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Rough neutrosophic set in a lattice

I Arockiarani, C Antony Crispin Sweety

Abstract

In this paper, we examine the relationship between rough fuzzy neutrosophic sets and lattice theory.
We introduce the notion of Rough fuzzy neutrosophic set and Rough fuzzy neutrosophic lattice (resp
Rough fuzzy neutrosophic ideals). Further, we discuss about fuzzy neutrosophic rough set
corresponding to a rough set and define the terms and conditions for fuzzy neutrosophic rough lattice.
We also prove that a fuzzy neutrosophic rough set 4 in X is a fuzzy neutrosophic rough lattice iff it’s

level rough sets (B(A)(aﬁ’” ,ﬁ(A)(aﬁ’”) is a rough sub lattice of X.

Keywords: Rough set, rough fuzzy neutrosophic set, fuzzy Neutrosophic rough sets.

1. Introduction

In 1982, Pawlak ' introduced the concept of rough set, as a formal tool for modeling and
processing incomplete information in information systems. This concept is fundamental to
the examination of granularity in knowledge. The basic idea of rough set is based upon the
approximation of sets by a pair of sets known as the lower approximation and the upper
approximation of a set. Here, the lower and upper approximation operators are based on
equivalence relation. After Pawlak, there have been many models built upon different aspect,
i.e, universe, relations, object and operators by many scholars > % 3 19121, Various notions
that combine rough sets and fuzzy sets, vague set and intuitionistic fuzzy sets are introduced,
such as rough fuzzy sets, fuzzy rough sets, generalized fuzzy rough sets, rough vague sets.
The theory of rough sets is based upon the classification mechanism, from which the
classification can be viewed as an equivalence relation and knowledge blocks induced by it
be a partition on universe.

One of the interesting generalizations of the theory of fuzzy sets and intuitionistic fuzzy sets
is the theory of neutrosophic sets introduced by F. Smarandache . Neutrosophic sets
described by three functions: Truth function indeterminacy function and false function that
are independently related. The theories of neutrosophic set have achieved great success in
various areas such as medical diagnosis, database, topology, image processing, and decision
making problem. While the neutrosophic set is a powerful tool to deal with indeterminate
and inconsistent data, the theory of rough sets is a powerful mathematical tool to deal with
incompleteness.

Recently many researchers applied the notion of fuzzy neutrosophic sets to relations, group
theory, ring theory, lattice theory etc. In this paper we studied relationship between rough
sets and fuzzy neutrosophic sets. Here we give the rough approximation of fuzzy
neutrosophic set and introduced rough fuzzy neutrosophic sub lattices, ideals etc. Also we
defined fuzzy neutrosophic rough sets, fuzzy neutrosophic rough sub lattices, and ideals and
studied their properties

2. Preliminaries:
Definition 2.1 A Neutrosophic set A on the universe of discourse X is defined as

A = (x, TA(X),IA(X),FA(X)>,X € X,

Where T, 1, F: X 50,1 and 0=Ta(0+1,00+F,(0<3"
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Definition 2.3: 12

A Fuzzy Neutrosophic set A on the universe of discourse X
is defined as

A= (x, Ty(x), [,(x), F4(x)),x € X where T,[,F:X - [0, 1]

and O<T,(X)+1,(X) + FA(X)<3.

Definition 2.2: @ A neutrosophic set A is contained in
another neutrosophic set B. (i.e.,)

Ac B & Ty(x) < Tp(x), [1(x) < Ip(x), Fy(x) = Fg(x) V¥
xe X.

Definition 2.4: @
The complement of a neutrosophic set (F, A) denoted by (F,
A)°and is defined as

(F, A= (F, |A)
Where TFC (X)= F.(x), | cc (X)=1-1.(x),
Fc(X)= Tp(X).

Definition 2.5:

Let A and B) be two neutrosophic sets over the common
universe U. A is said to be neutrosophic subset of B if A ¢
Band T,(X)STg(X),1 ,(X)<15(X),FA(X)=F5z(X)V
Ee A,x e U.

Definition 2.6:

Two neutrosophic sets (F,A) and (G,B) over the common
universe U are said to be equal if (F,A) < (G,B) and (G,B)
c (F,A).We denote it by (F,A) = (G,B).

