On a plausible triple electro-gravito-informational significance of the fine structure constant and its implications in the four fields unification and the existence of life forms in our universe

DOI: 10.13140/RG.2.2.13114.39365

Version 3.2

Andrei-Lucian Drăgoi

MD Pediatric specialist and independent researcher in theoretical physics and fundamental biology

(Bucharest, Romania); E-mail: dr.dragoi@yahoo.com

Abstract

In the last century, a small minority of physicists considered a hypothetical binary logarithmic connection between the large and the small constants of physics, which also implies a base-2 power law (Fürth, 1929; Eddington, 1938; Teller, 1948; Salam, 1970; Bastin, 1971; Sirag, 1980, 1983; Sanchez, Kotov and Bizouard, 2009, 2011, 2012; Kritov, 2013). This paper brings to attention a plausible triple electro-gravito-informational significance of the fine structure constant, with its implications in the four fields unification and the existence of life forms in our universe: this triple significance is based on the existence of a unifying global scaling factor of nature which appears in a hypothetical fine tuning of all the non-zero rest masses of the all the elementary particles in the Standard Model. Furthermore, this paper also proposes dimensional relativity hypothesis (**DRH**) stating that the 3D appearance of space (or the 4D nature of spacetime) may be actually explained by the relative magnitude of the photon momentum quanta (and the hypothetical graviton momentum quanta respectively) and this global scaling factor (**GSF**): DRH also includes a generalized electrograviton model (**EGM**) for any hypothetical graviton. This paper also proposes a set of strong (and very strong) gravity constants and a gravitational field varying with the energy (and length) scale, all with potential importance in the unification of the four fundamental fields.

Keywords: fine structure constant with triple electro-gravito-informational significance; unifying global scaling factor of nature; the four fields unification; the Standard Model of particle physics; dimensional relativity hypothesis; electrograviton model; life forms

I. Introduction [1]

In 1929, the German physicist R. Fürth proposed the adimensional constant $16^{32} = 2^{128}$ as a possible "connector" between gravitational and quantum mechanics constants [2].

Arthur Eddington (1937) and Dirac (1937) have remarked the coincidence of the large adimensional numbers in physics which can be reformulated as: $a / a_{Gv} \cong R_H / r_e \cong N^{1/2} \cong 10^{40}$ (a=1/ $\alpha \cong 137$ is the inverse of the fine structure constant [FSC] at rest $\alpha = k_e q_e^2 / (\hbar c) \cong 1/137$; $a_{Gv} = 1/\alpha_{Gv} \cong 3.1 \times 10^{41}$ is the inverse of a variant of the gravitational coupling constant $\alpha_{Gv} = (Gm_p m_e / c) / \hbar \simeq 1 / (3.1 \times 10^{41});$ [GCC] $R_H = c / H_0 \cong 14.5 \times 10^9 light - years$ is the Hubble radius of the observable universe, which is a function of the $H_0 \cong 71.9 [(km/s)/Mpc];$ constant Hubble $r_e = k_e q_e^2 / (m_e c^2) \approx 2.8 \times 10^{-15} m$ is the classical radius of the electron at rest; $N \cong 10^{80}$ is the approximate number of nucleons in our observable universe, a number which can be estimated by astrophysical methods)

In 1938, Arthur Eddington proposed that the number of protons in the entire Universe should be exactly equal to: $N = 136 \times 2^{256} \approx 1.57 \times 10^{79}$ (*N* was later called the Eddington's number N_{Edd}) and Eddington hypothesized that square root of N_{Edd} should be close to Dirac's big number (which he invoked in his large number hypothesis) such as $\sqrt{N_{Edd}} = \sqrt{136 \times 2^{256}} = \sqrt{136} \times 2^{128}$ $\approx 3.97 \times 10^{39}$. Later on, Eddington changed 136 to 137 (using the new experimental values of α [re]determined in his life time) and (re)insisted that α had to be precisely 1/137, a fact which attracted irony at that time [3]. However, Eddington's statement also implied the adimensional constant 2^{128} , which wasn't given proper attention for the next 10 years (Kritov, 2013) [4].

In 1948, Edward Teller proposed a possible logarithmic connection between α and $Gm_N^2 / (hc) \cong 10^{39}$ of the form $\alpha^{-1} \cong \ln[Gm_N^2 / (hc)]$, with m_N being the standard rest mass of a nucleon (proton or neutron) [5].

In 1970, Abdul Salam also brought in attention a possible logarithmic connection between α_{Gv} and α [6].

In 1971, Edward Bastin invoked the observation $a_{Gvv} = \hbar / (Gm_p^2 / c) \cong 1.7 \times 10^{38} \stackrel{99\%}{\cong} 2^{127}$ and proposed the derivation of $a = 1 / \alpha \cong 137$ from the exponent 127 by summing 127 with its series of digits, such as 127 + (1+2+7) = 137 [7]

In 1980, Saul-Paul Sirag also proposed an alternative interpretation of the binary logarithmic relation between $a = 1/\alpha$ and $a_{Gv} = 1/\alpha_{Gv}$, such as $\log_2(a_{Gv}) = 137.84 \approx a$. (Sirag, 1980, 1983) [8].

John D. Barrow and Frank Tipler probably didn't know about Salam's (1970), Bastin's (1971) and Sirag's (1980, 1983) works on this subject, when they wrote in 1986 that: "Edward Teller appears to have been the first who speculate that there may exist a logarithmic relation between the fine structure constant α and parameter the $Gm_N^2/(hc) \cong 10^{39}$ of the form $\alpha^{-1} \cong \ln \left[\frac{Gm_N^2}{(hc)} \right]$ [equation 4.23] (in fact $\alpha^{-1} \cong \ln(3.27 \times 10^{59})$ [corrected estimation] and the

formula is too insensitive to be of very much use in predicting exact relations)"[9,10]. (m_N also stands for the nucleon [proton/neutron] rest mass)

Regrettably, Barrow and Tipler also ignored Eddington's works on the subject which could have inspired them to analyze the binary logarithm variant $\boxed{\log_2 \left[Gm_N^2 / (hc) \right]}$ instead of the natural logarithm variant $\ln \left[Gm_N^2 / (hc) \right]$. This paper proposes additional arguments against Barrow and Tipler superficial analysis of this subject and continues the works of all the authors previously cited who "advocated" in the favor of this binary logarithm connection.

The recurrence of 2^{128} and $2^{a} \left(=2^{1/\alpha}\right)$ factors in these

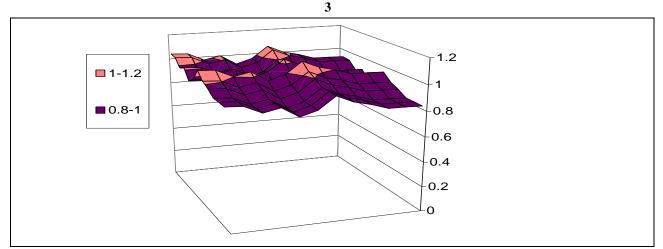
(probably just apparent) numerical coincidences suggests that base-2 power law may have a significant role in numerical relations of these physical constants, predicting the existence of a universal (large) scaling factor of nature (indissolubly related to the fine structure constant) with important implications in a possible fine-tuning of all nonzero rest masses of all known elementary particles in the standard model, with implications for the existence of life forms in our universe.

II. The existence of unifying gravitational scaling factor based on a hypothetical electro-gravitational significance of the fine structure constant

Let us consider a function $f(m_x, m_y)$ of any two identical or distinct non-zero rest masses m_x and m_y of any pair of elementary particles (**EPs**) in the standard model (**SM**):

$$f\left(m_{x}, m_{y}\right) = \frac{\log_{2}\left[\hbar c / \left(Gm_{x}m_{y}\right)\right]}{\hbar c / \left(k_{e}q_{e}^{2}\right)}$$
(II-1a)

Interestingly, the function $f(m_x, m_y)$ has its values relatively close to 1, in the double closed interval [0.817, 1.085] with an arithmetic average of $\cong 0.93$ which is also respected on the "diagonal" values (as detailed in the **next table and figure**: obviously, the values of $f(m_x, m_y)$ tend to be super-unitary for the combinations of the lightest EPs and sub-unitary for the rest of EPs.


