t and tv(w); giving tv(w) as a factor independent of t multiplied with t.  

The other equation (5) has a direct interpretation related to velocities. According to standard results of 
TSR, e.g. Refs. [7]-[9], the velocities v1 and v2 sums up to v, given by the formula 

                                                                  𝑣 = 𝑣ଵ⨁ 𝑣ଶ  ≝  
௩భା௩మ

ଵା
ೡభ


∙
ೡమ


                                                       (6) 

So now defining the operator ⨁ this way, eq. (5) actually says that 𝑤௩ = 𝑤⨁(−𝑣), implying 𝑤௩⨁𝑣 =

𝑤; thus, clearly interpreting w and wv as velocities along the x - axis. That is we have a moving position 
along the x-axis for clock comparisons. Therefore, this w specifies what we refer to as the observational 
principle, pinpointing that this is an essential factor for the resulting observed time dilation. 

Note that we do not need to think of w as a velocity; rather as a way to specify a certain position x = wt 
on the primary RF, K. However, we will later see that it can also be fruitful to interpret w as the velocity 
of a third observational RF relative to K.  

A final comment. Eq. (4) gives our general formula for time dilation. Here we use the parameter w to 
specify the location of the relevant clock readings. This w provides the location on the primary RF, i.e. 

w0

Clock 
time

w* v

t

  𝑡 ඥ1 − (𝑣/𝑐)2 

  𝑡 /ඥ1 − (𝑣/𝑐)2 

tv(w)



4 
 

K. Now we could of course reformulate the eqs. (4), (5) to give the time dilation and clock readings as 
a function of wv, (and w as a function of wv). In that case K would become the secondary RF; giving 
‘identical’ expressions, just replacing v with –v. 

2.4 Standard special cases (observational principles) 
Now focusing on time dilation, cf. eq. (4), there are various interesting special cases (observational 
principles). First, if a specific clock located at the origin xv = 0 on Kv is compared with the passing clocks 
on K. These clocks on K must have position x = vt, and thus we choose w = v and directly get the relation  

                                                               𝑡௩(𝑣) = 𝑡 ඥ1 − (𝑣/𝑐)ଶ                                                           (7) 

which equals the ‘standard’ time dilation formula. Further, when a specific clock at the origin, x = 0, on 
K is used for comparisons with various passing clocks on Kv, we must choose w = 0 and thus get 

                                                               𝑡௩(0) = 𝑡 /ඥ1 − (𝑣/𝑐)ଶ                                                          (8)   

as the relation between t and tv. We specify the two special cases (7), (8) in Fig. 1 and will discuss these 
further in Ch. 3. Two other standard cases are obtained by inserting w = ± c in (4). 

2.5 The symmetric case 
There is another interesting special case of the LT, (4), (5). We can ask which value of w (and thus wv) 
will result in tv(w) ≡ t. We easily find that this equality is obtained by choosing w = 𝑤∗, where   

                                                    𝑤∗ =
మ

௩
ቀ1 − ඥ1 − (𝑣/𝑐)ଶቁ =  

௩

ଵାඥଵି(௩/)మ
                                        (9) 

Further, by this choice of w we also get wv = – 𝑤∗. This means that if we consistently consider the 
positions where simultaneously x = 𝑤∗t and xv = – 𝑤∗tv = – 𝑤∗t, then no time dilation will be observed 
at these positions. In other words (cf.  Fig. 1): 

                                                                         𝑡௩(𝑤∗) = 𝑡                                                                             (10) 

At this position we find xv = - x, and so we see this as the midpoint between the origins of the two 
reference frames; thus, providing a nice symmetry. Note that when we choose the observational 
principle, (9), then absolutely everything is symmetric, and it should be no surprise that we get tv = t.  

Note that 𝑤∗ has a simple interpretation. Recalling the definition of the operator ⨁ in eq. (6) for adding 
velocities in TSR, (𝑣 = 𝑣ଵ⨁ 𝑣ଶ), it is easily verified that when  𝑤∗ is given by (9), then we get 𝑤∗⨁𝑤∗= 
v. So this confirms that when our point of observation ‘moves’ with velocity  𝑤∗ relative to K and - 𝑤∗, 
relative to Kv, it corresponds exactly to the case that the relative speed between K and Kv equals v. 

