
On the “mysterious” effectiveness of mathematics
in science

J Gerard Wolff∗

May 19, 2017

Abstract

This paper notes first that the effectiveness of mathematics in science ap-
pears to some writers to be “mysterious” or “unreasonable”. Then reasons
are given for thinking that science is, at root, the search for compression
in the world. At more length, several reasons are given for believing that
mathematics is, fundamentally, a set of techniques for compressing informa-
tion and their application. From there, it is argued that the effectiveness
of mathematics in science is because it provides a means of achieving the
compression of information which lies at the heart of science. The anthropic
principle provides an explanation of why we find the world—aspects of it at
least—to be compressible.

Information compression may be seen to be important in both science
and mathematics, not only as a means of representing knowledge succinctly,
but as a basis for scientific and mathematical inferences—because of the
intimate relation that is known to exist between information compression
and concepts of prediction and probability.

The idea that mathematics may be seen to be largely about the com-
pression of information is in keeping with the view, supported by evidence
that is outlined in the paper, that much of human learning, perception, and
cognition may be understood as information compression. That connection
is itself in keeping with the observation that mathematics is the product of
human ingenuity and an aid to human thinking.
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1 Introduction

Although mathematics is a phenomenally successful “handmaiden” of science,1 the
reason that it is so effective in science has been described as a “mystery” that is
“unreasonable”. Thus:

• Roger Penrose writes:

“It is remarkable that all the SUPERB theories of Nature have
proved to be extraordinarily fertile as sources of mathematical
ideas. There is a deep and beautiful mystery in this fact: that
these superbly accurate theories are also extraordinarily fruitful
simply as mathematics.” ([Penrose, 1989, pp. 225–226], bold face
added).

• In a similar vein, John Barrow writes:

“For some mysterious reason mathematics has proved itself a
reliable guide to the world in which we live and of which we are
a part. Mathematics works: as a result we have been tempted to
equate understanding of the world with its mathematical encap-
sulization. ... Why is the world found to be so unerringly
mathematical?” ([Barrow, 1992, Preface, p. vii], bold face added).

• And Eugene Wigner [1960] writes about “The unreasonable effectiveness of
mathematics in the natural sciences”:

“The miracle of the appropriateness of the language of mathe-
matics for the formulation of the laws of physics is a wonderful
gift which we neither understand nor deserve. We should be
grateful for it and hope that it will remain valid in future research
and that it will extend, for better or for worse, to our pleasure,
even though perhaps also to our bafflement, to wide branches of
learning.” (ibid, p. 14, bold face added).

In the light of evidence and arguments described in sections that follow, there
appears to be a solution to the mystery of why mathematics is so effective in
science. That solution is described in Sections 14 and 15.

1The slightly whimsical idea that mathematics might be some kind of servant of science,
and the use of the curiously archaic word “handmaiden” seems to have originated with The
Handmaiden of the Sciences, a book by Eric Temple [1937].
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In brief: 1) Apart from the gathering of empirical data, science may be seen to
be essentially a process of compressing those data; 2) mathematics may be seen to
be a set of techniques for compression of information and their application; thus 3)
For those reasons, mathematics can be a valuable aid in the process of compressing
information which is a central part of good science. 4) The anthropic principle
appears to explain why we find that much of the world is compressible (Section
15).

Information compression may be seen to be important in both science and
mathematics, not only as a means of representing knowledge succinctly, but as a
basis for scientific and mathematical inferences—because of the intimate relation
that is known to exist between information compression and concepts of prediction
and probability (Appendix D).

2 Human learning, perception, and thinking as

information compression

It is pertinent to mention that much of the thinking in this paper derives from the
development of the SP theory of intelligence and its realisation in the computer
model, introduced in Appendix A.