Elementary particles	Quarks*						Leptons**			Bosons***		
	$u^{+2/3}$	$d^{-1/3}$	c ^{+2/3}	$s^{-1/3}$	$t^{+2/3}$	$b^{-1/3}$	e	μ^{-}	$ au^-$	$W^{+/-}$	Z^0	H^0
$u^{+2/3}$	1.053	1.046	0.987	1.014	0.935	0.974	1.069	1.013	0.983	0.943	0.942	0.938
$d^{-1/3}$	1.046	1.038	0.979	1.006	0.927	0.966	1.061	1.005	0.976	0.935	0.934	0.93
$c^{+2/3}$	0.987	0.979	0.92	0.947	0.868	0.908	1.002	0.946	0.917	0.877	0.875	0.872
$s^{-1/3}$	1.014	1.006	0.947	0.974	0.895	0.935	1.029	0.973	0.944	0.903	0.902	0.899
$t^{+2/3}$	0.935	0.927	0.868	0.895	0.817	0.856	0.951	0.895	0.865	0.825	0.824	0.82
$b^{-1/3}$	0.974	0.966	0.908	0.935	0.856	0.895	0.99	0.934	0.904	0.864	0.863	0.859
e ⁻	1.069	1.061	1.002	1.029	0.951	0.99	1.085	1.029	0.999	0.959	0.958	0.954
μ^{-}	1.013	1.005	0.946	0.973	0.895	0.934	1.029	0.973	0.943	0.903	0.902	0.898
$ au^-$	0.983	0.976	0.917	0.944	0.865	0.904	0.999	0.943	0.913	0.873	0.872	0.868
$W^{+/-}$	0.943	0.935	0.877	0.903	0.825	0.864	0.959	0.903	0.873	0.833	0.832	0.828
Z^0	0.942	0.934	0.875	0.902	0.824	0.863	0.958	0.902	0.872	0.832	0.83	0.827
H^0	0.938	0.931	0.872	0.899	0.82	0.859	0.954	0.898	0.868	0.828	0.827	0.824

<u>Table and figure II-1</u>. The values of the function $f(m_x, m_y) = \alpha \cdot \log_2 \left[\hbar c / (Gm_x m_y) \right]$ in the double closed

Note: the super-unitary values (corresponding to the combinations between the lightest elementary particles) were marked in italics.

*only the average estimated rest mass of quarks was considered (without their individual rest mass determination uncertainties); ** only the leptons with known rest masses were tabled (such as the three leptonic flavors of neutrinos were excluded for the moment);

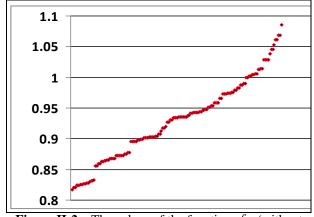
*** only the bosons with non-zero rest masses were tabled;

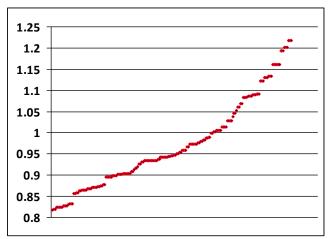
As seen from the previous table and figure, the subunitary values seem to predominate, as the three leptonic flavors of neutrino (which are probably lighter than the electron) weren't yet graphed, given the difficulty in determining their exact non-zero rest masses.

The denominator $\hbar c / (k_e q_e^2) \cong 137$ is actually the inverse of the fine structure constant (**FSC**) at rest and can be noted with $a = 1/\alpha = \hbar c / (k_e q_e^2) \cong 137$, so that $f(m_x, m_y)$ can be simplified as:

$$f\left(m_{x},m_{y}\right) = \log_{2}\left[\hbar c / \left(Gm_{x}m_{y}\right)\right] / a \qquad \text{(II-1b)}$$

The values of the function f are also plotted in a graph, sorted in ascending order: see the **next figure**.




Figure II-2a. The values of the function f (without considering neutrino rest mass combinations) sorted in ascending order

The electron neutrino $(v_e^{\ 0})$ rest mass is estimated to be in the interval $[0.2, 2]eV/c^2$ [11]. For $m_{v_e} \cong 1.85eV/c^2$ (which is the last experimental estimation) and $m_y \in \begin{cases} m_u, m_d, m_c, m_s, m_t, m_b, \\ m_e, m_\mu, m_\tau, m_W, m_Z, m_H \end{cases}$, $f\left(m_{v_e}, m_y\right)^{hyp.} \begin{cases} 1.201, 1.193, 1.134, \\ 1.161, 1.083, 1.122, \\ 1.217, 1.161, 1.131, \\ 1.091, 1.09, 1.086 \end{cases}$, which extends

the interval of values of f to [0.817, 1.217] (by adding

more super-unitary values to it and equilibrating the previous "mix" which was dominated by sub-unitary values): this last interval is approximately centered in value 1 and is relatively symmetrical and "equilibrated" around this value with two sub-unitary and super-unitary "wings" (1 ± 0.2) ; the arithmetic average of this extended interval

of f values increased to $\cong 0.97$. See the **next figure.**

Figure II-2b. The values of the function f (also considering three neutrino rest mass of ~1eV combinations) sorted in ascending order

 $f\left(m_{V_e}, m_{V_e}\right) \stackrel{hyp.}{\cong} 1.349$ also adds to this interval (1 ± 0.2) as an apparently "isolated" value, but which pushes the arithmetic average of f values to $\cong 0.98$ and $\cong 1.01$ (for the diagonal values only) (values even closer to 1) and which may suggest the existence of EPs (with non-zero rest masses and probably zero-charged) even lighter than the neutrinos to fill the gap between 1.2 and 1.349 and even to extend this interval. The most plausible candidates are the **lightest supersymmetric particles** (hypothetical particles proposed by supersymmetric models), probably **neutralino** (which is the most plausible candidate for the main constituent of the hypothetical dark matter), the **gravitino** and the **lightest sneutrino**.

Furthermore, even if the proton and the neutron aren't elementary particles, $f(m_p, m_y)$ and $f(m_n, m_y)$ also have values that "fit" in the same approximate interval 1 ± 0.2 , as those nucleons have rest masses relatively close (with the same order of magnitude) to the tauon rest mass, for which $f(m_\tau, m_e) \cong 0.999$: $f(m_N, m_e) \cong 1.006$.

This paper considers that it is very unlikely for the relatively large diversity of EPs non-zero rest masses to be strongly centered logarithmically around $a = 1/\alpha \approx 137$

only due to a "simple" coincidence: by contrast, it is very plausible that the existence of this "unity in diversity" to be the consequence of a more profound law of nature, as α is also the expression of a charge-anticharge symmetry (which was verified to be exact with very high accuracy) with no clear and definitive explanation yet.

In conclusion, $f(m_x, m_y)$ appears to help in predicting the products of any pair of elementary non-zero rest masses $m_x \cdot m_y$ as a function of Planck mass $m_{Pl} = \sqrt{\hbar c / G}$, so that:

$$m_x m_y \cong \frac{\hbar c / G}{2^{a \cdot (1 \pm 0.2)}} \cong \frac{m_{Pl}^2}{2^{a \cdot (1 \pm 0.2)}}$$
(II-2a)

The factor $n_a = 2^a = 2^{1/\alpha} \cong 1.8 \times 10^{41}$ which

emerges in the previous equation can be proposed as a unifying **gravitational/mass scaling factor** of the Standard model, so that:

$$\boxed{m_x m_y \cong \frac{m_{Pl}^2}{n_a^{1\pm 0.2}}} \Leftrightarrow$$
(II-2b)

$$\Leftrightarrow \boxed{\sqrt{m_x m_y} \cong \frac{m_{Pl}}{n_a^{0.5 \pm 0.1}}}$$
(II-2c)

The existence of $n_a = 2^a = 2^{1/\alpha}$ in the function $f(m_x, m_y) \cong 1$ justifies the hypothesis that the fine structure constant may have a dual/hybrid electromagnetic and gravitational (electro-gravitational) significance, so that n_a may be regarded as a unifying electro-gravitational scaling factor with the propriety that $m_{Pl} / \sqrt{m_x m_y} \cong (n_a = 2^a) \cong 1.8 \times 10^{41}$ and $\log_2(n_a) = a$.