3 “The moving clock”: SC vs. MC 
We now take a closer look at the observational principles given by (7) and (8). These relate 
clock readings at a location where one of the clocks are positioned at the origin of a RF. Thus, 
we can combine eqs. (7) and (8) into one single formula: 

                                                              𝑡ௌ = 𝑡ெඥ1 − (𝑣/𝑐)ଶ                                                        (11) 

Here 𝑡ௌ is the clock reading of the specific clock at the origin (of either K or Kv). Further 𝑡ெ is the 

clock reading of the clock at the same location, but on the other frame. So, for instance, 𝑡ௌ 

replaces 𝑡௩(𝑣) in eq. (7) and t in eq. (8); while 𝑡ெ replaces t in eq. (7) and 𝑡௩(0) in eq. (8), This is 
clearly demonstrated in Fig. 1. At both these locations it is the SC that gives the lower value. 

Note: Extended notation 
Note that the notation of eq. (11), using 𝑡ௌ and 𝑡ெ, shall not replace the more general notation, 

𝑡௩ = 𝑡௩(𝑤) and t, as used in (4). The new terms 𝑡ௌ and 𝑡ெ shall just help us to realize the symmetry 
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of two specific positions, also being marked out in Fig. 1. Thus, we will still use the general notation, 
but at the two locations, w = 0 and w = v, we may in addition apply the essential result, (11). 
Also, observe that we in (11) have dropped the subscript, v in both time parameters. This just means that 
(11) is valid irrespective of which RF is chosen as the primary. However, we could (and will later) add 
a subscript v to either tSC or tMC, to indicate which of the systems we choose as the primary/secondary 
RF. Thus, using parameters (𝑡௩

ௌ  , tMC) means that we ‘follow’ a fixed SC at the origin of the ‘secondary’ 
RF, and using (tSC, 𝑡௩

ெ) means that we ‘follow’ a SC on the primary RF. 

We may consider this relation (11) as the ‘essential Lorentz transformation’, and is in my opinion more 
useful that the rather ambiguous (7). Further, (11) is much more than an efficient way to write the two 
eqs. (7) and (8). By eq. (11) we stress that (7) and (8) actually represent the same result, and is thus more 
informative than (7) and (8). Actually, this choice of which reference frame shall apply a single clock is 
crucial, and it introduces an asymmetry between the two RFs. 

Before we leave (11) some further comments are relevant. First, observers on both reference frames will 
agree on this result (11). Thus, it is somewhat misleading to apply the phrase 'as seen' regarding any 
clock reading. All time readings are objective, and all observers (observational equipment) on the 
location in question will 'see' the same thing. The main point is rather that observers at different reference 
frames will not agree regarding simultaneity of events.  

Secondly, we have the formulation ‘moving clock goes slower’. It is true that an observer on one RF, 
observing a specific clock (on the other RF) passing by, will see this clock going slower, when it is 
compared to his own clocks. So in a way this confirms the standard phrase ‘moving clock goes slower’. 
However, we could equally well take the perspective of the single clock, considering this to be at rest, 
implying that the clocks on the other RF are moving. The point is definitely not that clock(s) on one RF 
are moving and clocks on the other are not. It is the observational principle that decides which of the 
two clocks initially at the origin, which we observe to move slower. Therefore, the talk about the 
‘moving clock’ could be rather misleading. 

We should stress that relations like eq. (11) are well known. For instance, eq. (3-1) of Smith [10] equals 
our eq. (11), and our concepts SC and MC correspond to the concepts of‘proper’ and ‘improper’ time 
used in that book. Actually, ‘coordinate time’ is a more common term in the literature than ‘improper 
time’. However, it seems that this relation (11) and the insight that it provides has not received the 
attention it deserves.  

We further stress that it is not required to point at one reference frame to be SC (having ‘proper’ time), 
and the other to be MC (having ‘improper’ time). We may at the same time have clock(s) on both RFs 
observed to ‘go slower’. The equation (11) just says that if we follow a specific clock (here located at 
the origin), we will observe that this goes slower than the passing clocks on the other RF.  

This point in my opinion also gives an answer to ‘Dingle’s question’. Dingle [11] raises the question of 
symmetry regarding the travelling twin paradox: “Which of the two clocks in uniform motion does the 
special theory require to work more slowly? This is an important question, which according to the 
discussion in McCausland [12] so far has not been given a satisfactory answer.  

However, it is clearly not the case that the clock(s) on one of the two reference frames go(es) slower 
than the clock(s) on the other. We could very well choose to follow both the two clocks being at the 
origin at time 0; which will give that both reference frames have a clock ‘going slower’. So, the result 
on time dilation is actually fully symmetric with respect to the two reference frames! The question is 
not which reference frame has a clock that ‘goes slower’; it is rather which observational principle we 
have chosen. This fully demonstrates that it is rather inappropriate to apply the statement ‘moving clock 
goes slower’. 
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Actually, Professor Dingle in his later work claimed that the TSR itself was inconsistent; see thorough 
discussion by ref. [3]. However, according to [3], Dingle again seems to have focused on the apparent 
inconsistency of our eqs. (7), (8), rather than discussing the interpretation of the more relevant eq. (11). 