A central idea in the SP system is that much of human learning, perception,
and thinking may be understood as information compression. Although this may
seem implausible, there is now much supporting evidence. Some of this evidence
is relatively direct, described in Wolff [1993], [Wolff, 2006, Chapter 2], and Wolff
[2017]. Less direct but nevertheless strong evidence is the way in which the SP
computer model, which is dedicated to the compression of information, can model
several different aspects of intelligence. Much of this evidence is presented in Wolff
[2006]; Wolff, 2016] with pointers to where further information may be found.

If it is accepted that much of human cognition may be understood as com-
pression of information, then it should not be surprising to find that both science
and mathematics, as products of the human intellect, may also be understood as
compression of information.

3 Science as compression of information

Occam’s Razor, the principle attributed to William of Ockham and widely seen as
a key principle in science, is often expressed as “Entities are not to be multiplied
beyond necessity.”—meaning that, when there are two or more competing theories
that explain a given set of phenomena, we should choose the simplest.
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Of course, much of science is concerned with observational studies of aspects
of the “world”—meaning the universe as far as we can see—or conducting experi-
ments to obtain empirical data. But few would dispute the ‘elegance’ or ‘beauty’
of a compact expression like E = mc2 compared with the relatively huge range of
observations that it describes or predicts, and few would dispute the importance
in science of discovering or inventing compact descriptions like that.

Respected scientists have often described the goals of science in similar terms.
Isaac Newton wrote that “Nature is pleased with simplicity” [Newton, 2014, p. 320];
Ernst Mach [2004] and Karl Pearson [1892] suggested independently of each other
that scientific laws promote “economy of thought”; Albert Einstein wrote that
“A theory is more impressive the greater the simplicity of its premises, the more
different things it relates, and the more expanded its area of application.”;2 and
cosmologist John Barrow has written that “Science is, at root, just the search for
compression in the world” [Barrow, 1992, p. 247]. It is pertinent to mention that
George Kingsley Zipf developed the related idea that human behaviour is governed
by a “principle of least effort” [Zipf, 1949].

Here are some examples of simplifications in science:

“... as space and time fuse together in a single concept of spacetime, so
the electric field and the magnetic fields fuse together in the same way,
merging into a single entity which today we call the electromagnetic
field. The complicated equations written by Maxwell for the two fields
become simple when written in this new language. ... The concepts of
‘energy’ and ‘mass’ become combined in the same way as time and
space, and electric and magnetic fields, are fused together in the new
mechanics. ... Einstein realizes that energy and mass are two facets of
the same entity, just as the electric and magnetic fields are two facets
of the same field, and as space and time are two facets of the one
thing: spacetime. This implies that mass, by itself, is not conserved;
and energy—as it was conceived at the time—is not independently
conserved either. One may be transformed into the other: only one
single law of conservation exists, not two. What is conserved is the
sum of mass and energy, not each separately. Processes must exist
that transform energy into mass, or mass into energy.” [Rovelli, 2016,
Location 812].

3.1 Simplicity and power

Since competing theories rarely address exactly the same set of phenomena, Oc-
cam’s Razor may be adapted to be “In the development of a scientific theory, we

2Quoted in Isaacson [2007, p. 512].
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should try to maximise the simplicity of the theory whilst retaining as much as
possible of its descriptive or explanatory power.”

There is a close connection between Occam’s Razor as just described and the
concept of compressing a body of information, I. This may be seen to be a process
of maximising the simplicity of I, by extracting repeated information or redundancy
from I, whilst retaining as much as possible of its non-redundant descriptive power.

A qualification here is that the results of information compression may be
divided into two parts: a ‘grammar’ G, and an ‘encoding’ of I in terms of G,
which we may call E. Here, G and E together represent lossless compression of I.
However, G may be regarded as a ‘theory’ of I which is normally more ‘interesting’
than E. For reasons of that sort, E may sometimes be discarded (Appendix B).

3.2 Representation of knowledge and concepts of predic-
tion and probability

There is much more to information compression than simply reducing the size of
a body of information. As described in Appendix D, there is an intimate relation
between information compression and concepts of prediction and probability.