A similar base-2 logarithmic function $ff(r_x, r_y)$ can be conceived to compare the most important length scales of our universe in pairs (r_x, r_y) such as:

$$ff\left(r_{x}, r_{y}\right) = \log_{2}\left(r_{x} / r_{y}\right) / a \qquad (\text{II-3a})$$

$$ff\left(r_{x}, r_{y}\right) = \log_{na}\left(r_{x} / r_{y}\right)$$
(II-3b)

Given the estimated radius of our observable universe (ou) $R_{ou} \cong 4.4 \times 10^{26} m$, the classical electron radius $r_{ec} = k_e q_e^{-2} / (m_e c^2) \cong 2.8 \times 10^{-15} m$, the radius of the proton (as determined by scattering using electrons) $r_p \cong 0.87 \times 10^{-15} m$ and the Planck length $l_{Pl} = \sqrt{\hbar G / c^3} \cong 1.62 \times 10^{-35} m$, for $r_x, r_y \in \{R_{ou}, r_{ec}, r_p, l_{Pl}\}$, $ff(r_x, r_y)$ has the following values:

 $ff(R_{ou}, l_{pl}) \cong 1.49, ff(R_{ou}, r_e) \cong 0.99, ff(R_{ou}, r_p) \cong 1.01,$ $ff(r_p, l_{Pl}) \cong 0.48$, $ff(r_e, l_{Pl}) \cong 0.49$. Interestingly, all these values tend to concentrate around values 1/2, 1 and 3/2 which are multiple integers of 1/2. The length $n_a \cdot r_{ec} \cong 5 \times 10^{26} m$ is relatively close to $R_{ou} \cong 4.4 \times 10^{26} m$, so that $n_a \cdot r_{ec} \cong 1.14 \cdot R_{ou}$ and $\log_2(R_{ou} / r_{ec}) \cong 136.85 \stackrel{99.9\%}{\cong} a \, .$ The length $\overline{n_a \cdot r_p} \cong 1.6 \times 10^{26} m$ is also relatively close to R_{ou} so that $n_a \cdot r_p \cong 0.35 \cdot R_{ou}$ and $\log_2(R_{ou} / r_p) \cong 138.54 \stackrel{101.1\%}{\cong} a$. In other words, when expressed in r_p and r_e units, the observable universe has ~137 length "octaves" which also suggests the gravitational significance of FSC. The next "natural" ff-value in the series n/2 (with $n \in \mathbb{N}^*$) is $ff(R_r, l_{Pl}) \cong 2$, which predicts а radius $R_x = l_{Pl} n_a^2 \approx 10^{21} R_{ou}$ which is a potential candidate for the real radius of our present universe (which is already predicted by superstring theory to be with at least 3 orders of magnitude larger than R_{ou})

 $n_a^2 \cong 3.2 \times 10^{82}$ is also close to the gravity-related ratios between the rest-mass of our observable universe (**ou**) $M_{ou} \cong 3.1 \times 10^{54} kg$ and the non-zero rest masses of the proton (m_p) and electron (m_e) , such as: $M_{ou} / m_p \cong (1.8 \times 10^{81} = N_{Edd})$, $M_{ou} / m_e \cong 3.4 \times 10^{84}$ and $M_{ou} / \sqrt{m_p \cdot m_e} \cong 7.9 \times 10^{82}$. Additionally, $\sqrt{\frac{c}{(\pi/4)r_pn_a}} \cong 75.75[(km/s)/Mpc]} \stackrel{105\%}{\cong} H_0$,

with $H_0 \cong 71.9[(km/s)/Mpc]$ being the Hubble constant as determined by the latest measurements from 2016 with the Hubble telescope [12]. This n_a -based predicted value is very close to the first good estimate $H_0 \cong 75[(km/s)/Mpc]$ proposed in 1958 by the influent American astronomer Allan Sandage [13].

Additionally, $\sqrt{(\pi/4)a^3n_a} \approx 6.01 \times 10^{23}$ is very close to the numerical value of the Avogadro constant $N_A \approx 6.023 \times 10^{23}$ (molec / mole), so that

$$\sqrt{(\pi/4)a^3n_a} \stackrel{99.8\%}{\cong} N_A \bigg].$$

III. The hypothetical electrograviton as based on the electro-gravitational significance the fine structure constant

$$f(m_x, m_y) \cong 1$$
 can be also written as:

$$\boxed{a \cong \log_2\left(\frac{\hbar c / \lambda}{Gm_x m_y / \lambda}\right)} \Leftrightarrow \qquad \text{(III-1a)}$$
$$\Leftrightarrow \boxed{\frac{\hbar c / \lambda}{Gm_x m_y / \lambda} \cong \left(2^a = n_a\right)} \Leftrightarrow \qquad \text{(III-1b)}$$
$$\Leftrightarrow \boxed{\frac{\left(\frac{\hbar / n_a\right)c}{\lambda} \cong \frac{Gm_x m_y}{\lambda}}{\lambda}} \qquad \text{(III-1c)}$$

λ

Based on previous equations, this paper proposes a model for the hypothetical spin-2 graviton analogous to the spin-1 photon (with wavelength λ and energy $E_{ph}(\lambda) = \hbar \lambda / c$), with zero-rest mass and moving with maximum speed c (or close to c, as the speed of gravitational waves [14]). As it is modeled analogous to the electromagnetic field quanta (the photon), this hypothetical graviton may be called "electrograviton" (eg), as it is also based on a (reduced) gravitational Planck-like constant $h_{eg} \cong \hbar / n_a \cong 5.1 \times 10^{-76} Js$, so that an eg with wavelength λ is predicted to have an energy defined by:

$$E_{eg}\left(\lambda\right) = \hbar_{eg}\lambda/c \tag{III-2}$$

Measuring the value of FSC at rest (with very high accuracy attained by using experiments based on the quantum Hall effect) may be considered an indirect method to essentially determine the electro-gravitational scaling factor $|n_a = 2^{1/\alpha} = 2^a|$, which can further be used to redefine FSC at rest, such as:

$$a = \log_2(n_a)$$
(III-3a)

$$\alpha = \frac{1}{a} - \frac{1}{\log_2(n_a)}$$
(III-3b)

The existence of the hypothetical graviton (modeled in this paper as an electrograviton) may also imply the existence of subtle (at least theoretically distinguishable) subquantum states for any physical system (PS) (composed of one or more EPs) generated by the absorption of one or more egs [15,16,17]. The total number of possible (at least theoretically) distinguishable states of a PS (N_S) can be calculated as the product between the total number of quantum states (N_{aS}) and the total number of gravitonic (subquantum) states (N_{gS}) , such as [18]:

$$\boxed{N_{S} = N_{qS} \times N_{gS}} \Rightarrow$$
(III-4a)
$$\Rightarrow \boxed{\log_{2}(N_{S}) = \log_{2}(N_{qS}) + \log_{2}(N_{gS})}$$
(III-4b)

The absorption of one photon by a PS increases N_S with one unit (one additional possible quantum state). Analogously, if hypothesized that the absorption of each individual eg adds a distinct supplementary possible subquantum state to a receiver PS then (so that N_{eS} increases with one unit, one additional possible gravitonic/subquantum state), the absorption of (a number of) n_a egs means receiving $\log_2(n_a) \cong 137 \, gbits$ ([subquantum] gravitonic bits): on the other hand, the energy-absorption of n_a egs with $E_{eg}(\lambda) = \hbar_{eg}\lambda/c$ is equivalent to the absorption of one photon with the same wavelength λ and energy $E_{ph}(\lambda) = \hbar \lambda / c = n_a E_{eg}(\lambda);$ if the absorption of each individual photon adds a distinct supplementary possible quantum state to a receiver PS then, the absorption of a photon means receiving $|1qbit \cong 137 gbits|$. Each gbit represents a group of gravitonic states similar to the "octave" interval used in music to define any (double closed) interval of frequencies (f) | f, 2f | Hz.

FSC expresses an informational equivalence between electromagnetism and gravity and $|a \cong 137|$ may be used as an interconversion factor between qbits and gbits, so that FSC $(\alpha = 1/a)$ can be regarded as the probability of targeting a specific subquantum (gravitonic) octave of states (defined by each gbit) of any PS. In this view, a photon can be defined as an EP containing $1qbit \cong 137 gbits$ so that the probability of a real electron/positron (at rest) to emit a real photon (Feynman's interpretation of FSC) may measure in fact the base-2 logarithmic probability of an electron/positron to emit a photon in a specific subquantum (gravitonic) state.

The author of this paper had also demonstrated that n_a $\boxed{\begin{array}{c} \frac{\text{redef.}}{a = \log_2(n_a)} \end{array}} \quad \text{can both help}$ and the redefined predicting a quantum gravitational coupling constant a_{Ga}

for an electron/positron pair which approximates the empirical $\alpha_G = G m_e^2 / (\hbar c) \cong 1.75 \times 10^{-45}$ with very high accuracy^[1], such as:

$$\alpha_{Gq} = \frac{1}{2a^{3/2}n_a} \cong 1.74 \times 10^{-45} \stackrel{99.6\%}{\cong} a_G$$
(III-5a)

This quantum a_{Gq} can also be used to predict a quantum big G scalar G_q with the same high accuracy, such as:

$$\boxed{G_q = \alpha_{Gq} \cdot \hbar c / m_e^2}, with$$

$$G_q \cong 6.648 \times 10^{-11} m^3 k g^{-1} s^{-2} \stackrel{99.6\%}{\cong} G$$
(III-5b)

In conclusion, FSC may actually have a triple electrogravito-informational significance, so that n_a can be

^[1] Discovered in 2014 and included in a document registered at the Romanian Copyright Office (ORDA) with the registration number 2546 / 26.03.2015. URL

considered a unifying (quantum/subquantum) electrogravito-informational scaling factor, such as $1/n_a \cong 1/10^{41}$ can be interpreted as the probability to target a specific subquantum (gravitonic) octave of states of any EP and $\alpha = 1/\log_2(n_a) \cong 1/137$ can be interpreted as the base-2 logarithmic variant of that (same) probability.