4 Using an auxiliary reference frame of symmetry 
We proceed to investigate the important question of simultaneity at a distance. We primarily elaborate 
on the fundamental result (11). However, we will now treat the two reference frames in a symmetric 
way, and denote them K1 and K2. In addition, we introduce an auxiliary RF, K. We chose this as our 
primary RF, and so we make our observations ‘in the perspective’ of this auxiliary K. 

To get a completely symmetric situation we let K1 having speed – 𝑤∗ with respect to K, and K2 having 
speed 𝑤∗ with respect to K. As the speed between K1 and K2 shall equal v, it follows that we define 𝑤∗ 
by (9); (cf. discussion at end of Section 2.5.) 

Next we specify the observational principle. We choose to operate the auxiliary reference frame as MC, 
and so both K1 and K2 are SC.1 Then single clocks at the origins of K1 and K2 are at any time compared 
with various clocks along K. Now we can apply the relation (11) between the auxiliary RF, K and the 
two RFs K1 and K2, giving, (also see the Note, Alternative notation in Chapter 3): 

                                                   𝑡 ௩
ௌ  = 𝑡ெඥ1 − (𝑣/𝑐)ଶ,   both for v = -𝑤∗ and v = 𝑤∗                  (12) 

It directly follows that 

                                                      𝑡ି௪∗
ௌ = 𝑡௪∗

ௌ = 𝑡ெඥ1 − (𝑤∗/𝑐)ଶ                                                  (13) 

So here 𝑡ି௪∗
ௌ  is the clock reading of the clock at the origin of K1, and 𝑡௪∗

ௌ is the reading of the clock at 

the origin of K2. The essential result in (13) is that 𝑡ି௪∗
ௌ = 𝑡௪∗

ௌ. So in the perspective of K these are now 
the simultaneous clock readings at the origins of the two ‘main’ reference frames, K1 and K2, moving 
relative to each other at speed, v.  

We illustrate these results in Fig. 2, which provides an analogy to Fig. 1. While Fig. 1 presented time 
dilation between two RFs, taking the perspective of one of them, Fig. 2 gives a symmetric picture with 
respect to two RFs, also introducing a third RF, K, and taking the perspective of this new one. Fig. 2 
gives a snapshot of the clock measurements at an instant when all clocks on K read time t; cf. horizontal 
line marked t. 

The parameter, w (horizontal axis) refers to the ‘positions’ (w = x/t) on the auxiliary reference frame, K. 
The reference frames, K1 and K2 move relative to K at speed –𝑤∗ and 𝑤∗, respectively. Thus, the lines 
𝑡ି௪∗(𝑤) and 𝑡௪∗(𝑤) give the time measured on clocks at K1 and K2, respectively; as a function of w 
(and time t) on K. We focus on three positions on K, i.e. w equal to –𝑤∗, 0 and 𝑤∗, respectively. These 
three values correspond to the origins of the three reference frames, K1, K and K2, respectively.  

First, the letter a in the figure indicates the simultaneous clock readings of reference frames K1 and K2, 
observed at the origin of K. At this position the clocks on K1 and K2 show the same time, and are 
simultaneously located at the same location, w = 0; so we are actually just referring to ‘basic 
simultaneity’. For these measurements the reference frame K is a SC system, and its clock will appear 
slower than the corresponding clocks on K1 and K2: we observe the line t falling below the point a. 

As stated, the two points marked with b correspond to the SC time readings at the origins of K1 and K2. 
Thus, using the extended notation introduced in Chapter 3, we have 𝑡ି௪∗

ௌ = 𝑡ି௪∗(−𝑤∗) and 𝑡௪∗
ௌ =

𝑡௪∗(𝑤∗). According to our result (13), these are identical. So the clock on K1 at the position –𝑤∗ and 
the clock on K2 at the position 𝑤∗ give identical time readings. 

                                                           
1 Alternatively we could let the auxiliary reference frame, K operate as SC; but would then just obtain the same 
result as given in Section 2.5, and this is therefore of limited interest. 