Hence, compression of information is important in science, partly as a means
of representing scientific knowledge in a succinct form—but at least as important
is how information compression provides the key to the making of inferences and
the calculation of probabilities.

4 Mathematics as compression of information

The second step in the argument, depends on evidence that mathematics is fun-
damentally about the compression of information, with a set of techniques for
achieving that compression. This section and ones that follow present evidence
in support of this idea, which we may refer to as mathematics-as-information-
compression or MAIC.

5 An example of information compression via

mathematics

It has been noted already how Einstein’s equation, E = mc2, may be seen to
be a very compact representation of much data. Here is another example that
demonstrates how ordinary mathematics—not some specialist algorithm for the
compression of information—can yield high levels of information compression.
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Newton’s equation for his second law of motion, s = (gt2)/2, is a very compact
means of representing any realistically-large table showing the distance travelled
by a falling object (s) in a given time since it started to fall (t), as illustrated in
Table 1.3 That small equation would represent the values in the table even if it
was a 1000 times or a million times bigger, and so on. Likewise for other equations
such as a2 + b2 = c2, PV = k, F = q(E + v ×B), and so on.

Distance (m) Time (sec)

0.0 0

4.9 1

19.6 2

44.1 3

78.5 4

122.6 5

176.5 6

240.3 7

313.8 8

397.2 9

490.3 10

593.3 11

706.1 12

828.7 13

961.1 14

1103.2 15

1255.3 16

Etc Etc

Table 1: The distance travelled by a falling object (metres) in a given time since
it started to fall (seconds).

6 Some basic principles and techniques for infor-

mation compression

What is it that makes it possible to represent large amounts of data with a very
compact equation? This section outlines some basic principles and techniques that

3Of course, the law does not work for something like a feather falling in air. The constant,
g, is the acceleration due to gravity—about 9.8m/s2.
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may be seen to underpin most techniques for information compression, including
those at work within in mathematics.

Perhaps the most fundamental principle is a very simple idea: that we may
identify repetition or redundancy in information by searching for patterns that
match each other, and that we may reduce that redundancy and thus compress
information by merging or unifying two or more matching patterns to make one.
This idea—information compression via the matching and unification of patterns—
may be referred to in brief as “ICMUP”.

6.1 Variants of ICMUP

There are five main variants of ICMUP, all of which are widely used in everyday
life. The five variants are:

• Chunking-with-codes. With the first variant—a technique called chunking-
with-codes—the unified pattern, often referred as a “chunk” of information,
is given a relatively short name, identifier, or “code” which is used as a
shorthand for the chunk of information wherever it occurs (except for a
single ‘master’ copy). If, for example, the words “Treaty on the Functioning
of the European Union” appear in several different places in a document,
we may save space by writing the expression once, giving it a short name
such as “TFEU”, and then using that name as a code or shorthand for the
expression wherever it occurs. Likewise for the abbreviation “ICMUP” that
is used in this paper.

• Schema-plus-correction. Another variant, schema-plus-correction, is like chunking-
with-codes but the unified chunk of information may have variations or
“corrections” on different occasions. For example, a six-course menu in
a restaurant may have the general form “M1: Appetiser (S) sorbet (M)

(P) coffee-and-mints”, with choices at the points marked ‘S’ (starter), ‘M’
(main course), and ‘P’ (pudding). Then a particular meal may be encoded
economically as something like ‘M1:(3)(5)(1)’, where the digits determine
the choices of starter, main course, and pudding.

• Run-length coding. A third variant, run-length coding, may be used where
there is a sequence of two or more copies of a pattern, each one except the
first following immediately after its predecessor. In this case, the multiple
copies may be reduced to one, as before, with something to say how many
copies there are, or when the sequence begins and ends, or, more vaguely,
that the pattern is repeated without anything to say when the sequence
stops. For example, a sports coach might specify exercises as something like
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“touch toes (×15), push-ups (×10), skipping (×30), ...” or “Start running
on the spot when I say ‘start’ and keep going until I say ‘stop’ ”.