Definition 2.7: @
Let X be a non empty set, and

A = <XaTA(X)5 I A(X)’ FA(X)>9 B :<X9TB (X)n I B (X)n I:B (X)>
are fuzzy neutrosophic sets. Then

AT B=(x,max (T,(x), Ty (X)), max(1 ,(x), | (x)), min(F, (x), Fy (x)))
AR B =(x, min (T (X). Tg (X)), min(l 5 (X), 1 (), max(F p (x). Fg (x)))

Definition 2.2: B! Let U be any non-empty set. Suppose R is
an equivalence relation over U. For any non-null subset X of
U, the sets

AYX) = {x: Xl X}

AZ(X) = {XZ [X]Rﬂ X+ Q)}

are called lower approximation and upper approximation
respectively of X and the pair

S= (U, R) is called approximation space. The equivalence
relation R is called indiscernibility relation. The pair A(X) =
(A1(X), Ax(X)) is called the rough set of X in S. Here [x]r
denotes the equivalence class of R containing x

3. Rough Fuzzy Neutrosophic Sets In A Lattice

In this section we define rough fuzzy neutrosophic set and
some of their operations. Further, we introduce Rough fuzzy
neutrosophic lattices (RIFL) and ideals and study certain
properties of them.

Definition 3.1: Let U be a non-null set and R be an
equivalence relation on U. Let A be a neutrosophic set in U

with the truth value T,(X), indeterminate value | ,(X) and

Fo(X). The lower and the upper

approximations of A in the approximation (U, R) denoted by
R(A)and R(A) are respectively defined as follows:

R(A) = T (s Iz 0 (0, e (/Y €[X]g, x €U}
R(A)=
{X>TB(A)(X)9 IB(A)(X)’ FB(A)(X)/ y €[X]g,xeU}

false value

where:

TB(A) (X) = A yexr Ta(y),
IB(A) (X) =A yeparIa(y),
Faim (X V yepr Fay)
Tﬁ( n (X) =V yerar Ta(y)s
| R(A) () =V yepr Ia(y),
Fﬁ( A) (X) =A yexr Fa(y)

S0 0T\ (X)+ Ig, (X)+ Fy p (¥) < 3and

0 S’TB(A)(X) + IB(A)(X) + FB(A)(X) <3 and
Tew (010 (0 Py (X))
’TB(A)(X)’ IB(A)(X)v FB(A)(X) A—)[O,l]

13

Where “V “and “A “ mean “max” and “min “ operators
respectively, and are the truth, indeterminacy and false

values of y with respect to A. Tt is easy to see that R(A) and
ﬁ(A) are two neutrosophic sets in U.

R(A)and R(A): A — A are, respectively, referred
to as the lower and upper rough NS approximation
operators, and the pair R(A)and R(A)is called the
rough neutrosophic set in (U, R). From the above

definition, we can see that R(A)and E(A) have
constant membership on the equivalence classes of U.

Example 3.2:

Let U= {Si, Sy, S3, S4, Ss} be the universe of discourse.

Let R be an equivalence relation, where its partition of U is
given by

U/R= {{Si, Sa}, {Ss}, {S4, Ss}}

A={[ S1,(0.3,0.4,0.5)] [ S2,(0.2,0.4,0.3)] [S3,(0.5,0.6,0.7)]}
be a neutrosophic set of U.

The lower and upper approximations are obtained as

R(A) = { [S1,(0.3,0.4,0.3)] [S2,(0.3,0.4,0.3)]
[S5,(0.5,0.6,0.7)]}
R(A) ={[81,(0.2,0.4,0.5)] [ S4(0.2,0.4,0.5)]
[S5,(0.5,0.6,0.7)]}

Another neutrosophic set can be defined as
B = {[ S1,(0.2,0.3,0.4)] [ S4,(0.3,0.5,0.4)] [S5,(0.4,0.6,0.2)]}

The lower and upper approximations are obtained as
R(B)= {[S1,(0.3,0.5,0.4)] [S4,(0.2,0.3,0.4)]
[S2,(0.4,0.6,0.2)] [S5,(0.4,0.6,0.2)]}
R(B)={[S1,(0.2,0.3,0.4)] [ S2,0.2,0.3,0.4)]]}
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Definition 3.3: If R(A) = (B(A),ﬁ(A)) is a rough fuzzy
neutrosophic set in (U,R), the rough fuzzy neutrosophic
complement of A° neutrosophic set denoted by
R(A)® =(R(A)°,R(A)°) where R(A)°,R(A)° are
defined as