7 
 

These origins have moved apart after time 0; and the evens that these two clock readings are equal are 
not simultaneous, neither in the perspective of K1 nor in that of K2, (clearly illustrated in Fig. 2). 
However, eq. (13) tells that in the perspective of the auxiliary reference frame we have two simultaneous 
events. Now simultaneity in the perspective of the auxiliary RF may seem a weak form of simultaneity. 
But, when we have this symmetry, the result becomes interesting, and not very surprising. Rather, I 
would postulate that this symmetric ‘simultaneity at a distance represents a valid form of simultaneity. 
This is not a strong assumption, considering this a consequence of the complete symmetry we have here. 
Claiming that the one of the two events b would occur prior to the other would represent a contradiction. 

t

- w*

a

b

tw*(w)

t-w*(w)

Clock 
time

K1

K2

K

 w*0
w

c

 

Figure 2 Clock measurements (‘time’) in the perspective of the auxiliary reference frame, K, where the reference 
frames K1 and K2 have velocity –𝒘∗ and 𝒘∗, respectively, relative to K. (Here w represents ‘position’ on K.) 

In conclusion, this is the most significant result obtained by using the auxiliary RF: We manage to 
establish a simultaneity of events at K1 and K2 ‘at a distance’. This is a key question in a proper handling 
of time dilation to achieve this. Also see the further discussion on simultaneity in Hokstad [13].  

Finally, in Fig. 2 we also see two clock readings corresponding to the letter c. These exhibit the same 
type of symmetric simultaneity as the points b, and the only difference is that the time readings at c will 
not correspond to the origins of the two main RFs themselves, but rather to the location on the other 
frame at the same position. We give a numerical example related to Fig. 2 in Appendix.  

This concludes our discussion on the interpretation/handling of time dilation in TSR. The observant 
reader might realize that the experimental set-up given here is well suited for handling the travelling 
twin paradox; which we discuss in the next chapter. 

5 Example: The travelling twin  
We now utilize the framework provided in the previous chapters to analyze the so-called travelling twin 
example, which goes back to Langevin [14]. As stated for instance in Mermin [9] the travelling twin 
paradox shall illustrate that two identical clocks, initially in the same place and reading the same time, 
can end up with different readings if they move apart from each other and then back together.  
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5.1  A numerical example 
Ref. [9] (in Chapter 10)  gives the following numerical example: “If one twin goes to a star 3 light years 
away in a super rocket that travels at 3/5 the speed of light, the journeys out and back each takes 5 years 

in the frame of the earth. Since the slowing-down factor is ඥ1 − (3/5)ଶ = 4/5 the twin on the rocket 
will age only 4 years on the outward journey, and another 4 years on the return journey. When she gets 
back home, she will be 2 years younger than her stay-at-home sister, who has aged the full 10 years.”  
So the claim is that the referred difference in ageing occurs during the periods of the journey with a 
constant speed; i.e. under the conditions of the TSR, (ignoring the acceleration/deceleration periods). 
After all the whole argument relies on the Lorentz transformation! Thus, our discussion will restrict to 
the periods of constant velocity.  

Earth

  

        

4

5

Clock 
time

K1

K2

Aux. RF

Star

(c) Perspective of Auxiliary RF  

  

 𝑡 = 3√2 

 

4

5

Earth

4

5

Clock 
time

K1

K2

Star

(a) Perspective of earth RF  

6.25

5

Earth

4

5

Clock 
time

K1

K2

Star

(b) Perspective of travelling twin RF  

4

3.2

4.5

 

Figure 3 Clock readings by the arrival at the star, from different perspectives. 

First looking at the travel to the star, I fully agree with the above claim; which is also illustrated in Fig. 
3(a). Here K1 is the RF of the earth/star (earthbound twin), and we have also introduced an ‘imaginary’ 
RF, K2 of the travelling twin; (We could equip him with additional rockets at appropriate (constant) 
distances and synchronized clocks.) The SC of the travelling twin will – when compared with passing 
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clocks of the eart/star– observe that his goes slower than these, and at arrival clocks show 4 and 5 years 
respectively. Similarly, the earthbound twin will observe that his clock goes slower than the passing 
clocks of K2. In particular, when his own clock shows 5 years, the passing clock of his travelling twins 
RF show 5/0.8 = 6.25 years. This is just an example of Fig. 1. 

Fig 3(b) demonstrates that if we take the perspective of the travelling twin – and his earthbound twin 
moves relative to him at velocity (–v) – then his arrival at the star is ‘simultaneous with the event that 
the clock of his earthbound twin shows 4∙0.8 = 3.2 years. So they agree on the degree of time dilation at 
both locations (factor 0.8), but they dramatically disagree about simultaneity.  

