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Abstract

Newton’s third law doesn’t apply to electromagnetic systems. Never-
theless a relativistic dissertation, directly founded on Maxwell’s equations
and on relativistic dynamics, allows us to establish rigorously the law of
total momentum for such systems. Some undervalued details about the role
of internal forces in isolated systems are emphasized. The laws governing
momentum in systems subject to electromagnetic forces are consistent in
every situation. There are no reasons to postulate the existence of a hidden
momentum to avoid non-existent paradoxes in the case of static fields.

1 Mechanical momentum

In special relativity (SR) the linear momentum of a particle of proper mass mi mov-
ing, relatively to an inertial frame of reference, with velocity ui is pi = γ(ui)miui.
Therefore the total mechanical momentum of a many particles system is:

Qm =
∑

i

pi =
∑

i

γ(ui)miui (1)

A baricentric system of reference always exists, in which the total momentum
vanishes (Qm = 0). However the notion of center of gravity G, as a point (having
its own motion) associated with the set of bodies, is not significant in SR 1.
The equation of motion fi = dpi/dt is applicable to all particles of a many bodies
system; therefore also in SR the fundamental equation of system-dynamics may
be written as:

∑

i

fi = R =
dQm

dt
(2)

But since in SR and in electromagnetism Newton’s third law doesn’t apply, we
cannot state that the sum of internal forces acting in a system vanishes, so the
resultant R must include all internal and external forces acting on the particles:

R = Rext + Rint (3)

1A definition as
∑

(γimi) rG =
∑

(γimiri) for the center of relativistic mass (or ”center of

total energy”) of a system of material bodies wouldn’t be Lorentz-invariant, because it implies
the simultaneous knowledge of the positions ri of all the individual points.
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Of course this observation doesn’t refer to the case of direct contact (i.e. in case
of local interactions). The sum of internal forces is always zero in collisions and
the sum of external forces is assumed to be irrelevant; being R = 0, the principle
of conservation of momentum is obviously true for collisions problems:

Qm =
∑

pi = constant in collisions (4)

2 Electromagnetic tensor

The well-known expressions of electromagnetic (em) potentials are:

B = rot A E = − grad V −
1

c

∂A

∂t
Aµ = (V , −A) (5)

The curl of the four-vector em-potential Aµ fully identifies the em-field and is the
so called electromagnetic tensor :

Fαβ = ∂αAβ − ∂βAα (6)

The em-tensor Fαβ is antisymmetric and its components are:

Fαβ = −Fβα F0i = Ei Fkj = ǫijkBi (7)

Fαβ =











0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0











(8)

The em-force acting on a particle is f = e(E + 1

c
u×B) and the four-force becomes:

F µ = γ(u)

(

1

c
f ·u

f

)

= e γ(u)

(

1

c
E ·u

E + 1

c
u×B

)

(9)

The four-force Fµ acting over a charged particle moving with four-velocity Uν in
an em-field described by the tensor Fµν consequentely is:

Fµ =
e

c
FµνUν (10)

A more detailed exposition of such well-known results (and also of those of the
next section) can be found in every good book of relativity or in treatises of
electromagnetism such as Jackson [7].

3 EM energy-momentum-stress tensor

The density of electromagnetic four-force may be expressed in the form:

Kβ = −∂αEαβ (11)
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where Eαβ is the electromagnetic energy-momentum-stress tensor :

Eαβ = −
1

4π

[

gµβFµνF αν −
1

4
gαβFρνF ρν

]

Eαβ =











ω cπx cπy cπz

cπx p11 p12 p13

cπy p21 p22 p23

cπz p31 p32 p33











=











ω cπ

cπ pij











(12)

The tensor is simmetric (Eαβ = Eβα) and its components are:

ω =
E2 + B2

8π
energy density (13a)

π =
E×B

4πc
=

Π

c2
Π =

c

4π
E×B Poynting vector (13b)

pij = pji = −
1

4π
[EiEj + BiBj −

1

2
δij(E

2 + B2)] stress 3-tensor (13c)

4 Electromagnetic energy and momentum

Splitting the time-component from the tensorial Eq.(11) we obtain the continuity
equation for the electromagnetic energy:

E ·j = −
∂ω

∂t
− div Π (14)

Splitting the space-components from the tensorial Eq.(11) we obtain the following
vectorial dynamical law:

ρE +
1

c
j×B = −

∂π

∂t
− ∂jp

ij (15)

Now let V be a region of space, bounded by a closed surface S, containing charged
particles in arbitrary motion and subject to electromagnetic forces only.
By integrating Eq.(14) over the volume V we obtain the first law of thermodynam-
ics for an electromagnetic system.
Similarly, by integrating Eq.(15) over V we obtain the law of electromagnetic
momentum, as follows.
The resulting electromagnetic force acting on such a physical system is:

R =
∫∫∫

V

(

ρE +
1

c
j×B

)

dV (16)

By integrating the first term in the right hand side of Eq.(15) we obtain:

∫∫∫

V

∂π

∂t
dV =

d

dt

∫∫∫

Π

c2
dV =

dQem

dt
(17)
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where Qem denotes the electromagnetic momentum:

Qem =
∫∫∫

V

Π

c2
dV (18)

The volume integral of the second term may be transformed in a surface integral
by means of the divergence theorem; denoting the outward normal to the surface
element dS by the unit vector n = (α1, α2, α3) we have:

∫∫∫

V

∂pji

∂xj
dV =

∫∫

S

∑

j

pijαjdS = −Fi (19)

where F = (Fx, Fy, Fz) is the electromagnetic stresses resultant acting (from out-
side to inside) onto the boundary surface S.
So by integrating Eq.(15) we obtain the electromagnetic momentum law:

R = F −
dQem

dt
(20)

For a system subject to electromagnetic forces only, this relation (directly obtained
from the electromagnetic theory) has to be combined with Eq.(2), that expresses
the mechanical momentum law associated with the masses:

R =
dQm

dt
(21)

and it’s worth recalling that R is the resultant of all the forces, both external and
internal, acting on the considered physical system.
Combining the laws Eq.(20) - (21) we get the law of total momentum:

F =
d

dt
(Qm + Qem) (22)

This result justifies the name of electromagnetic momentum attributed to Qem

and that of total momentum of a physical system attributed to the sum:

Q = Qm + Qem (23)

5 Polarization and magnetization of the medium

The discussion above refers to electromagnetic fields (E, B) in vacuum if ρ and J

are defined as the macroscopic free sources ρfree and Jfree of the system. It’s worth
remembering that Maxwell’s equations in a medium are obtained from equations
in vacuum by adding the sources due to polarization:

ρ → ρfree + ρpol J → Jfree + Jpol (24)

Therefore the previous results remain true also in a medium, provided that with
Qem we mean the total em-momentum, including not only the field-momentum
Qfield but also the momentum Qpol generated by the polarized medium:

Qem = Qfield + Qpol (25)
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The em-momentum of an electric dipole in a magnetic field and the em-momentum
of a magnetic dipole in an electric field are discussed in [3] and in many other
papers. Generally speaking such questions are of theoretical interest, but the
decomposition Eq.(25) doesn’t seem to affect our conclusions.
The quantities ρpol and Jpol are usually unknown and can be removed from the
field equations by means of the relations inferred from the polarization theory:

ρpol = − div P Jpol = c rot M (26)

These suggest, as well known, the definitions of two new vectorial fields:

D = E + 4πP H = B − 4πM (27)

In this way Maxwell’s equations in a medium are usually written by means of the
following four vectorial fields: E, B, D, H .
It’s easy to see that in a non-dispersive medium the density of em-momentum is:

π =
Π

c2
=

E×H

4πc
(28)

In articles [4]-[5] it is possible to find a in-depth discussion of how various ex-
pressions proposed for π are associated with different possible concepts of em-
momentum and of hidden momentum. The different dissertations correspond to
the different ways of splitting of the total em-momentum Eq.(25) into electromag-
netic and material ones.
Using Maxwell’s equations for the four fields E, B, D, H would be useless and too
heavy for our purposes. Fortunately in our discussion on the observable effects of
internal forces we don’t need to distinguish between the two terms of Eq.(25): with
Qem we mean always the total electromagnetic momentum, including polarization
effects. In the present paper ρ and J have the meaning specified in Eq.(24), i.e.
they include all sources, both free sources and polarization sources of the medium.
That greatly simplifies the relativistic handling, without penalizing the logic and
the conclusions of the work, as we are going to see.

6 Isolated systems

All relations previously written for a systems subject only to forces of electromag-
netic nature are strictly true in classical (relativistic) physics. Unlike quantum
mechanics and its theoretical developements, classical physics is characterized by
a description of phenomena based on separeted concepts of matter and radiation
(electromagnetic fields). Special relativity (SR) must be considered an integral
part of classical physics, since only by this paradigm mechanics and electromag-
netism form a coherent scheme.
Let’s now discuss the formulation of the principle of momentum conservation for
an isolated system subject to electromagnetic forces only. Such a system includes
the sources (charges and currents) of the electromagnetic fields present in it. For
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an isolated system it is possible to take F = 0, provided that the border S is
chosen far enough from the sources of the system, so that the em-stresses on it
can be considered negligible. Indeed the coefficients pij of the stress 3-tensor are
of order 1/r4 and the surface of integration in Eq.(19) is of order r2, consequently
F decreases as 1/r2. In this way from Eq.(22) we derive the total momentum
conservation principle for an isolated physical system in which exclusively occur
electromagnetic forces:

d

dt
(Qm + Qem) = 0 → Q = Qm + Qem = constant (29)

This isn’t clearly an original result, but here we want to underline the rigorous logic
sequence that led us to write it. In an isolated system the resultant of external
forces vanishes Rext = 0, so R = Rint reduces itself to be the resultant of the
internal forces alone. The fundamental laws of the mechanical momentum Eq.(21)
and of the em-momentum Eq.(20) for an isolated system therefore take the form:

Rint =
dQm

dt
Rint = −

dQem

dt
(30)