IV. The dimensional relativity hypothesis (DRH) based on the unifying scaling factor n_a [1]

An interesting (probably just apparent) coincidence emerges when comparing *h* and $h_{eg} (\cong \hbar/n_a)$ with a global (angular) momentum parameter of the observable universe (**ou**) at rest $L_{ou} = E_{ou} \cdot t_{ou} \cong 1.37 \times 10^{89} Js$: $E_{ou} \cong 3.14 \times 10^{71} J$ is the approximate resting energy of ou determined from the experimental measurements of the average energy density of ou (ρ_{ou}) which is estimated to be very close to the critical energy density established by the Friedmann model as $\rho_c = 3H_0^2 / (8\pi G/c^2)$ so that $\rho_{ou} \cong \rho_c \cong 8.73 \times 10^{-10} J/m^3$ and the volume of ou $V_{ou} = (4\pi/3)R_{ou}^3 \cong 3.6 \times 10^{80}m^3$ (derived from the radius of ou $R_{ou} \cong 4.4 \times 10^{26}m$); $t_{ou} \cong 13.8 \times 10^9$ years is the age of the present ou (as determined by specific astrophysical methods).

$$d_{ph} = \log_{n_a} \left(L_{ou} / \hbar \right) \cong 2.98 \Leftrightarrow \boxed{L_{ou} \cong \hbar n_a^3} \quad (IV-1a)$$

$$d_{eg} = \log_{n_a} \left(L_{ou} / \hbar_{eg} \right) \cong 3.98 \Leftrightarrow \boxed{L_{ou} \cong \hbar_{eg} n_a^4} \quad (IV-1b)$$

The closeness of the positive reals d_{ph} and d_{eg} to the positive integers 3 and 4 respectively (denoting the number of apparent/perceptual dimensions of the 3D space alone and the 4D spacetime respectively, as gravity is modeled by General Relativity in a 4D Minkowski space) may suggest that the number of dimensions of ou may not be absolute, so that it may not be correct to (a priori) predefine the number of dimensions of space/spacetime as pure observational arbitrary parameters without also considering the type of gauge boson (photon, electrograviton, etc. and its specific momentum quanta etc.) used to observe/measure that ħ, \hbar_{eg} , space/spacetime and its number of dimensions (d_x) . An arbitrary d_x may be extracted from an arbitrary triad (L_x, n_x, h_x) as $d_x = \log_{n_x} (L_x / h_x)$: this fact suggests that it may not be correct to define d_x a priori, based only on empirical/experimental observation, without also defining the triad (L_x, n_x, h_x) from which this d_x was extracted: this is because a fixed d_{x} (as we associate space with a 3D reference frame) also implies a fixed ratio $d_x = \log_{nx} \left(L_x / h_x \right) = \log_2 \left(L_x / h_x \right) / \log_2 \left(n_x \right), \text{ which}$

also implies a strict correlation in the variation of all the elements of the triad (L_x, N_x, h_x) .

Given the relativity of $d_x = \log_{nx} (L_x / h_x)$ from the triad (L_r, N_r, h_r) , this paper launches the **dimensional** relativity hypothesis (DRH) which states that: "the dimensions (D) of the observable universe (ou) may not be Euclidean but fractal and the number of dimensions (d) of ou may not be absolute (a priori defined) and integer but relative and fractionary, depending on the electro-gravito-informational unifying scaling factor n_a and the (angular) momentum "key"-quanta we use to study the global angular momentum L_{ou} (using our mind, senses and their extensions as observational/measuring tools)". As we generally use light (photons) to perceive and study space (together with virtual photons which were demonstrated to permeate all space, as proved by the Casimir effect), the fact that $L_{ou} \cong \hbar n_a^{3}$ may generate the "3D space" appearance: there are studies which also show that time may not exist as a "4th dimension" in the relativistic microcosm (the quantum level of reality). The fact that we perceive time at the macroscopically level (as part of an apparent "4D spacetime", with a 4th dimension modeled and measured using a classical linear time function) may be also an appearance generated by gravity (mediated by [electro]gravitons with the very small \hbar_{eg}

momentum-quanta) and to the relation $L_{ou} \cong \hbar_{eg} n_a^4$.

The human brain uses photons (light) to observe an apparent "empty" space, so that it may be the "victim" of the illusion governed by $d_{ph} \cong 3$, which generates the appearance of a "3D spacetime", in which time is not an additional 4th dimension, but only an abstract/artificial function which records a sequence of changes/events in that 3D space. The human brain also uses a combination of photons (light) and (quantized) gravity to observe the movements of objects in space, so that it may be also the "victim" of the illusion governed by $d_{eg} \cong 4$, which generates the appearance of a "4D spacetime", with an additional spatial 4th dimension attached to a perceptual "3D space".

This hypothesis can also offer an escape from a potential tautology, as when we measure different parameters of a quantum particle (**QP**), we use algorithms and equations based on the a priori assumption that space has three (Euclidean or non-Euclidean) dimensions $(d_x = 3)$, which may be essentially an illusion created by $d_{ph} \cong 3$: it is also the case in this paper, when V_{ou} was calculated using the same 3D space a priori assumption.

As $L_{ou} = E_{ou} \cdot t_{ou}$ is a function of both the energy E_{ou} and age t_{ou} of ou, a generalized function $d_x(E_x, t_x, h_x)$ can be defined next:

$$d_x(E_x, t_x, h_x) = \log_{na}(E_x \cdot t_x / h_x)$$
(IV-2a)

 $d_x(E_x, t_x, h_x)$ predicts that if we could (theoretically) existed and could have used the same photons with the same

 $h_x = \hbar$ (as the present photons have) in a very early historical epoch of ou (defined by $t_x \ll t_{ou}$, the same $E_x = E_{ou}$ and the same n_a) our space would have looked more like a ~2.5D space (like in the first second after the hypothetical Big Bang) or even ~1.5D (like in the first Planck time interval $t_{Pl} = \sqrt{\hbar G / c^5} \approx 5.39 \times 10^{-44} s$ after the hypothetical Big Bang):

$$\begin{array}{l}
 \hline d_x \left(E_{ou}, 1s, \hbar \right) \cong 2.56 \\
 \hline d_x \left(E_{ou}, t_{Pl}, \hbar \right) \cong 1.51 \\
\end{array} \tag{IV-2b}$$

 $d_x(E_x, t_x, h_x)$ also predicts that if we would (at least theoretically) exist and use the same photons with the same $h_x = \hbar$ (as the present photons have) in a very distant future of ou (defined by $t_x \gg t_{ou}$, the same $E_x = E_{ou}$ and the same n_a) our space would have looked more like a ~4D space, for example in the future moment corresponding to the age of $t_x \cong 10^{50}$ years measured after the hypothetical Big Bang:

$$d_x \left(E_{ou}, 10^{50} \text{ years}, \hbar \right) \cong 3.95$$
 (IV-2d)

More interestingly, all known elementary particles (EPs) (including those EPs with extreme low/high non-zero rest masses like the neutrinos [nn] and the Higgs [H] boson, except the photon and gluon) have non-zero rest energies in the interval $|E_{nn}(\cong 1.85eV), E_H(\cong 125GeV)|$ which is relatively "centered" in $\sqrt{E_{nn} \cdot E_H} \cong 0.5 MeV$ (more or orders of ~5-6 magnitude): less $d_{EP} = \log_{na} \left(E_{ou} / E_{EP} \right)$ has values in the interval [1.9, 2.2](D) which is relatively centered around 2(D). This may explain why QPs (first treated as superstrings by the string theories [STs]) can also be generalized and modeled as 2D surfaces (supermembranes or 2-branes) that may exist in an 11D spacetime as proposed by M-Theory (MT) and supergravity theory (which combines the principles of supersymmetry and general relativity). A n_a based 11D universe may have a total angular momentum $L_{tot} \cong \hbar_{eg} n_a^{11}$. In this view, bosons may be modeled as open 2-branes and fermions may be modeled as closed 2branes [19,20]. The same QPs may be regarded as 2-branes in 4D spacetime or as 1-branes (strings) in a 2D (holographic) universe: this sustains the holographic principle (HP) proposed by Gerard't Hooft's but also the AdS/CFT correspondence (aka Maldacena duality or gauge/gravity duality).