R(A)*={%,), Fay ()1 = Tgia) (), Taen () / Y € [X]gs X €U}
and

R(A)=

{X, FE(A)(X),I - Iﬁ(A)(x),Tﬁ(A)(x))/ ye[X]z,xeU}

Definition3.4: If A, and A, are two rough fuzzy
neutrosophic set of the neutrosophic sets X; and X,
respectively in then we define the following:

1.(A)=(A,) iff R(A)=R(A,) and R(A)=R(A,)
2. A c A, iff R(A) = R(A,) and R(A) = R(A,)
3. A UA, = R(A) UR(A,) and R(A) UR(A,)
a.A NA = R(A) NR(A) and R(A) NR(A))
5. A +A = R(A)+R(A) and R(A)+R(A,)
6.A —A, = R(A)-R(A) and R(A)-R(A,)

Definition 3.5:
Let L be a lattice and A={(x,T,(X),1,(X),F,(X))/xe L} be

a fuzzy neutrosophic set, then A is called fuzzy neutrosophic
sublattice of L, if the following conditions are satisfied

@) Ta(xvy)2min{T,(),T,(Y);
Ta(XAY) 2 min{T, (X), T, (Y)}

(i) 1a(xvy)2minil, (), 1.(y)5.
LA (XA y)2min{l, (X),1,(y)}

(i) Fy(xvy) <max{T,(X),T,(Y)}.
Fa(xA y) < max{F, (x), F,(y)}

The set of all FNLs of L is denoted by FNL(L).

Definition 3.6:
A FNS A of L is called a fuzzy neutrosophic ideal of
L, if he following conditions are satisfied.

(i) Ta(xvy)z2min{T,(X),T,(Y)},
Ta(xAy) 2 max{T,(X),To(y)}

(i) 1,(Xvy)Zmin{l,(X),1,(Y)},
La(XAY) 2 max{l,(X),1,(Y)}

(iii) Fo(XVv'y)<max{T,(x),T,(y)},
Fa(XAY) <min{F,(X), Fa(Y)}

The set of all FNIs of L is denoted as FNI(L).

Definition 3.7:
A Fnl A of L is called a fuzzy neutrosophic prime
ideal if

To(XAY) 2 maxiT, (%), T(Y)5,

Ly(XA ) 2 max{l ,(x),1,,(y)} and
Fa(XAYy)<min{F,(X),F,(Y)},VX,ye L

Theorem 3.8: If A and B are two FNLs (FNIs) of a lattice

L,then AN B isa FNL(FNI) of L.
Proof:

Let A={(X,To(X), 1 ,(x),F,(X))/xe X} and
B ={(X,Tz(X), 15(x),F;(X))/xe X}, are two FNS of
L. Then ANB ={(X,Tp5(X), 1 5 .5(X), Fa g (X))X € X}

Where
Tpne(X) =min{T,(X), Tz (X)} ,
I s (X)=min{l ,(x), 15(X)} and

Fpns (X) = max {F,(X), F5(X)} so that

Tane(X Vv y) =min{T,(x v y), To(x v y)}
> min{min{T ,(X), TA(Y)}, min{T;(X), Tz(¥)} }
= min {min {T(x), To(y)}, min{T,(x), To(y)} }
=min{T, 5 (X), Ta5(¥)}

as A and B are FNLs of L,
Tas(XV Y)=min{T, 5(X),T, g(Y)}VX, yel

Similarly we get

Tare(XAY)=min{T, 5(X), Ty s (Y)}VX, y €L

Lans(X v y)=min{l (X v y),I(x v y)}
> min{min {1 \(x),1 5(y)},min{I5(x),15(y)} }
= min{min {1 ,(x),l5(y)}, min{l ,(x),15(y)} }
=min{l, 5(X), [, s(¥)}

as A and B are FNLs of L,
I s(XV y)=min{l, z(X),1, 5(Y)}VX,yel

Siilarly we get

lpe(XAY)=min{l, (X),1, 5(Y)}VX,yel
Also

I ans(X Vv y) = max{F,(x v y),Fy(x v y)}
> max {max {F,(X),Fa(y)} min {F(x),Fs(y)} }
= max {max {F,(x),F(y)}, min{F,(x),Fs(Y)} }
=max{F, 5 (X), Fa-s(¥)}

as A and B are FNLs of L,
FAmB(X v y) = maX{FAmB (X)1 I:AmB (y)}vxs y € L

Similarly we get

FAmB(X AY)= max{F, 5(X),F,s(Y)}VX,yel
Hence AN Bis FNL of L
Proof for FNI is similar.