Therefore, in Fig. 3(c) we include the perspective of the auxiliary RF of symmetry introduced in Ch. 4. 
The detailed calculations are given in Appendix A.1, but we mention that this implies that both twins 
travels away (in opposite directions) from the origin of the auxiliary RF at speed 𝑤∗ = c/3. Quite 
obviously, also here the clocks of K1 and K2 at the point of arrival at the star read 5 and 4 years, 
respectively. These are actual clock readings, which will not change whatever perspective we choose, 
as long as we carry out the observation ‘on location’. So the difference here is the chosen symmetry, 
obviously giving that the clock readings of 5 years for the earthbound twin and 4 years for the clock of 
the RF to the travelling twin passing the earth are simultaneous with the arrival at the star. This is a fully 
symmetric situation, and we follow both twins as SC; cf. discussion in Ch. 4. From Fig 3(c) we also see 
that at the origin of the auxiliary RF, both K1 and K2 show time 4.5 years at this moment; while we can 

show that the clock time on the auxiliary RF equals 3√2  ≈ 4.24 years (see Appendix A.1). 

So we have two essential facts. First; whatever perspective we chose, the clock of the travelling twin 
shows just 4 years when he arrives, while the clock of the earth/star system on this location shows 5 
years. No choice of perspective can affect this fact. Secondly, there is a problem specifying the event on 
earth being simultaneous with this event. We could say that it is undetermined, but I would say that the 
result of Fig. 3(c) is the most relevant. After all, if we mark out a distance on K2 equal to the distance 
between the earth and the star, then of course the earthbound twin will see this location exactly when 
his own clock shows 4 years (and the passing clock shows 5 years). So this is anyway the symmetric 
solution, and what could the reason be to choose a nonsymmetrical one? We further elaborate on the 
question of simultaneity in Appendix A.2. 

Here I think we have the essence of the so-called Dingle’s question: Is it actually a contradiction that 
both twins have a slower clock than the clocks passing on the other RF? I think not. Following the LT, 
Fig 3(c) just illustrates that the SC of both twins goes slower than the passing clocks on the other twins 
RF. This is actually symmetric. The intriguing question is what the clocks show if they meet again. 

5.2 The ‘reunion’ of the twins 
As seen, it is quite straightforward to handle the travel to the star. This line of events is fully specified 
and give one unique result, independent both of perspective and of simultaneity at a distance. However, 
there are various ways to bring the two twins together again, and the result will depend on the decisions 
of how to carry this out. We find it enlightening to look at a few of these options. We recall the starting 
point: The travelling twin is at the star and the earthbound twin at the earth. The clocks at the star reads 
4 and 5 years respectively, whilst we might question the clock readings at the earth at this instant; 
(simultaneity at a distance depends on the perspective).    

Our first option is to let the travelling twin immediately follow the same way back along the RF of the 
earth/star (at the same speed). Thus, again there will be a SC moving along another RF at speed v, giving 
the same result as the travel to the star: the travelling twin ages 4 more years on the return travel, whilst 
the earthbound ages 5 more years. Therefore, this option gives the standard result referred in [9], the 
returning traveling twin has in total aged 8 years, whilst the earthbound has aged 10 years. The main 
point here is that the travelling twin has during the entire travel acted as a SC relative to the earth/star 
RF, and so his clock has throughout been slower than the passing clocks of the earth/star RF. 



10 
 

As another option, we let the earthbound twin set out from the earth at same speed, v, in order for the 
twins to reunite; while the travelling twin after his arrival remains on the star. Now we must also decide 
at which time the earthbound twin shall start his travel. Ideally we want the earthbound twin to set out 
on his travel simultaneously with the arrival of his twin at the star, but as we know, there is no unique 
definition of simultaneity at a distance. Taking a holistic view, we claim that the most ‘natural’ choice 
is to let the earthbound twin set out when his own clock shows 4 years, and consequently the passing 
clock of the traveling twin’s RF shows 5 years; (also the earthbound twin’s clock has been acting as 
SC). On the return the earthbound twin’s clock acts as a SC, and so his clock on the arrival at the star 
shows 4+4= 8 years. When he compares with the passing clocks of the travelling twin RF, he will 
observe that these all the time goes faster than his, and by the arrival at star shows 5+5=10 years. So in 
this experimental set-up it is the earthbound twin that throughout acts as the SC, and he is the youngest 
by the reunion. 

There are alternative instants for starting the travel of the earthbound twin. We could take his perspective 
and let him start on his travel to the star when his own clock shows 5 years, and thus, the passing clock 
of his twin’s RF shows 6.25 years. Then the result at his arrival at the star becomes 5+4= 9 years and 
6.25+5 = 11.25 years, respectively. However, this result is based on an interpretation of ‘simultaneity at 
a distance’, which seems rather flawed. 