The definition $d_x = \log_{na} (L_{ou} / h_x)$, can be used to inversely define a specific momentum quanta associated to any d-frame of reference (with a number of d dimensions) such as:

 $hf(3) \cong 2.4 \times 10^{-35} Js$ is relatively close (with approximately the same order of magnitude) to the reduced Planck constant (\hbar) , so that $hf(3) \cong 0.23\hbar$. The rest energies of W/Z bosons $E_W \cong 80.4 GeV$, $E_Z \cong 91 GeV$ and their mean (measured) lifetimes $t_W \cong t_Z \cong 3 \times 10^{-25} s$ may help defining two reduced (angular) momentum-like quanta \hbar_W and \hbar_Z (with 2π being associated with a full mean lifetime $t_{W/Z}$), such as:

 h_W and h_Z are relatively close but larger than $hf(3) \cong 0.23\hbar$ (with ~1 order of magnitude), and that is why the W/Z bosons may be considered "heavy" photons, or high-momentum photons (unstable excited states of the photon with non-zero rest energies/masses and tendency to decay asymmetrically into pairs of distinct leptons) which is also the essential part in the successful unification of electromagnetic field (EMF) and the weak nuclear field (WNF) as the electroweak field (**EWF**). As $\left| d_{W(Z)} = \log_{na} \left(L_{ou} / \hbar_{W(Z)} \right) \cong 2.97 \rightarrow 3 \right|,$ observing our space by using W/Z bosons also generates the same 3D space appearance.

Analogous to \hbar_W and \hbar_Z , one can also calculate a reduced (angular) momentum-like quanta for the Higgs boson (**HB**) \hbar_H by using the HB non-zero rest energy $E_H \cong 125 GeV$ and its mean lifetime $t_H \cong 1.56 \times 10^{-22} s$ (with 2π being associated with a full mean lifetime t_H), such as:

$$h_H = \frac{E_H \cdot t_H}{2\pi} \cong 4718 h \cong 20770 hf(3)$$
(IV-3c)

 L_H is with ~3-4 orders of magnitude larger than $hf(3) \cong 0.23\hbar$ and that is why HB may be considered a "very heavy" photon, or **very-high-momentum photon** (a very high and unstable excited state of the photon with a non-zero rest energy/mass and tendency to decay symmetrically into pairs of identical/opposite-charge W/Z bosons, photons, leptons). As $d_H = \log_{na} (L_{ou} / \hbar_H) \cong 2.9 \rightarrow 3$, observing our space by (at least theoretically) using HBs may also generate the same 3D space appearance.

Based on hf(d) function, DRH also predicts and defines a quantum G function Gf_q associated to any integer/fractional dimensional d-frame (with d dimensions), such as:

$$hf(d) = L_{ou} / n_a^{d}$$
 (IV-3a)

$$Gf_q(d) = \left(\alpha_{Gq} \cdot c / m_e^2\right) \cdot hf(d), \quad \text{(IV-4a)}$$
with $G_q \cong Gf_q(4) \cong G$
(IV-4b)

Based on the $Gf_q(d)$ general definition, DRH predicts a hypothetical (very plausible) strong gravity constant (SGC) associated with a 3D frame and generated by a strong gravity field (SGF) measured by a momentum quanta close to $hf(3) \cong h$, such as:

$$\Gamma \cong Gf_q(3) \cong 10^{31} m^3 kg^{-1} s^{-2}$$
 and (IV-5a)
$$\Gamma \cong 1.5 \times 10^{41} G$$
 (IV-5b)

The majority of authors have calculated a value for this hypothetical SGC (Γ) from $\Gamma_{\text{inf}} \cong 10^{25} m^3 kg^{-1}s^{-2}$ $d_{\text{inf}} \cong 2.84$) (corresponding to up $\Gamma_{\rm sup} \cong 10^{37} m^3 kg^{-1} s^{-2}$ (corresponding to $d_{\rm sup} \cong 3.14$), with most of estimations between $10^{28}m^3kg^{-1}s^{-2}$ and $10^{32} m^3 kg^{-1}s^{-2}$, with a average $d_{avr} \cong 3$. (Seshavatharam and Lakshminarayana S., 2010, 2012, 2015 [21,22,23]; Perng, 1978 [24]; Fisenko et al., 2006, 2008, 2010 [25,26,27]; Recami et al., 1994, 1995, 1997-2001, 2005 [28,29,30]; Fedosin, 1999, 2009, 2012, 2014 [31,32,33]; Tennakone, 1974 [34]; Stone, 2010 [35]; Oldershaw, 2007, 2010 [36,37]; Mongan, 2007-2011[38]; Sivaram and Sinha, 1977 [39]; Dufour, 2007 [40]).

SGF may act as a confinement force between the 2branes contained in the same 3-brane (like our 3D space) stabilizing that 3-brane.

Furthermore, DRH also predicts that there may exist a set of very strong gravity fields (**VSGF**) associated to the 2D (the frame of 2-branes) and 1D (the frame of strings/1-branes) which may manifest at scales progressively smaller and even smaller the Planck length scale, such as:

$$Gf_q(2) \cong 10^{72} m^3 kg^{-1} s^{-2} \cong 10^{82} G$$
 (IV-6a)

$$Gf_q(1) \cong 10^{113} m^3 kg^{-1} s^{-2} \cong 10^{123} G$$
 (IV-6b)

VSGF (2) is associated with $Gf_q(2)$ and may act as a confinement force between the strings contained in the same 2-brane stabilizing that 2-brane. VSGF (1) is associated with $Gf_q(1)$ and may act as a confinement force between the points contained in the same 1-brane (string), stabilizing that 1-brane.

 $Gf_q(1)$ is a potential candidate for the upper bound of a plausible finite G that limits the growth to infinity of the strength of gravity when approaching infinitesimal length scales possibly inferior to the Planck length scale (as possibly in the black holes): the predicted hypothetical asymptotical freedom of gravity.

DRH also proposes a generalized electrograviton model (EGM) in which there is a distinct electrograviton (0-spin, 1-spin or 2-spin) associated with each dD frame (with d being a positive integer number of dimensions) with its own specific angular momentum quanta, such as:

$$hf_{eg}(d) = L_{ou} / n_a^{d}$$
(IV-7a)
and
$$Gf_q(d) = \left(\alpha_{Gq} \cdot c / m_e^2\right) \cdot hf_{eg}(d)$$
(IV-7b)

In this view, the Newtonian/relativistic gravity is mediated by the 4D-frame electrograviton (**4-eg**), with an angular momentum quanta measured by $\hbar_{eg} \cong h f_{eg}(4)$ which generates a gravitational field with strength measured by $G \cong G f_q(4)$. In the same view, SGF is predicted to be mediated by a 3D-frame electrograviton (**3-eg**) with $h f_{eg}(3) \cong \hbar$, which has a strength also measured by $\Gamma \cong G f_q(3) \cong 1.5 \times 10^{41} G$. The photon (which is its own antiparticle), the W/Z bosons and HB may all be considered different types of 3-egs because $d_H \cong d_{W(Z)} \cong d_{ph} \cong 3$.

In this way, the DRH-based SGF may co-predict (retrodict) the existence of the Higgs field (**HF**), as the 3Dframe eg (3-eg) has some striking scalar similarities with HB, which is a scalar QP (the only known scalar QP in nature, first predicted to exist in 1960s) with 0-spin and even parity. HB is defined as the quantum excitation of one [of the four] components of HF: HB is a very plausible candidate for the 3-eg (predicted by DRH) and vice versa. This DRH sub-hypothesis also implies that

$$Gf_q(d_H) \cong Gf_q(3) \cong \Gamma$$
. However, the mainstream

considers that more studies are needed to firmly confirm if the ~125GeV boson discovered in CERN's Large Hadron Collider (**LHC**) has properties matching those predicted by Standard Model (**SM**) for HB, or whether, more than one type of HB exist (as predicted by some theories). The 100% confirmation of HF existence depends on the final confirmation of HB existence, as HF is detected through its excitations (the HBs, which are difficult to obtain and detect).

HF is predicted to be tachyonic (as the symmetrybreaking of HB [through condensation] only occurs under certain conditions), and has a "Mexican hat" shaped potential with non-zero strength at any distance (also manifesting in empty space and permeating the entire observable universe and possibly all our universe, similar to both electromagnetic field (**EMF**) and the predicted SGF.

In its vacuum state, HF breaks the weak isospin symmetry of the electroweak field (**EWF**) and generates the W and Z bosons of WNF, which have very large non-zero rest masses of about (80-90)GeV. HF may also explain the non-zero rest masses of other elementary QPs like quarks and leptons (that are predicted to be normally massless when considering the symmetries controlling their interactions), by using other HF-based mechanisms alternative to the Higgs mechanism.