• Class-inclusion hierarchies with inheritance of attributes. In this variant,
there is a hierarchy of classes and subclasses, with “attributes” at each level.
Each attributes may be seen as a chunk of information and the corresponding
class name may be seen to be its code. At every level except the top level,
the subclass “inherits” the attributes of all higher levels.

• Part-whole hierarchies with inheritance of contexts. This is much the same
as class-inclusion hierarchies with inheritance of attributes except that the
structure represents the parts and subparts of some entity. In this case, each
subpart may be seen to inherit its place in larger structures and thus the
contexts of structures with which it is associated.

6.2 Hiding in plain sight

These techniques for information compression are so familiar that they are often
“hiding in plain sight”: widely used because they seem like the obvious way to
express things, but rarely with any recognition of their role in the compression of
information. It seems that these remarks also apply to the use of these techniques
in mathematics, as described in Section 7, below.

Other widely-used examples include the way names of things may serve as
relatively short codes for relatively complex concepts, and likewise with “content”
words in natural language (Appendix ??).

Appendix C provides some details relating to the frequencies and sizes of re-
peating patterns, and their codes.

7 How basic techniques for information compres-

sion may be seen in the structure and workings

of mathematics

This section describes how the basic principles and techniques for the compression
of information that were outlined in Section 6 may be seen in the structure and
workings of mathematics.

Of course, these examples do not prove that mathematics may be understood
as being entirely devoted to the compression of information. But since the tech-
niques to be described are low-level techniques that are part of the foundations
of mathematics and widely used in more complex forms of mathematics, it seems
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likely that mathematics may indeed be understood in its entirety to be a set of
techniques for compressing information and their application.

7.1 ICMUP in mathematics and related fields

Here are some examples where ICMUP may be seen at work in mathematics and
related fields:

• In mathematics, the matching and unification of patterns can be seen in the
matching and unification of names or identifiers. If, for example, we want to
calculate the value of z from these equations: x = 4; y = 5; z = x + y, we
need to match the identifier x in the third equation with the identifier x in
the first equation, and to unify the two so that the correct value is used for
the calculation of z. Likewise for y.

• In a similar way if we wish to invoke or “call” a function such as ‘sqrt(x)’
(the square root of x), there must be a match between the name of the
function in the call to the function (such as ‘sqrt(16)’) and the name of the
function in its definition (‘sqrt(x)’), with unification to assign the value 16
to the variable x.

• The sixth of Peano’s axioms for natural numbers—for every natural number
n, S(n) is a natural number—provides the basis for a succession of numbers:
S(0), S(S(0)), S(S(S(0))) ..., itself equivalent to unary numbers in which
1 = /, 2 = //, 3 = ///, and so on. Here, S at one level in the recursive
definition is repeatedly matched and unified with S at the next level.

• Emil Post’s [1943] “Canonical System”, which is recognised as a definition
of “computing” that is equivalent to a universal Turing machine, may be
seen to work largely via the matching and unification of patterns. Much the
same is true of the workings of the transition function in a universal Turing
machine.

• It is true that logic gates provide the mechanism for finding an address in
computer memory but, at a more abstract level, the process may be seen as
one of searching for a match between the address held in the CPU and the
corresponding address in computer memory. When a match has been found
between the address in the CPU and the corresponding address in memory,
there is implicit unification of the two.

• Query-by-example, a popular technique for retrieving information from databases,
is essentially a process of finding good matches between a query pattern and
patterns in the database, with unification of the best matches.
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• A system like Prolog—a computer-based version of logic—may be seen to
function largely via the matching and unification of patterns.

7.2 Chunking-with-codes

If a set of statements is repeated in two or more parts of a computer program
then it is natural to declare them once as a ‘function’, ‘procedure’ or ‘sub-routine’
within the program and to replace each sequence with a “call” to the function
from each part of the program where the sequence occurred. This may be seen
as an example of the chunking-with-codes technique for information compression:
the function may be regarded as a chunk, while the name of the function is its
code or identifier.