Proposition 3.9: Let L be a lattice and A is an IFL (IFI) of L. Then R(A)and ﬁ(A) are also FNL’s (FNI’s) of L.
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Proof. We will prove the case of FNL. Proof for FNI is similar.

We have

Tra(XVY) = MQW]RT (X AYy)2 XVyE[XVY]R[min{'I'A(X'),TA(y')}], since A is FNL of L.

2 mm{xg T(X), /\ T(y )= mln{TR(A)(X) TR(A)(y)} leTR(A)(XV y) 2 mln{TR(A)(X) TR(A)(y)}
Tra(XAY) = va/\ T,(X AY)> vae[xvy] [min{T,(x),T,(y)}],since Ais FNLof L.

>min{ A\ T(X), /\ T(y )} =min{Tg ) (X), Teea ()}, 18Tga) (X A'Y) 2 min{Tg 5 (X), Toea) (Y)}

X elx]g

ey (XVY) = ./\ L(XAY)> A ][mm{IA(X ), 1,(y)}],since A is FNL of L.

Xvye[xvylg XVvye[xvylgr
2 mm{xg 1(X), /\ I(y)} =min IR(A)(X)D IR(A)(y)} iel R(A)(X v y) 2 min{l R(A)(X) IR(A)(y)}
lpa(XAY) = /[\ . (X AYy)> /[\ ] [min{l ,(X),1,(y)}],since Ais FNLof L.
= Xvyexvy X vy e[xvylr
2 mm{)(g} 1(X), /\ I(y)} = min{]l rea) (X Trem (W} 1€l g ) (X A Y) 2 mindlga) (X), Tpia) (V)
Fraay(Xvy) = \[/ ] Fa(Xvy)> \[/ [max{F,(x),F,(y)}],since A is FNL of L.
= X vy e xvylg Xvyexvylr
2 maX{XE\[f(] F(x), ye \[/] F(y)}= maX{FR(A)(X) FR(A)(y)} leFR(A)(X vy)2 maX{FR(A)(X) FR(A)(y)}
Fraay(XAY) = \[/ ] FA(X AY)> \[/ [max {F,(x),F,(y)}],since Ais FNL of L.
= Xvye[xvylg X vy e[xvylg
. . Hence
2 maX{X‘E[VX] F(Xx), Y F(y)} = max{Fg (X), Fgn (Y)},1eFg ) (X A'Y) 2 max{Fg 5 (X), Fga) (Y)}
R(A)is a FNL of L.
TE(A)(XV y) = \[/ T,(X vy) > , \[/ ] [min{T,(x),T,(y)}],since A is FNLof L.
Xvy'elxvylr XVYIr

2min{ v T(X), v T(y)}= mln{rﬁ(A)(x),Tﬁ(A)(y»,ie Ton XV Y) 2 min{T, (0. T, (V)

similarly, Tﬁ(A)(X AY)2 min{Tﬁ(A)(x),Tﬁ(A)(y)}
IE(A)(XV Y= v LKvy)> v ] [min{l ,(x),1,(y)}],since Ais FNLof L.

XVvye[xvylgr X vy exvylg

Zming v 100, v 1Y)} =mindlg 00 g (Dhie T (v y) 2 minly , 00,15, ()

similarly, I (XA y)2min{lg , (X), IE(A)(y)}

Fﬁ(A)(Xv y) = Y FA(X' vy)< A [max{F,(X),F,(y)}]since Ais FNLof L.

Xvye[xvy] ><vy exvylr

>max{ A F(X), /[\ F(y)l= maX{FR(A)(X) FR(A)(y)} 1eFR(A)(Xv y)<max{FR(A)(X),FR(A)(y)}

X E[X]R

similarly, R(A)(X AY)< maX{FR(A)(X), FE(A)(y)} . Hence R(A) isa FNL of L.