As a last option, we may decide that both twins shall move away from the earth, respectively star, in 
order to meet. Now considering the perspective of the auxiliary RF (cf. Fig. 3(c)), which at the point of 
turning has its origin at the midpoint in between the earth and the star. Thus, we decide that when the 
clocks of both twins show 4 years, both twins just turn towards each other with the same speed, 𝑤∗ = 
c/3 relative to the auxiliary RF. Thus, also on the return both twins act as SC and experience the same 
time dilation relative to the auxiliary RF. Accordingly also the return travel takes 4 years on their own 
clocks. Thus, when the two twins meet again at the origin of the auxiliary RF, they have both aged 
4+4=8 years. So by this fully symmetric approach; (first departing from each other at speed 𝑤∗ = c/3 
relative to the auxiliary RF, and then moving together again at the same speed), they actually age the 
same amount of years.  

It is of course reassuring that when we specify a fully symmetric line of events for the two twins – both 
acting as SC systems – they will have the same age when they meet again. In summary, the decision 
taken on when/how to reunite them fully decides the twins’ age at the reunion.   

5.3 Concluding comments on the travelling twin 
This so-called paradox is indeed thoroughly discussed in the literature. Shuler [15] informs that about 
200 per reviewed academic papers with clock paradox or twin(s) paradox in their title can be identified 
since 1911, most of them since 1955. He comments: “An outside observer might reasonably conclude 
there is deep conviction that matter should have been settled, along with a nagging suspicion that it is 
not. Further: “Though the correct answer has never been in doubt the matter of how to explain the 
travelling twins appears be far from settled”. He also refers to the following statement: “On the one 
hand, I think that the situation is well understood, and adequately explained in plenty of textbook. On 
the other hand… there are complementary explanations which take different points of view on the same 
underlying space-time geometry (though, alas, the authors don’t always seem to realize this, which 
rather undermines my assertion that the effect is well enough understood)”. It is my hope that the above 
discussion can contribute to a more thorough understanding. 

Also Debs and Redhead [16] give a thorough discussion on this case. They refer to the two asymmetries 
that have been the basis for most of the standard explanations. The first group of arguments focuses on 
the effect of different standards of simultaneity, and secondly one can designate the acceleration as the 
main reason for the differential aging. However, regarding the last group of arguments they write “… 
since we are dealing with flat space-time, we regard the reference to general relativity in this context as 
decidedly misleading”; a statement in which I agree.  
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Thus, [16] follows up on discussing the simultaneity, and in particular argue for the conventionality of 
simultaneity. This implies that when establishing simultaneity at a distance by the use of light signals, 
the definition of simultaneity is essentially a matter on convention; it is not a single point but a full 
interval of time instants, which we can define to be simultaneous with a specific distant event.  

This seems somehow related to the above approach of specifying various options for the return 
(‘reunion’). If we want also the earthbound twin to move (relative to the earth), and to start the movement 
exactly at the arrival of the twin to the star, the choice of RF decides when to start (see Fig. 3). However, 
we should of course not interpret this to mean that all choices/results are equally valid. I would rather 
say that we should choose the time instant for start, which corresponds to the situation we want to model. 
Even if there are several possible definitions for simultaneity at a distance, this does not mean that all 
are equally valid.  

To sum up our findings of this discussion. When we specify the outward travel to go from the earth to 
the star, the clock readings at the travelling twins arrival are unequivocally given; choice of RF being 
irrelevant. However, we may dispute what is the ‘simultaneous’ event on the earth. (Thus, we should 
not - as some authors do - simply assume that the earthbound twin’s clock will show 5 years 
‘simultaneously’ with the arrival of the travelling twin.)  For the return travel there are numerous options 
in case we also allow the earthbound twin to move from the earth. Then we have to decide both the 
times for start of the movements and the magnitudes of the velocities. Again the choice of RF is in 
principle irrelevant. However, we can motivate our choice e.g. of the starting time for the earthbound 
twin, by considering a specific RF; (three being exemplified in Fig 3). 

6 Summary and conclusions 
Starting out from the Lorentz transformation (LT) we present some aspects of the approach for analyzing 
time dilation in the theory of special relativity. 

First, we reformulate the LT, in a way that facilitates a graphical presentation of the clock time of both 
reference frames (RFs) in the same diagram. From this, we can also directly read out the effect of the 
observational principle on the observed time dilation. Here the specification of an observational 
principle, (being a result of the experimental set-up), means we state which clocks we use for time 
comparisons between the RFs.  