Similar things may be done with mathematics, but most of the widely-used
functions—such as ‘sqrt()’, ‘sin()’, or ‘cosin()’—are provided ready-made in
environments like Matlab.

Number systems with bases greater than 1, like the binary, octal, decimal and
hexadecimal number systems, may all be seen to illustrate the chunking-with-codes
technique for compressing information. For example, with the decimal system:

• A unary number like ‘///////’ may be referred to more briefly as ‘7’. Here,
‘///////’ is the chunk and ‘7’ is the code.

• A unary number like ‘/////////////////’ may be split into two parts:
‘//////////’ and ‘///////’. Then the first part may be represented by ‘1’
and the second part by ‘7’, giving us the decimal number ‘17’. The conven-
tion is that the right-most digit represents numbers less than 10, and the
next digit to the left represents the number of 10s.

• Of course, this ‘positional’ system can be extended so that digits in the third
position from the right represent 100s, digits in the fourth position represent
1000s, and so on.

Here, we can see how the chunking-with-codes technique allows us to eliminate
the repetition or redundancy that exists in all unary numbers except ‘/’ so that
large numbers, like 2035723, may be expressed in a form that is very much more
compact than the equivalent unary number.

7.3 Schema-plus-correction

Most functions in mathematics and computing, like those mentioned above, are
not only examples of chunking-with-codes: they are also examples of the schema-
plus-correction device for compressing information. This is because they normally
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require input via one or more “arguments” or “parameters”. For example, the
square root function needs a number like 16 for it to work on. Without that
number, the function is a very general “schema” for solving square root problems.
With a number like 16, which may be regarded as a “correction” to the schema,
the function becomes focussed much more narrowly on finding the square root of
16.

7.4 Run-length coding

Run-length coding appears in various forms in mathematics, normally combined
with other things. Here are some examples:

• Multiplication (eg, 3 × 4) is repeated addition.

• Division of a larger number by a smaller one (eg, 12/3) is repeated subtrac-
tion. Of course there will be a “remainder” if the larger number is not an
exact multiple of the smaller number.

• The power notation (eg, 109) is repeated multiplication, which is itself a form
of run-length coding.

• A factorial (eg, 25!) is repeated multiplication and subtraction.

• The bounded summation notation (eg,
∑5

i=1
1
i
) and the bounded power no-

tation (eg,
∏10

n=1
n

n−1
) are shorthands for repeated addition and repeated

multiplication, respectively. In both cases, there is normally a change in the
value of a variable on each iteration, so these notations may be seen as a
combination of run-length coding and schema-plus-correction.

• In matrix multiplication, AB is a shorthand for the repeated operation of
multiplying each entry in matrix A with the corresponding entry in matrix
B.

All of these examples may be seen as functions with one or more parameters.
For example, multiplication may be written multiply(x, y). As functions with
parameters, the examples may be seen to illustrate the chunking-with-codes and
schema-plus-correction techniques for compressing information (Section 7.3), as
well as run-length coding.
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8 Well-known equations

The well-known equations that were mentioned earlier may all be interpreted in
terms of the first three of our five basic techniques for compressing information,
thus:

• Einstein’s E = mc2 illustrates run-length coding in its power notation (c2)
and in the multiplication of m with c2.

• Newton’s equation for his second law of motion, s = (gt2)/2, illustrates run-
length coding in its power notation (t2), in the multiplication of g with t2,
and in the division of (gt2) by 2.

• Pythagoras’s equation, a2 + b2 = c2, illustrates run-length coding via the
power notation in a2, b2, and c2.

• Boyle’s law, PV = k, illustrates run-length coding in the multiplication of
P by V .

• The charged particle equation, F = q(E+v×B), illustrates run-length coding
in the multiplication of v by B and in the multiplication of (E + v × B) by
q.

Since multiplication, the power notation, and division, may each be seen as
an example of chunking-with-codes and schema-plus-correction (Sections 7.2 and
7.3), as well as run-length coding (Section 7.4), the same can be said about the
appearance of those notations in each of the examples above.