Definition 3.10: A rough fuzzy neutrosophic set A of L is We have
called a rough fuzzy neutrosophic lattice (RIFL) [rough R(A) " R(B) = (R(A) " R(B) ﬁ( AN ﬁ(B)) ]
neutrosophic fuzzy ideal (RIFI)] if both B(A) and R(A)) Since R(A) and R(B) are RENL’s (RFNI’S) we have

are FNL’s (FNI’s) of L. — —
R(A),R(B),R(A)and R(B) are FNL’s (FNI’s).Then

Theorem 3.11: If A is an FNL (FNI) of L then A is a RIFL R(A) A R(B)and R(A) ~ R(B FNL’s (FNI’s) b
(RIFT) of L. Proof. Follow from Proposition 3.4. ,Hl( ) 2_5( ) (A) (B) are 5( 5)by
eorem 2.5.

Theorem 3.12: If R (A) and R (B) are RENL’s (RIFI’s), S0 R(A)MR(B) isa RFNL (RFNI) by Def 3.5
then R (A) N R (B) is also a RFLN (RFNI).
Proof.
Remark 3.13: The union of two RFNTI’s need not be a RFNI. Consider the lattice L= {1, 2, 3, 4, 6, 12} of divisors of 12.
Let R ={1,2),(3,6),(4),(12)} be the equivalence class . We define A= {(X,T,(X), 1 ,(X),F,(X))/X e L} by
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A ={(1,0.7,0.8,0.6),¢(2,0.3,0.7.0.1),(3,0.4,0.7,0.8),(4,0.9,0.4,0.5),(6,0.7,0.1,0.3),(12,0.6,0.1,0.4)}
and B = {(X, Tz (X), 15(X),Fg(X))/x e L}

B ={(1,0.7,0.7,0.5),(2,0.6,0.5.0.4),(3,0.5,0.5,0.3),(4,0.7,0.8,0.1),(6,0.5,0.4,0.3),(12,0.5,0.3,0.2)}
Here A and B are IFI’s of L.

Now R(A) =(R(A),R(A))

where R(B) = {<X’TB(B)(X)’ IB(B) (X), FB(B) (X))} is

R(A) = {(1,0.3,0.7,0.6),(2,0.3,0.7.0.6),(3,0.4,0.1,0.8),(4,0.9,0.4,0.5),(6,0.4,0.1,0.8),(12,0.6,0.1,0.4) }
ﬁ(A) = {(1,0.7,0.8,0.1),(2,0.7,0.8.0.1),(3,0.7,0.7,0.3),(4,0.9,0.4,0.5),(6,0.7,0.7,0.3),(12,0.6,0.1,0.4)} Also
R(B) =(R(B),R(B))

where R(B) = {<X’TB(A)(X)5 lB(A)(X)’ FB(A)(X)>} is

R(B) = {(1,0.6,0.5,0.5),(2,0.6,0.5.0.5),(3,0.5,0.4,0.3),(4,0.7,0.8,0.1),(6,0.5,0.4,0.3),(12,0.5,0.3,0.2)}
ﬁ(B) ={(1,0.7,0.7,0.4),(2,0.7,0.7.0.4),(3,0.5,0.5,0.3),(4,0.7,0.8,0.1),(6,0.5,0.5,0.3),(12,0.5,0.3,0.2)}
clearly, R(A) and R(B) are RFNI’s.

AUB = (R(A)UR(B), R(A) UR(B) )and (R(A) UR(B) , R(A) UR(B) )

= {(1,0.6,0.7,0.5),(2,0.7,0.7.0.4),(3,0.5,0.5,0.3),(4,0.9,0.8,0.1),(6,0.5,0.4,0.3),(12,0.6,0.3,0.2)}
Tamore GV 4) = Teare (12) = 0.6 2min{Ty s pes) (3): Triayores) (41 = 0.7

Hence AU Bis not an RIFI.