We further suggest writing out the main observational principle as 

                                                                    𝑡ௌ = 𝑡ெඥ1 − (𝑣/𝑐)ଶ                                                    

Here 𝑡ௌ is the clock reading of a fixed ‘single clock’ (SC), and 𝑡ெ the clock reading of the various 
‘multiple clocks’ (MC) passing on the other RF. We find this formulation more informative than the 
potentially misleading phrase ‘moving clock goes slower’. Actually multiple clocks on any RFs will 
observe that a single clock on the ‘other system’ goes slower, and a search for the one RF where time 

goes slower is indeed in vain. Although this is a well-known phenomenon, (and 𝑡ௌ is often referred to 
as proper time), we like to demonstrate the usefulness of this formulation  

Another observational principle is to permanently perform the clock comparisons at the midpoint 
between the origins of the two reference frames. This will give identical clock readings at the two 
frames. Therefore, when we apply this observational principle - being symmetric with respect to the two 
RFs - we also get a symmetric result! Thus, we can say that time dilation is caused by an asymmetry in 
the observational principle. 

This midpoint can also be relevant if we consider the inclusion of an auxiliary RF. The main objective 
of introducing this could be to provide a sensible definition of simultaneity at a distance. For instance, 
we can then follow a SC on each of the main RFs, in the perspective of the auxiliary RF. Taking the 
perspective of an RF means that having the same clock readings at different locations corresponds to 
simultaneity.  
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We apply the given framework to discuss the challenges of the well-known travelling twin paradox; 
here seen as a thought experiment, (disregarding the acceleration periods). We find it enlightening to 
consider various experimental set-ups, that is, specifications on how the twins shall ‘reunite’, (implying 
a specific observational principle). A discussion of single clock (SC) vs. multiple clocks (MC) - as 
indicated - is the key to provide the solutions. 

The outward travel becomes rather trivial, although simultaneity ‘at a distance’ (earth and star) is not 
straightforward. The return is more challenging if we allow also the earthbound twin to move relative 
to the earth. The result clearly depends on these choices. If we choose to let the travelling twin act as a 
SC system both ways, the standard solution comes out as the result rather directly. A purely symmetric 
set-up would require that they meet again half way between the earth and the star; actually giving that 
both have aged the same number of years. 
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Appendix A   Some additional material regarding the travelling twin example 
We here present some additional material regarding the travelling twin example, thoroughly discussed 
in Ch. 5. In particular, we detail some of the numerical calculations. In this Appendix we let 

t1 = time on the clock of the earthbound twin 

t2 = time on the clock of the travelling twin  

Similarly, the distance between earth and the ‘star’ is denoted x1 = 3 light years, and since the rocket has 

speed, v = (3/5)c, we get ඥ1 − (𝑣/𝑐)ଶ = 4/5  

A.1   The numerical calculation 
It directly follows that in the RF of the earth/star, the rocket reaches the star at time, t1 = x1/v = 5 years. 
Further, the Lorentz transformation gives that at the arrival at the star this clock reads 𝑡ଶ =

𝑡ଵඥ1 − (𝑣/𝑐)ଶ = 4 years; so obviously, t2/t1 =ඥ1 − (3/5)ଶ = 0.8 at the star when the travelling twin 
arrives. So it does follow from the LT that the two clocks at the star shows 4 and 5 years at the arrival. 
Further, the above presentation describes the travelling twin as a ‘SC system’, and so in this description 
the earthbound twin is located on a ‘MC system’. Therefore, we can just look at eq. (11) and Fig. 1 to 
obtain the above result. These results are illustrated in Fig. 3(a) and 3(b); also showing the 
‘simultaneous’ clock readings on the earth; cf. Apendix A.2 below.   

Now we elaborate on this numerical example when we introduce an auxiliary symmetric RF, see 
illustration in Fig. 3(c) and Fig. 2, which represents the situation when the travelling twin has reached 
his point of destination. The above numerical values give 𝑤∗ = c/3 (eq. (9)), being the speed between 

any twin and the auxiliary RF. Further, ඥ1 − (𝑤∗/𝑐)ଶ =
ଶ

ଷ
√2 ≈ 0.94.  

Now apply eq. (4), here inserting 𝑤∗ for v, and we obtain the following clock readings of the three RFs; 
observe that we utilize the notation of Fig. 2; numerical values inserted in Fig. 3(c):  

i. The auxiliary reference frame (primary). Time is constant, t, (see horizontal line in figures). 

ii. Earthbound twin. Time as function of w: 𝑡ି௪∗(𝑤) = (√2/4) ∙ (3 + 𝑤/𝑐)𝑡. 

iii. Travelling twin. Time as function of w: 𝑡௪∗(𝑤) = (√2/4) ∙ (3 − 𝑤/𝑐)𝑡. 

In Fig. 2 we now let the observational point b, correspond to 𝑤∗ = c/3; Further let time for the travelling 

twin equal 4 years, (i.e. his arrival). Thus 𝑡௪∗(𝑤∗) = 4, which gives t = 3√2 ≈ 4.24 years, and then we 
have completely specified the clock readings by the arrival, in the perspective of the auxiliary RF.   

