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Abstract 

In a series of papers we have shown that through the imposition of gauge 

invariance conditions to the wavefunctions representing each particle, it is 

possible to relate rest energy to magnetic moment for the baryons. A key 

point of this model is the requirement that the  magnetic flux linked 

through the region covered by the particle be quantized in units of hc/e, 

which converges to the inverse dependence of mass with the fine structure 

constant alpha, as reported in the literature.  Our most accurate results 

however display deviations from the strict integer numbers of flux quanta, 

which requires an explanation. The objective of the present paper is to 

show that such deviations can be precisely associated to the flux 

dependence of the phase differences of interfering currents flowing through 

Josephson Junctions in the DC mode. In the same way as in macroscopic 

Josephson Junctions between superconductors, quantum interference 

between the constituents of baryons takes place when constituents 

superpose, which gives rise to squared sinusoidal undulations observed in a 

plot of the flux confined for each baryon against the respective magnetic 

moments. 

 

  

mailto:osvaldo.neto@ufsc.br


2 
 

1. Introduction. 

In a series of papers we have shown that through the imposition of gauge 

invariance conditions to the wavefunctions representing each particle, it is 

possible to relate rest energy to magnetic moment for the baryons. A key 

point of this model is the requirement that the  magnetic flux linked 

through the region covered by the particle be quantized in units of hc/e, 

which converges to the inverse dependence of mass with the fine structure 

constant alpha, as reported in the literature.   In our most recent work [1]we 

( following E. Post [2]) called this situation the “limit” realization of the 

Aharonov-Bohm Effect(A-B)[3]. Our most accurate results however 

display deviations from the strict integer numbers of flux quanta, which 

requires an explanation. The objective of the present paper is to show that 

such deviations can be precisely traced back to the oscillations observed in 

the phase differences of interfering  currents flowing through Josephson 

Junctions[4] in the DC mode. In the same way as in macroscopic Josephson 

Junctions, quantum interference between the constituents of baryons take 

place when constituents superpose, and  thus phase differences vary from 

one baryon to another, which gives rise to the squared sinusoidal 

undulations observed in a plot of flux for each baryon against the 

respective magnetic moments. 

 

2. Theory. 

Isolated current-loops containing a single quantum of flux of value 0/2 are 

well known from type-II superconductivity[4]. The formation of 

superconductor current loops is a many-body effect, though. In a series of 

papers we have investigated if there might exist single-particle systems 

confining flux in a similar manner. It is essential that such proposal be 
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quantitatively supported by experimental data. Let’s consider the actual 

case of particles of the baryon octet. In spite of their rather short mean-lives 

all the eight particles have well-established rest masses and magnetic 

moments. E.J. Post [2]considered how to associate these latter two 

variables in a tentative model for the electron. Post showed that the 

magnetic moment for the electron could be obtained up to the first-order 

correction ( from QED) with the equation: 

 mc
2
=   i /c + eV                                                    (1) 

Here the left side is the rest energy of the electron, which from the right 

side is considered as fully describable by electromagnetic terms. The first 

one on the right side is the magnetic energy of an equivalent ( hypothetic) 

current ring of value i linking an amount of flux , that should occur in a 

number n of flux quanta 0 . The second ( electrostatic energy) term is 

much smaller than the first ( it will be neglected hereafter) and accounts for 

the radiation-reaction correction for the magnetic moment which is 

proportional to the fine structure constant , as is well known[2]. Post 

associates the current with the magnetic moment  and the size R of the 

ring with the equation: 

    = R
2
i/c                                                       (2) 

It must be pointed out that albeit useful, the parameters in these equations 

cannot be strictly interpreted as their macroscopic counterparts do. For 

instance, Barut developed a full theory for the leptons[5-7] in which he 

shows that radiation-reaction terms from QED can be translated in the 

simple picture of a conventional interaction between the self magnetic field 

of a lepton and an anomalous magnetic moment, characterized by a g-

factor which is introduced to make the bridge between the two pictures.  
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In the present case we are interested in assessing a sufficiently large group 

of particles in order that flux quantization can be properly demonstrated, as 

predicted by A-B, and the baryons form such a group.  The parameter R 

must be determined for substitution into (2).  In the case of nucleons, 

experimental determinations of the radius of a proton have been undertaken 

since the 1950s, and the most recent value is of about 0.85 fm. Miller [8] 

has carried out detailed theoretical calculations of the charge distribution 

around nucleons. His plot of charge distribution [8] points towards an 

averaged radius of 0.6 fm, which will be adopted as discussed below.  

The model by Post was devised to fit a single fundamental particle, the 

electron. There is however consistent evidence that the constituents inside 

baryons form a topologicaly individualized structure, resembling a 

correlated Cooper pair in superconductors, so that a “single particle-model” 

may be applicable( as evidence, the said structure is not observed outside 

the baryon they belong to, and the constituents are confined by strong 

inward forces). One then inserts equation (2) into equation (1) ( without the 

electrostatic small term) and thus eliminates the current. The parameter R 

has been calculated/measured for the nucleons only, but it remains part of 

the final expression for all baryons obtained after the combination of (1) 

and (2). We may conveniently eliminate R from this treatment by adopting 

for all baryons an expression which is valid for the leptons( for R= , the 

Compton wavelength, namely: 

 = eR/2                                                              (3) 

which is certainly valid for the proton for R= 0.6 fm from [8]( cf. Table 1). 

The combination of equations (1)-(3) with  = nhc/e can therefore be cast 

in the final form (inserting = e
2
/c): 

                         n =  ( 2c
2
 /e

3
 )  m.                                                (4) 
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3. Analysis. 