Remark 3.14: Every RIFI is a RIFL. But the converse is not true.
Consider the lattice and the equivalence relation given in the Result 3.8.Let

B = {(1,0.2,0.7,0.2),(2,0.4,0.4,0.7),(3,0.2,0.5,0.5),(4,0.3,0.6,0.2),(6,0.5,0.5,0.3,(12,0.3,0.3,0.5)}
R(B) = {(1,0.4,0.4,0.2),(2,0.4,0.4,0.2),(3,0.5,0.5,0.3),(4,0.3,0.6,0.2),(6,0.5,0.5,0.3),(12,0.3,0.3,0.5)}

R(B) = {(1,0.2,0.4,0.7),(2,0.2,0.4,0.7),(3,0.2,0.5,0.5),(4,0.3,0.6,0.2),(6,0.2,0.5,0.5),(12,0.3,0.3,0.5)} It can be
easily verified that R(B) is RFNL, but RFNL because

R(B)(4A6)=R(B)=12=0.32 max{Ty,(4),Tos,(6) = (0.5,0.3)=0.5

4. Fuzzy Neutrosophic Rough Set (FNRS)
In this section we introduce Fuzzy Neutrosophic rough sublattices and ideals, and define certain characterization of Fuzzy
Neutrosophic rough sublattice (ideal) in terms of level rough set.

Definition 4.1
Let X be a rough set and R(A) = (R(A), R(A)) , is a FNRS in X. Then we can define an interval valued fuzzy neutrosophic

rough set A= {<X:ﬁB(A) 9TB(A)][TB(A) ) IB(A)])[EB(A) D FB(A) ]>}

T rew (X) = oo, (X if X € R(X)
Where, N

>

— 0if xe R(X)

Trew (X) = g () if X € R(X)
= 0if xe R(X)
Frew (X) = Fp sy (¥ if X e R(X)

and

~1if xe R(X)

Where R(X)=R(X)—=R(X) and we denote T »(X) =T e (X).T 7w ()] Ta(X) = [T aa (), Trca) (X)] and
EA(X) = [EB(A) (X),EE(A) (X)]
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Definition 4.2:
Let R(X) be a rough lattice and R(A) = (R(A), R(A))is a FNRS in R(X). Then R(A) is called a fuzzy neutrosophic rough

sublattice (FNRI) if for every X € ﬁ(x ) the following hold.

() To(xv Y)2minT AT 4y} () To(xAY)2min{Ta().T a(y)}

(iii) 1,(xv y)=min{la(x),Ta(y)} (V) T, (XAY)=min{la(x),1a(y)}

(V) Fa(xv y)=max{F a(x),F a(y)} (v) Fo(xAy)>max{Fa(x),F a(y)} ¥x,yeL,

If conditions replaced by ﬂ(x AY) 2 max{'FA(X),'FA(y)} , K(X AY)2 maX{TA(X),TA(y)} and
E,;(X AY)2> min{EA(X), EA(y)} . Then R(A) is called a fuzzy neutrosophic rough ideal (FNRI).

Definition 4.3: Let R(X) be a rough lattice and R(A) = (R(A), E(A)) a FNRS in R(X). Then we define and
A(a,ﬂ,y)a A(a>ﬂ>7)):A(a,ﬁ,y) ={xeR(X )/TB(A)(X) 2a, IB(A)(X) > B, FB(A)(X) >y}
Awpy ={Xe R(X)/TE(A)(X) >a, IE(A)(X) > p, Fﬁ(A)(X) >y}, then is called L-FNRS.

Theorem 4.4: Let R(X) be a rough lattice and R(A) = (R(A), R(A)) is a FNRS in R(X). Then R(A) is a FNRL iff
(R(A)(o5)»R(A), 5., is a rough sublattice of R(X).

Proof: First assume that (R(A), 5., ,ﬁ( A) (o5.»)) is a rough sublattice in R(X). We have to prove that R(A) is a FNRL of
R(X) . Set min{T a(X), T a(Y)} =[ety, @, 1, min{l a(x),1 a(y)} =[S,.3,] and max{F a(X), Fa(¥)} =[74,7]1.
Then  min{T rea) (X),T rea (Y)} = @, min{T ., (0,7, (N} =«

min {1z (), Tren (Y)} = B, minl _, (0,1, (N} =4,

max {F aon (0, F ron (1)} = 7, max{F, (0.F, ()}=7,

Then T (02 . T (2@ 5 (028 1 (D2 B Fr (07, Fr o (D=7,

Hence X,y X, Y € A s = XV Y, XA Y € A -50 To XV V)2 e, T (XA Y) 2

LX) 2 B g (XA Y) 2 B F o f (XA Y) <70 Fo  (XVY) <74

Let X,y € R(X)=> either X or y € R(X)

If Xor yeﬁ(X)then a,=0and B, =1.