These relations don’t imply only the principle of conservation of total momentum
Eq.(29). They show also that, accordingly to the classical physics, if for any reason
it is observed a conversion of momentum ∆Qm ⇆ ∆Qem one must have:

Rint∆t = ∆Qm = −∆Qem (31)

In an isolated system each conversion of electromagnetic momentum into mechan-
ical momentum (or vice versa) is always associated with the action of an equivalent
impulse operated by a non null resultant of the internal electromagnetic 2 forces.
An isolated physical system mechanically at rest , in which there are electrical and
magnetic stationary fields generated by sources located inside the system (e.g. by a
parallel-plate capacitor and a steady current flowing in a solenoid), will generally
have a non null electromagnetic momentum (Qem 6= 0). Somebody considers
”strange” such a circumstance (a ”psychologism” would say Popper!), that instead
should appear obvious when it is considered that the total momentum of a system
at rest without any electromagnetic fields must be null: Q = Qm + Qem = 0.
As emphasized, the creation of an electromagnetic momentum Qem implies the
action of an internal impulse and therefore also the generation of an equal and
opposite mechanical momentum:

∫

Rint dt = −Qem = Qm (32)

If the physical system has to be kept at rest, even after the activation of its internal
sources, the internal forces have to be balanced with appropriate external forces,

2This conclusion remains true if inside the system a current generator is acting with non
electrical forces on the charges. Indeed such local interactions satisfy Newton’s third law and
give therefore a null-contribution to the resultant Rint of the internal forces acting on the system.
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such as to satisfy the condition:
∫

Rext dt = Qem (33)

In other words, the activation of a non null electromagnetic momentum associated
to the static fields necessarily requires the action of an equivalent impulse generated
by external forces, designed to maintain the system at rest.

7 Hidden momentum

Discussions about ”hidden momentum” have had a revival following the publica-
tion on Am.J.Phys (2009) of an article by Babson, Reynolds, Bjornquist, Griffiths
[1], in which it is stated that the total momentum of a physical system at rest
has to be always null (even in presence of stationary electric and magnetic fields),
thanks to an elusive relativistic ”center of energy theorem”. So it is needed to
postulate the existence of a ”hidden momentum”, i.e. of some kind of additional
momentum necessary to make ends meet.
You can’t find traces of the center of energy theorem in any canonical relativity
books. However many articles, accepting the hidden momentum theory, have
recently appeared in literature. The concept of hidden momentum is illustrated
by a lot of examples and formalized by sophisticated definitions: in [2] you can
find a historical presentation, modern definitions and an extensive bibliography.
One of the few works against this fashion is an interesting article written by
J.Franklin (2013) [3]; he concludes with the following textual words:
”Our conclusion is that the center of energy theorem does not apply to the EM
momentum of a static charge-current distribution, and that hidden momentum is
neither needed nor present in the charge-current distribution. The external force to
keep matter at rest during the creation of charge-current distribution goes directly
into EM momentum without moving any matter or hiding any momentum.”
We have reached, in totally indipendent way, the same conclusions expressed by
Franklin. But unlike [3] we refuse Newton’s third law and emphasize instead the
role of internal forces.
By means of the tensorial formalism we framed the principle of total momentum
conservation Eq.(29) in a general rigorous concise theoretical dissertation, directly
founded on Maxwell’s equations and on relativistic dynamics. The fundamental
law of electromagnetic momentum Eq.(15) is a consequence of Maxwell’s equations
and of the expression of the electromagnetic force: of course this isn’t an original
result, you can look it up e.g. on Jackson [7]. The four-dimensional tensorial form
used guarantees the relativistic invariance of the result Eq.(20), which with the
relativistic dynamic law Eq.(21) is the founding of our subsequent discussion of
the dynamics of any mechanical-electromagnetic isolated system.
Since the general results obtained are valid for any isolated physical system in
which only electromagnetic forces are acting, we haven’t deliberately submitted
any particular case: all examples available in literature, when properly discussed,
must agree with the same general theoretical scheme.
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8 Comments on an experimental challenge

The thesis of this paper is that the concept of ”hidden momentum” seems to be
useless (or sometimes the result of a hidden mistake) in the application of the laws
of classical electromagnetism and relativistic dynamics.
An experimental discrimination between the theory developed in this article and
the theory based on the hidden momentum should be possible, at least in principle.
According to the theoretical dissertation carried out, in every physical system the
activation or the deactivation of fields bearing an electromagnetic momentum is
necessarely associated with impulses having observable mechanical motion effects,
which should not occur if they were really balanced by a hidden momentum.
Given the smallness of the momentum quantities involved, one could try to per-
form such an experience by means of the low-thrust torsion balance used at NASA
Johnson Space Center for the experiences described in the esoteric report [6]. It
would however be necessary to change quite substantially the structure of the de-
vices and the experimental procedure, designed formerly with the aim to observe a
misterious continuous thrust, that would really violate the fundamental principles
of classical physics. It might even be that the small results described in [6] have to
be associated with the impulsive internal forces (we expect to observe) generated
when turning on and off the EM-drive.
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