Equation (4) is the main result of this work. It has been derived from the 

assumption that a femtometer-scale particle ( baryon) can be represented by 

a loop of current, based upon an analogy from superconductivity and from 

Post’s model for the electron. A plot of n against  should be confined to a 

straight diagonal line provided the mass m does not depend on n and . The 

continuity of the wavefunction around the loop requires n to be an integer, 

which would constitute the limiting case of the A-B effect.  All the 

parameters on the right side are known for the eight baryons of the octet, 

and are listed in Table 1( data from [10]).  Figure 1 shows the plot of the 

calculated n against the magnetic moment for each particle. There is indeed 

a tendency to form Shapiro-like steps at integer numbers of flux quanta but 

there are also clear undulating deviations for all values of the moment.   

As stressed earlier, it was shown by Barut that radiation terms from QED 

can be treated in the rather simple classical picture of the interaction 

between the anomalous magnetic moment with the particles self-field. A 

classical electromagnetic calculation carried out in ref. [9] considers the 

cyclotron extra rotations produced by the effect of the magnetic field due to 

an electron’s spin magnetic moment.  The calculation is used to predict that 

one quantum of flux across the area covered by the particle is associated 

with each ( Bohr- or) nuclear-magneton of magnetic moment. As shown in 

Table 1, some values of n calculated to simultaneously fit mass and 

magnetic moment follow such classical result quite closely. However, the 

plot in Figure 1 displays clear deviations from the classical result.  

Clarification of the origin of such deviations requires further investigation. 

The theory of transport across Josephson Junctions between 

superconductors provides a proper explanation, which is now described[4]. 
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Up to now we have assumed that there is no break in coherence in the flow 

of the “currents” inside the particle. It would be consistent with the picture 

proposed many years ago by Herbert Jehle[11] that the electrically charged 

quark constituents individually move and superpose, interfering with each 

other in this process. Quantum interference of the kind considered in the 

theory of Junctions might then be applied. In the DC case it can readily be 

shown that the current is determined by the ( wave functions) phase 

difference  across a contact between consituents: 

I = Ic sin()                                                       (5) 

Where Ic is a critical current across the contact. We might rewrite the 

magnetic energy term in (1) adding to the phase-independent i/c the work 

to establish the phase difference  given by the integration in  of the 

current in (5). The deviation m from the formerly calculated mass should 

be proportional to such integrated energy, given by: 

m=  m1 ( 1 cos())=m1 ( 2 sin
2
(/2) )                         (6a) 

n =  ( 2c
2
 /e

3
 )  m                                        (6b) 

Here m1 is a parameter ( to be adjusted by fit) which would include the 

unknown details of the tunneling process across the junctions, including the 

critical current. Expression (6b) has the expected form to justify 

undulations deviating from the straight line in the ploy for n in Figure 1.  

The mass m now acquires a squared sine correction dependent on phase. 

Such phase is proportional to the number of flux quanta n, which to first 

order should be proportional to the moments .  Figure 2 displays two fits 

of the data in Table 1 including  a squared sine dependence with phase for 

m, with the phase taken as proportional to . It is possible to see that even a 
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simple consideration of such femtometer-scale quantum interference 

phenomena can lead to fully quantitative corrections to the previous model. 

4. Conclusions. 

In conclusion, we have analyzed well-known tabulated data for the masses 

and magnetic moments of the baryon octet particles. The model associates 

magnetic energy with the rest energy, and  gauge invariance implies flux 

quantization within the area covered by the particles charge motion. 

However, Figure 1 displays a tendency for flux to adopt quantized values,  

but with deviations associated with quantum interference effcts akin to 

those described by the theory of the DC Josephson Effect. The data are 

successfully fit when such inteference is accounted for by means of the 

predicted squared sinusoidal dependence upon the phase difference 

between interfering wavefunctions. 
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Table 1: Data for the baryon octet( moments  from ref. [10]). According 

to equation (4) in gaussian units, n= 1.16x10
47

  m. The plot of n against  

( n.m.) is shown in Figure 1. 

 abs          

( n.m.) 

( erg/G) 

x 10
23

 

m(Mev/c
2
) m(g) 

x 10
24

 

n from 

eq.(4) 

p 2.79 1.41 939 1.67 2.73 

n 1.91 0.965 939 1.67 1.87 



 2.46 1.24 1189 2.12 3.05 



 0.82( theor.) 0.414 1192 2.12 1.02 



 1.16 0.586 1197 2.12 1.44 



 1.25 0.631 1314 2.34 1.71 



 0.65 0.328 1321 2.34 0.89 

 0.61 0.308 1116 1.98 0.70 
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Figure 1: Plot of n against the magnetic moment following eq (4) and Table 

1. The diagonal line is the classical prediction of one flux quantum per 

nuclear magneton ( n.m.)[9]. Horizontal steps at integer values of n are 

shown. The data display a tendency to reach for the steps ( traced line as 

guide),  but deviations are obvious . 
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Figure 2: Corrections to the model due to quantum interference between 

charged constituents inside baryons. Jehle [11] proposed a complete theory 

for the topology of quarks constituents, which should move and superpose 

inside baryons. This may result in interference effects like the undulations 

in Figure 1. The solid line includes a pure squared sine curve multiplied by 

 to transform mass into n according to(4) and (6b). The traced line 

includes an extra constant phase factor in the argument of the sine function 

to better fit the data. The result is an additional undulating m ( and n) 

above the diagonal solid line. 

 

 