 $f(m_x, m_y)$ can be generalized/extended for any (reduced) Planck-like constant $\hbar_x \in \{\hbar, \hbar_W, \hbar_Z, \hbar_H\}$, such as:

$$f\left(m_{x}, m_{y}, \hbar_{x}\right) = \frac{\log_{2}\left[\hbar_{x}c / \left(Gm_{x}m_{y}\right)\right]}{\hbar_{x}c / \left(k_{e}q_{e}^{2}\right)}$$
(IV-8)

2

All fermionic EP non-zero rest masses can be considered the result of symmetry breaking of high-momentum bosons (like the W/Z and HB) but keeping $f(m_x, m_y, \hbar_x)$ close and centered on value 1. Not only "injecting" energy in a photon (by frequency increase of that photon) may generate fermionic particle-antiparticle pairs (with non-zero rest masses), but also injecting momentum in a photon may generate "(very) heavy photons" (like W/Z bosons and HB) which further decay in fermionic pairs.

DRH considers very plausible the possibility that the symmetry-breaking condensation of HB to also generate not-only the W/Z-bosons (also 3-egs), but also the 4-egs which mediate the gravitational field (GF): this implies GF to be a residual SGF (SGF may also be a residual VSG[2], as VSG[2] may be a residual VSG[1]), and may contribute to the n_a -based explanation of the hierarchy problem, as $Gf_q(d_H)/Gf_4(3) \cong n_a$ (with an approximate same

order of magnitude)

DRH also predicts that VSGFs are probably mediated by the 1/2D-frame egs (1-egs and 2-egs) quantized by $hf_{eg}(1)$ and $hf_{eg}(2)$, which generates $Gf_q(1)$ and $Gf_q(2)$ and may also have 0-spin and even parity (like HB and the 3-eg).

In conclusion, DRH (as based on the universal scaling factor n_a) offers important explanations and predictions (mainly the generalization of the electrograviton model for any relative frame with d dimensions)

V. The prediction of a gravitational field varying with the energy scale

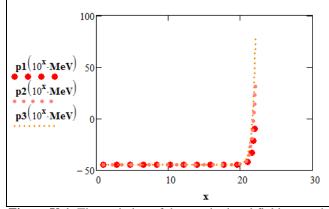
This paper also proposes a set of three simple n_a -based functions to describe three hypothetical variations of the gravitational field (**GF**) strength as measured by the quantum gravitational coupling constants a_{Gq1} , a_{Gq2} and a_{Gq3} , with a variable energy scale $E \in [E_e, E_{Pl}]$, with $E_e = m_e c^2 (\cong 0.51 MeV)$ and

 $E_{Pl} = \sqrt{\hbar c^5 / G} \left(\cong 1.22 \times 10^{19} GeV \right)$ (the Planck energy at which unification of all the four fundamental forces is

predicted to occur), such as:
$$\frac{E_{\text{var}}}{E_{\text{var}}} = 1$$

$$\alpha_{Gq1}(E) = n_a^{E_{Pl}} \frac{1}{2a^{3/2}n_a}$$
 (V-1a)

$$G_{q1}(E) = \alpha_{Gq}(E) \cdot \hbar c / m_e^2$$
(V-1b)


$$\alpha_{Gq2}(E) = n_a^{2\frac{-\alpha_a}{E_{Pl}}} \frac{1}{2a^{3/2}n_a}$$
(V-1c)

$$G_{q2}(E) = \alpha_{Gq2}(E) \cdot \hbar c / m_e^2$$
 (V-1d)

$$\alpha_{Gq3}(E) = n_a^{\frac{3\frac{E_{\text{var}}}{E_{Pl}}}} \frac{1}{2a^{3/2}n_a}$$
(V-1e)

$$G_{q3}(E) = \alpha_{Gq3}(E) \cdot \hbar c / m_e^2$$
 (V-1f)

$$\begin{split} G_{q1}\left(E_{Pl}\right) &\cong 1.2 \times 10^{31} m^3 kg^{-1} s^{-2} \quad \text{reaches} \quad Gf_q\left(3\right), \\ G_{q2}\left(E_{Pl}\right) &\cong 10^{72} m^3 kg^{-1} s^{-2} \quad \text{reaches} \quad Gf_q\left(2\right) \quad \text{and} \\ G_{q3}\left(E_{Pl}\right) &\cong 10^{113} m^3 kg^{-1} s^{-2} \quad \text{reaches} \quad Gf_q\left(1\right). \text{ The base-} \\ 10 \quad \text{logarithmic} \quad \text{variation} \quad \text{of} \quad \text{the} \quad \text{functions} \\ p_1\left(E\right) &= \log_{10}\left[\alpha_{Gq1}\left(E\right)\right], \quad p_2\left(E\right) &= \log_{10}\left[\alpha_{Gq2}\left(E\right)\right] \\ \text{and} \quad p_3\left(E\right) &= \log_{10}\left[\alpha_{Gq3}\left(E\right)\right] \quad \text{for} \quad E \in \left[E_e, E_{Pl}\right] \text{ are} \\ \text{represented in the$$
next graph $:} \end{split}$

Figure V-1. The variation of the gravitational field strength described by the functions $p_1(E)$, $p_2(E)$ and $p_3(E)$

This paper also proposes the replacement of G in Einstein's Field Equation (EFE) with the quantum G function $G_{q(1,2,3)}(E)$. In this way, the compact EFE based on the predefined (symmetric second-rank) Einstein tensor $G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu}$ (function of the metric tensor $g_{\mu\nu}$) $\boxed{G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}}$ becomes a unifying equation for both quantum mechanics and general relativity,

for both quantum mechanics and general relativity, describing a quantum GF mediated by gravitons (modeled as electrogravitons) with a n_a -based variable strength:

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G_{q(1,2,3)}(E)}{c^4} T_{\mu\nu}$$
 (V-2a)

This approach also has the potential to solve the cosmological constant problem by offering the possibility of a vacuum energy density ρ_{vac} that varies inverseproportionally to the length scale λ (and directproportionally to the energy scale *E*), which may fill the huge "gap" (varying from 40 to more than 100 orders of magnitude) between the observed small ρ_{vac} used by general relativity and the very large ρ_{vac} predicted by the quantum field theory.

$$\rho_{vac}\left(\lambda\right) = \frac{\Lambda c^2}{8\pi G_{q(1,2,3)}\left(\lambda\right)}$$
(V-2b)

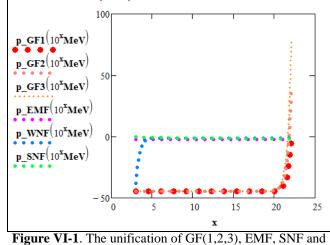
VI. The unification of all the four fundamental fields at Planck energy scale

The running coupling constant of the electromagnetic field (**EMF**) α determined in quantum electrodynamics (**QED**) using the beta function can be also written as the function of a variable energy scale $E \gg E_e \left(= m_e c^2 \cong 0.51 MeV\right)$, $E \leq E_{Pl}$ and $\alpha \cong 1/137$, such as [41,42]:

$$\alpha_f(E) \cong \frac{\alpha}{1 - \frac{\alpha}{3\pi} \ln\left[\left(E / E_e\right)^2\right]} \text{ or } (VI-1a)$$

 $\alpha_f(E)$ may be interpreted/explained and redefined as the consequence of the variation of n_a with a variable energy scale E, as described by the function:

with
$$\boxed{nf_a(E) = n_a / (E / E_e)^{\frac{\ln(4)}{3\pi}}},$$
 (VI-1b)
(VI-1c)


The running coupling constant of the weak nuclear field (**WNF**) α_W includes the rest energies of the W/Z bosons (which are the propagators of the WNF) and is also based on the Fermi coupling constant $G_F / (\hbar c)^3 \cong 1.1663787 \times 10^{-5} GeV^{-2}$ (with $G_F \cong 1.43585 \times 10^{-62} Jm^3$), which can be indirectly determined by measuring the muon lifetime experimentally. α_W can be also written as a function of a variable energy scale $E \in [E_e, E_{Pl}]$, the rest mass/energy of the W^{+/-} boson m_W and $E_W = m_W c^2$ such as [43,44,45,46]:

$$\alpha f_W(E) \cong \frac{E_W^2 G_F / (\hbar c)^3}{e^{E_W / E}}$$
(VI-2)

The running coupling constant of the strong nuclear field (SNF) α_S determined in quantum chromodynamics (QCD) (also) using the beta function can also be written as a function of a variable energy scale $E \gg E_{SNF}$, $E \leq E_{Pl}$ and $E_{SNF} \cong 210(\pm 40) MeV$ (the QCD energy scale of quark confinement as determined experimentally), such as [47]:

$$\alpha f_{S}(E) \cong \frac{2\pi}{7\ln(E/E_{SNF})}$$
(VI-3)

The approximated running coupling constants of GF, EMF, SNF and WNF can all be represented on the same graph using the base-10 logarithmic functions $p_{GF1}(E) = \log_{10} \left[\alpha_{Gq1}(E) \right], \quad p_{GF2}(E) = \log_{10} \left[\alpha_{Gq2}(E) \right],$ $p_{GF3}(E) = \log_{10} \left[\alpha_{Gq3}(E) \right], \quad p_{EMF}(E) = \log_{10} \left[\alpha f(E) \right],$ $p_{WNF}(E) = \log_{10} \left[\alpha f_W(E) \right], \quad p_{SNF}(E) = \log_{10} \left[\alpha f_S(E) \right]:$ see the next figure.