So using this 𝑡 = 3√2 in the expressions 𝑡௪∗(𝑤) and 𝑡ି௪∗(𝑤) above, we will – referring to Fig.2 - get 
that the point a corresponds to 4.5 years and the point c corresponds to 5 years; in full agreement with 
the given example.  

In summary, the clock reading of the auxiliary RF at this instant equals t = 3√2 ≈ 4.24 years. Further 

we found ඥ1 − (𝑤∗/𝑐)ଶ =
ଶ

ଷ
√2. So the time at point a equals 3√2/ඥ1 − (𝑤∗/𝑐)ଶ = 4.5, and the time 

at b equals 3√2 ∙ ට1 − ቀ
௪∗


ቁ

ଶ
= 4; following the standard time dilation expressions. A main objective 

of the auxiliary RF could be to allow us to treat the RFs of both twins as SC, and thus to establish a 
symmetric ‘simultaneity at a distance’. We provide some additional comments on this in Appendix A.2. 

A.2  Simultaneity at a distance 
A rather relevant question should be: What event on earth is simultaneous with the arrival of the 
travelling twin of the star; (or simply: What does the clock on the earth show ‘at this instant’). The LT 
does not give a definite answer regarding the simultaneity of events ‘at a distance’. As this may affect 
how we treat the problem, we now elaborate a bit further on main options regarding this simultaneity. 
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First, it is to be understood that we now assume that there is also a RF of the travelling twin with the 
required number of clocks. Say, he is equipped with rockets at appropriate and fixed distances from his 
own rocket, all moving with constant speed in the same direction as himself, and all equipped with a 
synchronized clock showing the same time, t2. Whether this is practically feasible is not relevant here. 
We are referring to the model of the TSR, and point out what this theory tells about clock readings, if 
we provide such an arrangement. Now we have established two RFs as required by the LT. 

To proceed, we also introduce a symmetric auxiliary RF, K, with velocities ± 𝑤∗, respectively, relative 
to the RFs of the two twins; (with 𝑤∗ given in (9)). Then we can consider simultaneity in the perspective 
of each of these three RFs. Starting with the arrival at the star, where t2 = 4, t1 = 5, we identify the 
simultaneous event on the earth from these three perspectives; also illustrated in Fig. 3.  

We present the result in Table 1. Note that on the earth it is the earthbound twins clock that acts as SC, 
that is here t1 being a SC time reading, and t2 a MC time reading. Thus, eq. (11) gives the result, t2 / t1 = 
1/0.8 = 1.25, for all observations on the earth, whatever instant we consider after departure. Therefore, 
at this location it is the clock on the earth that always ‘goes slower’! 

First, in the perspective of the travelling twin, the clock reading of his clock equals 4 years. So when the 
clock of his RF (showing 4 years) passes the earth, the clock on the earth just reads 0.8∙4 =  3.2 years; 
see perspective 1 in Table 1. 

Next, in the perspective of the earthbound twin, we have calculated that his clock located at the star, 
reads 5 years by the arrival of his twin. But when his own clock on earth shows 5 years, the passing 
clock of the travelling twin’s reference frame then shows 5∙1.25 = 6.25 years; see perspective 2. (If this 
is the relevant answer, we should expect the return of the twin brother after 12.5 years.)  

Table 1. Various clock readings (light years) at/on the earth, potentially ‘simultaneous to’ the 
arrival of the travelling twin at the star; (so, at the star we have t1 = 5, t2 = 4).  

Clock reading at earth 
Perspective of 

1. Travelling twin 2. Earthbound twin 3. Auxiliary RF 
(symmetric) 

Earthbound twin system (t1) 3.2 5 4 
Travelling twin system (t2) 4 6.25 5 

 

The third possibility is to apply the perspective of the symmetric auxiliary RF. In this perspective, we 
treat both clocks belonging to the twins as SC. Then we get the following symmetric result regarding 
simultaneity: The arrival at the star occurs when both twins observe that their own clock shows 4 years, 
and the adjacent clock on the other RF shows 5 years; (closely related to length contraction). By these 
direct measurements, they observe that the other twin at this moment apparently has aged more than 
himself by a factor 1.25. This gives a completely symmetric and consistent answer to the paradox. In 
addition to the symmetry, it is an important point here that in options 1 and 2 of Table 1 we directly 
follow the clock of just one twin, while we in option 3 follow both these clocks. 

However, as concluded in Ch. 5, there is no unique answer here, without specifying further, the details 
of the process of ‘reunion’. 