So that -lTB(A)(X vy)z0=qa,, -FB(A)(X AY)20=q,

Try(Xv Y) 2 0= By, Tem (XA Y)20= B, Frn(Xv Y)<1=yand Fray(XAYy)<1=7,

t£xand y & ROX) then T e (%) = T 00T ron (¥) = Taay (1) Trea (0) = gy (0, Trea (¥) = Ly (¥) and
F (n) (X) = P (0, F reny () = Fauy () 50

min{Tg ) (X), Tgea) (V) = @, min{lg 5 (X), Iz a) (Y)} = B, and max{Fg 4 (X), Fga) (Y)} =7,

= Tow (X) 2 g, Toa) (V) 2 g, L) (X) 2 By, Lp(a) (V) 2 Syand Fgp (X) 2 Sy, Fray (Y) <7,

= X, Y € Aty fior) = XV Y, XA Y € Aty o)» Since Acag o) is a sublattice.

So Tram (XV Y) =, Triy(XAY) Za, Tra (XV )2 B, Try (XA Y) 2 S,

Fran(Xv Y)<yand Froay(XAY)<7,.

Hence T, (X v Y) = [T rea (X v ), TR (X v V)] 2 [y 2,1 = min{T a(x), T a(¥)}

TA(XAY) = [T on (XA V)T e (XA Y] 2 [ 1= min{T a(x),T a(Y)}

L (xv y) =[Ta (X Y), Tren (X v Y] 2[4, B,]1=min{T a(x),Ta(y)}

La(XAY) =[lam (XA Y).Tro (XA V)] 2 [@, 1= min{T a(x),Ta(y)}
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Fa(Xv y) = [Fria (XV ¥), Frea (Xv I 74 7,]1= max{F a(x), Fo(y)}

Fa(xAY) =[F e (XA Y), Fron (XA VI [7,,7,1= max{F a(x), F,(y)}
So R(A) is a FNRL
Conversely, assume that R(A) is a FNRL of R(X). We have to prove that A, ; and

Aa.p.y) are sublattices of L. Let X,y € A, 5, then Tpa (X) 2 &, Tgp (V) 2 @

lem (X2 B lgay(Y)Z B, Fray (X< 7, Fpa)(Y) <7

Somin{T a(X).T a(Y)} 2 [a,min{T, , (X).To , (N min{l a(X),1a(y)} 2[Bmin{l_ , (0.1, (¥)}]and
max {F A (), F a(y)} <[7,max {Fy , (9. Fs,, (¥)}]. Hence
Ta(xv Y) 2 [a,min{T, , (00.T, , (DI TA(XAY) 2 [e,min{T , (0.T, , (V)]
1,V y) = [Bmindlg (0, g o DL TXAY) Z[Amin{l, (0,1, (1)}]
Fy(xv y) <[maxiFy , (0, Fy (D171 Fa (XA y) <[maxiFy , (0, Fy , (1,71

From these inequalities we get -I_—m) (Xvy)= a,'l_'w) xXAyY)za, I_B(A) (xXvy)= ,B,I_B(A) (XAy)=p,

Fon(XVY) <7 F o (XAY) <7
Since XV Y,XAY e R(X)
We have

Tam(XV Y) = T (XV V)T e (XA Y) =T e (XA V), Tea (XY Y) = Lo (XV Y), Trea (X A Y) =
T (XA Y) . Fron(XV Y) = Fe (XV Y), Frin(X A Y) = Fron(X A Y).

Hence

XV y,X/\yeA(a’M,.

Thus A, 4, is a sublattice. Similarly if X,y € Aw.p.p) then TE(A)(X) za, TE(A)(y) >a |§(A)(X) > p |§(A)(y) >p
and Fo, (0 <7 Fey (NS7.
Hence T a(Xv ¥) 2[0,a], T a(xA Y) 2 [0,a], 1 a(Xv ) =>[0, B, 1 a(X A Y) > [0, B],

Fa(xv )220 Faxay) 2 [7.1].
Hence |§(A)(XV y)= [, |§(A)(X/\ y)= 5, Fﬁ(A)(XV )<y, Fﬁ(A)(X/\ V)< 7,50 XV Y,XAY € Ay Thus

Aa.p.7)1s a sublattice
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