Figure VI-1. The unification of GF(1,2,3), EMF, SNF and WNF at the Planck energy scale

VII. Life phenomenon as engraved in the laws of our universe

There are some strong arguments that creationism and evolutionism can be unified in a more profound monad, as also described by the Fine-tuned universe theories, including the Anthropic (Cosmological) Principle. [48].

It is generally considered that the non-zero probability of life existence strongly depends on: boson-fermion dichotomy (BFD) (associated with Pauli's exclusion principle [**PEP**] which apply to all fermions), some narrow intervals of allowed variations $(\pm 4\%)$ for the fine structure constant (FSC) α value (at rest) and for the beta constants values at rest $\beta_p = m_p / m_e$ and $\beta_n = m_n / m_e$ (which influence the formation and the life cycles of the stars, which are the main sources of energy for life forms (LFs) and the only source of atoms heavier that the iron, which are vital microelements for LFs); it is also generally admitted (and partially proved by some experiments) that α and $\beta_{p(n)}$ values have probably been "decided" (by so-called natural (pre)selection) in the first moments after the (hypothetical) Big-Bang. It was also demonstrated that the stability of all chemical structures that compose any LF mainly depend on BFD-PEP association, α and $\beta_{p(n)}$ values. In order for the first LFs to appear by the 3rd step of "biological natural selection", proper chemical structures (atoms and molecules) must have been produced long before these first LFs, by a 2nd step of "chemical natural (pre)selection": but this 2nd step strongly and decisively redef. depends on $\alpha = 1/\log_2(n_a)$ and $\beta_{p(n)}$ values (at rest) that were also "naturally (pre)selected" at a relative short moment after the (hypothetical) Big-Bang and this "selection" may be consider the 1st step of the "natural selection" process, that can be named the "alpha-beta

natural (pre)selection". In this way, this hypothesis proposes a "natural selection" in three "abc" steps:

- **a.** the selection of the main physical principles and adimensional constants compatible with LFs existence (very close to the Big-Bang moment);
- **b.** the selection of the atoms and molecules compatible with LFs existence;
- **c.** the appearance of the first LFs that evolved by a so-called "natural selection" process.

With these previously listed arguments, this paper proposes the unification of evolutionism and creationism in a monad (a seed-like model of the pre-Big-Bang in which this singularity unpacks and repacks itself periodically, generating a universe populated with LFs), as it pushes the three abc-steps of "natural selection" very close to the moment "0" of the Big-Bang when $n_a \cong 10^{41}$, redef. $\alpha = 1/\log_2(n_a)$ and $\beta_{p(n)}$ values were probably "naturally" (but not necessarily randomly!) selected. In this view, $n_a \cong 10^{41}$ may be regarded as predesigned for life forms to exist.

An important remark on the importance of FSC value in the structures and functions of LFs. A change in the energy level of an electron in a molecule of a LF may produce a change in configuration of that molecule, a change that may also generate and transmit potential vital (bio)information for that LF. FSC can be interpreted as the probability of a real electron to emit a real photon (Feynman's interpretation): in biology, FSC can be "translated" as the main probabilistic measure of the relative stability of a molecular electronic cloud configuration that a LF can rely on as a generator and transmitter of (bio)information.

In conclusion, it is very plausible that life may be essentially a predesigned phenomenon probably "engraved" in the laws of nature (including the still unknown laws of our universe), and just secondarily shaped by different so-called "natural accidents".

VIII. Endnote reference (in the order of apparition in this paper)

- [1] <u>Drăgoi Andrei-Lucian (September 2016)</u>. "(BIDUM 3.1 beta version - 24 pages - working paper) A toy model of the universe based on a large numbers hypothesis inspired by Edward Teller – towards a TOE centered on life phenomenon". DOI 10.13140/RG.2.2.31366.57924. URL1a(ResearchGate)-working paper variant, URL1b(ResearchGate)-data variant, URL2(Academia.edu)
- [2] <u>Fürth R. (1929)</u>. "Versuch einer quantentheoretischen Berechnung der Massen von Proton und Elektron"

(Physikalische Zeitschrift, 1929), extracted from Helge Kragh, "Magic Number: A Partial History of the Fine-Structure Constant" (DOI 10.1007/s00407-002-0065-7), Archive for History of Exact Sciences, 2003, v. 57, 395– 431. URL1, URL2.

- [3] <u>Kragh H. (2015)</u>. "On Arthur Eddington's Theory of Everything" (freely accessible ArXiv article; submitted on 14 Oct 2015). <u>URL1</u>, <u>URL2</u>.
- [4] <u>Kritov A. (2013)</u>. "A New Large Number Numerical Coincidences", Progress in Physics, volume 2, April 2013, pages 25–28. <u>URL</u>
- [5] <u>E. Teller (1948)</u>. "On the Change of Physical Constants". Physical Review (April 1948) Vol. 73, Issue 7, page 801. <u>URL1</u>, <u>URL2</u>.
- [6] Salam A. (1970). International Center for Theoretical Physics, Trieste, Preprint IC/70/1906.
- [7] Bastin E.W. (1971). "Quantum Theory and Beyond (Essays and Discussions Arising from a Colloquium)" (book). Ted Bastin, ed. Cambridge University Press, London, page 213. <u>URL</u>.
- [8] <u>Sirag S-P. (1980, 1983)</u>. "Physical constants as cosmological constraints" (Received on November 22, 1980), International Journal of Theoretical Physics, 1983, vol. 22, no. 12, pages 1067–1089. <u>URL1</u>, <u>URL2</u>
- [9] <u>Barrow J.D., and Tipler F.J. (1986)</u>. "The Anthropic Cosmological Principle" (book). Oxford: Oxford University Press, 1986, p.230 and ref. no. 37 from p.278: E. Teller, Phys. Rev. 73, 801, (1948). <u>URL</u>. See also pages 239 (from the 3rd paragraph – equation 4.38) and 240.
- [10] <u>Barrow J.D. (1981)</u>. "The lore of large numbers: some historical background to the anthropic principle", Q. Jl. R. Astr. Soc. 22 (1981) 388-420. This extract can also be found at page 397. <u>URL</u>.
- [11] <u>Nieuwenhuizen T.M. (2016)</u>. "Dirac neutrino mass from a neutrino dark matter model for the galaxy cluster Abell 1689". Journal of Physics: Conference Series. 701 (1): 012022. <u>arXiv:1510.06958</u> (freely accessible ArXiv article). Bibcode: <u>2016JPhCS.701a2022N</u>. doi:10.1088/1742-6596/701/1/012022.
- [12] Bonvin Vivien; Courbin Frédéric; Suyu Sherry H.; et al. (2016). "H0LiCOW V. New COSMOGRAIL time delays of HE 0435–1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model" MNRAS. 465 (4): 4914–4930. arXiv:1607.01790 (freely accessible). doi:10.1093/mnras/stw3006.
- [13] <u>Sandage A.R. (May 1958)</u>). "Current Problems in the Extragalactic Distance Scale". Astrophysical Journal. 127 (3): 513–526. <u>Bibcode:1958ApJ...127..513S</u>. <u>DOI:10.1086/146483</u>.
- [14] <u>Kokkotas Kostas D. (2002)</u>. "Gravitational wave physics", article written for the Encyclopedia of Physical Science and Technology, 3rd Edition, Volume 7 Academic Press, (2002). <u>URL</u>
- [15] <u>Drăgoi Andrei-Lucian (2016)</u>. "(**IDUM Short essay -**11 pages - 19.05.2016) An Info-Digital Universe (Toy) Model (IDUM) (in brief) using the hypothetical gravitonic qubit as the basic unit of the physical information". DOI 10.13140/RG.2.2.12680.62722. <u>URL1(ResearchGate)</u>, <u>URL2a(Academia.edu)</u>, <u>URL2b(Academia.edu)</u>, <u>URL2c(Academia.edu)</u>

[16] <u>Drăgoi Andrei-Lucian (2016)</u>. "(**BIDUM 1.1 - full version - Parts 1-7 - 63 pages - 29.07.2016**) A Bio-Info-Digital Universe Model (BIDUM version 1.1) based on a series of Planck-like informational constants and using the hypothetical gravitonic qubit as the basic unit of the (bio)physical information", **DOI**

10.13140/RG.2.2.26102.40001. URL1(ResearchGate)

- [17] <u>Drăgoi Andrei-Lucian (2016)</u>. "(BIDUM 1.1 Short summary 16 pages 19.05.2016) A Bio-Info-Digital Universe Model (BIDUM version 1.1, in a short summary) based on a series of Planck-like informational constants and using the hypothetical gravitonic qubit as the basic unit of the (bio)physical information". DOI 10.13140/RG.2.2.35329.86884. <u>URL1(ResearchGate)</u>, <u>URL2(Academia.edu)</u>
- [18] <u>Drăgoi Andrei-Lucian (2016)</u>. "(BIDUM 2.0 new full version) (Parts I-VII) (54 pages) (28.08.2016) A Bio-Info-Digital Universe Model - version 2.0 (BIDUM 2.0) based on a series of Planck-like informational constants and using the hypothetical gravitonic qubit as the basic unit of the (bio)physical information". DOI

10.13140/RG.2.2.31135.56480. <u>URL1a(ResearchGate)</u>, <u>URL1b(ResearchGate)-list of abbreviations</u>, <u>URL2a(Academia.edu)</u>, <u>URL2b(Academia.edu)</u>, <u>URL2c(Academia.edu)-list of abbreviations</u>. **Redundant DOIs**: <u>10.13140/RG.2.2.17713.79209</u> [<u>URL1</u>], <u>10.13140/RG.2.2.27780.12162[URL2]</u>, <u>10.13140/RG.2.2.14358.34882</u>

- [19] <u>Drăgoi Andrei-Lucian (2017)</u>. "(version 2.0 28 pages 9.05.2017) A cyclic toy model of the universe predesigned for life, based on preonic quantized branes and a very strong 2D gravitational field as a candidate for a unified primordial field". **DOI** 10.13140/RG.2.2.24084.30087. <u>URL1(ResearchGate)</u>, URL2(Academia.edu).
- [20] <u>Drăgoi Andrei-Lucian (2017)</u>. "(version 1.1 12 pages 5.06.2017) A preonic toy model of all known elementary particles based on 1D and 2D branes". **DOI** 10.13140/RG.2.2.26817.97123. <u>URL1(ResearchGate)</u>, <u>URL2(Academia.edu)</u>.
- [21] <u>Seshavatharam U.V.S., Lakshminarayana S. (2010)</u>.
 "On the Plausibility of Final Unification with Avogadro Number". Prespacetime Journal, October 2014, Volume 5, Issue 10, pp. 1028-1041. <u>URL</u>
- [22] <u>Seshavatharam U.V.S., Lakshminarayana S.(2012)</u>.
 "To unify the string theory and the strong gravity". <u>URL1, URL2</u>
- [23] <u>Seshavatharam U.V.S., Lakshminarayana S. (2015).</u> "On fixing the magnitudes of gravitational constant and strong coupling constant". International Journal of Advanced Astronomy, Volume 3, No.1 (2015). <u>URL</u>
- [24] Perng J. J. (1978). "Strong gravitation and elementary particles". Nuovo Cimento, Lettere, Serie 2, vol. 23, N. 15, 1978, p. 552-554. URL1, URL2
- [25] <u>Fisenko S., Fisenko I. (2006)</u>. "To the question of identification of linear spectrum of gravitational emission as of an emission of the same level with electromagnetic". <u>URL</u>

- [26] <u>Fisenko S., Fisenko I. (2008)</u>. "Gravitational interaction on quantum level and consequences thereof". <u>URL</u>
- [27] <u>Fisenko S., Fisenko I. (2010)</u>. "The Conception of Thermonuclear Reactor on the Principle of Gravitational Confinement of Dense High-temperature Plasma". Applied Physics Research, November 2010, Vol. 2, No. 2, P. 71 -79. <u>URL</u>
- [28] <u>Recami, E. et al. (1997-2001)</u>. "Elementary particles as micro-universes: a geometric approach to "strong gravity". Apeiron, January 01, 1997. <u>URL</u>
- [29] <u>Recami, E. et al.(1999-2001)</u>. "The strong coupling constant", Heavy Ion Physics, 1999, Vol. 10, P. 345– 349. <u>URL</u>
- [30] <u>Recami, E.(2005)</u>. "Multi-verses, Micro-universes and Elementary Particles (Hadrons)" (preprint). <u>URL</u>
- [31] Perng J. J. (1978). "Strong gravitation and elementary particles". Nuovo Cimento, Lettere, Serie 2, vol. 23, N. 15, 1978, p. 552-554. URL1, URL2
- [32] <u>Fedosin S.G (2009)</u>. "Model of Gravitational Interaction in the Concept of Gravitons". <u>URL</u>
- [33] <u>Fedosin S.G (2012)</u>. "The Radius of the Proton in the Self-Consistent Model". <u>URL</u>
- [34] <u>Tennakone K. (1974)</u>. "Electron, muon, proton, and strong gravity". Phys. Rev. D, 1974, Volume 10, Issue 6, P.1722–1725. <u>URL</u>
- [35] <u>Stone R.A. (2010)</u>. "Quark Confinement and Force Unification". Progress in Physics, April 2010, Vol. 2, P. 19–20. <u>URL</u>
- [36] <u>Oldershaw R.L. (2007)</u>. "Discrete Scale Relativity".
 Astrophysics and Space Science, 2007, Vol. 311, N. 4, P. 431-433. <u>URL</u>
- [37] <u>Oldershaw R.L. (2006-2010)</u>. "Hadrons As Kerr-Newman Black Holes". <u>URL1</u>, <u>URL2</u>
- [38] <u>Mongan T.R. (2007-2011)</u>. "Cold dark matter from "strong gravity"". General Relativity & Quantum Cosmology, 20 Jun 2007. <u>URL</u>
- [39] <u>Sivaram C. and Sinha K.P. (1977)</u>. "Strong gravity, black holes, and hadrons". Physical Review D, 1977, Vol. 16, Issue 6, P. 1975-1978. <u>URL</u>
- [40] <u>Dufour J. (2007)</u>."Very sizeable increase of gravity at pico-meter distance: a novel working hypothesis to explain anomalous heat effects and apparent transmutations in certain metal hydrogen systems". Journal of condensed matter nuclear science, 2007, Vol. 1, P. 47-61. <u>URL</u>
- [41] <u>Aitchison I.J.R. and Hey A.J.G. (2009)</u>. "Gauge Theories in Particle Physics: A Practical Introduction, Fourth Edition - 2 Volumes set 4th Edition" (book). 2nd volume". Chapter 15.2.3 (The renormalization group equation and large -q² behavior in QED). Page 123 (equation 15.45, from pdf page no. 136) <u>URL-book</u>; <u>URL2</u>.
- [42] <u>Botje Michiel (2 December 2013)</u>." Lecture notes Particle Physics II. Quantum Chromo Dynamics. 6. Asymptotic Freedom" (lecture notes), page 6-14. <u>URL</u>
- [43] <u>Muheim Franz (2006)</u>. "Lecture 8. Weak Interaction, Charged Currents" (online lecture in pdf format; University of Edinburgh), page 5. <u>URL1</u>, <u>URL2</u>.

- [44] <u>Maniatis Markos (2008/2009)</u>. "The Fermi coupling constant G_F" (online lecture in pdf format; Rupert-Karls University from Heidelberg). <u>URL1</u>, <u>URL2</u>, <u>URL3</u>.
- [45] <u>Brau Jim (Spring 2012)</u>. "Weak interactions" (Physics 662, Chapter 7; online lecture in pdf format; University of Oregon). <u>URL1</u>, <u>URL2</u>, <u>URL3</u>.
- [46] <u>Wikiversity contributors (2017)</u>. "Coupling constant: Weak interaction" (Wikiversity online article accessed on April 15th 2017). <u>URL1</u>, <u>URL2</u>.
- [47] <u>Aitchison I.J.R. and Hey A.J.G. (2009)</u>. "Gauge Theories in Particle Physics: A Practical Introduction, Fourth Edition - 2 Volumes set 4th Edition" (book). 2nd volume". Chapter 15.2. Page 124-125 (<u>URL-book</u>)
- [48] <u>Stenger V.J.(?)</u>. "The Anthropic Principle" (for The Encyclopedia of Nonbelief to be published by Prometheus Books). <u>URL1</u>, <u>URL2</u>; <u>URL3a</u>, <u>URL3b</u>