9 The apparent paradox of creating redundancy

via information compression

The idea that mathematics or computing is largely, perhaps entirely, about com-
pression of information may seem to conflict with the undoubted fact that, with
some simple mathematics or a simple computer program, it is possible to create
data containing large amounts of repetition or redundancy. An example is shown
in Figure 1.4

This recursive function takes an integer like 5 as its parameter and prints out
the same number of copies of ‘hello, world’, like this: ‘hello, world; hello,

world; hello, world; hello, world; hello, world;’.

4A tribute to Brian Kernighan and Dennis Richie’s [1988] introduction to the C
programming language.

12



void create\_redundancy(int x)

{

if (x <= 0) return ;

printf("hello, world; ") ;

return create\_redundancy(x - 1) ;

}.

Figure 1: A simple recursive function showing how, via computing, it is possible
to create repeated (redundant) copies of “hello, world”.

With this and similar examples, there seems to be a paradox in that a system
that supposedly works via the compression of information is able to produce an
output that clearly contains significant amounts of redundancy. The suggestion
here is that the paradox is more apparent than real and may be resolved as follows:

• Like any other function with one or more parameters, the example function,
and the ‘printf()’ function within it, illustrate the principles of chunking-
with-codes and schema-plus-correction, as described in Sections 7.2 and 7.3.

• In its workings, the function requires the matching and unification of iden-
tifiers like ‘create redundancy’ (in the name of the function and in the
third line of the function) and ‘printf’ (in the second line of the function
and in the operating system that does things like ‘printing’ messages on the
computer screen).

• The entire function may be seen to be a compressed version of the output
sequence and any similar sequence however long it may be, in much the same
way that s = (gt2)/2 is a compressed version of Table 1 and any similar table,
however large it may be (Section 5).

There is discussion of a related issue—how the SP system may achieve “de-
compression by compression”—in Wolff [2006, Section 3.8] and Wolff, Section 4.5.

10 Redundancy is often useful in the storage and

processing of information

There is no doubt that informational redundancy—repetition of information—is
often useful. For example:

• With any kind of database, it is normal practice to maintain one or more
backup copies as a safeguard against catastrophic loss of the data.
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• With information on the internet, it is common practice to maintain two or
more ‘mirror’ copies in different places to minimise transmission times and
to reduce the chance of overload at any one site.

• The redundancy in natural language can be a very useful aid to comprehen-
sion of speech in noisy conditions.

These kinds of uses of redundancy may seem to conflict with the idea that
information compression—which means reducing redundancy—is fundamental in
mathematics, computing and cognition. However, the two things may be indepen-
dent, or the usefulness of redundancy may actually be understood in terms of the
SP theory itself.

An example of how the two things may be independent is the above-mentioned
use of backup copies of databases: “... it is entirely possible for a database to be
designed to minimise internal redundancies and, at the same time, for redundancies
to be used in backup copies or mirror copies of the database ... Paradoxical as
it may sound, knowledge can be compressed and redundant at the same time.”
[Wolff, 2006, Section 2.3.7].

How the usefulness of redundancy may be understood in terms of the SP theory
is discussed in [Wolff, Sections 8 and 9], Wolff [2007], [Wolff, 2006, Section 6.2]. In
brief:

• In the retrieval of information from a database or other body of knowledge,
there needs to be some redundancy between the search pattern and each
matching pattern in the knowledge base.

• And redundancy provides the key to how, in applications such as pattern
recognition and the parsing of natural language, the SP system may achieve
good results despite errors of omission, commission or substitution and thus,
in effect, suggest interpolations for errors of omission and corrections for
errors of commission or substitution.

11 Mathematical “beauty” and information com-

pression

In a paper with the title “Driven by compression progress: a simple principle
explains essential aspects of subjective beauty, novelty, surprise, interestingness,
attention, curiosity, creativity, art, science, music, jokes” [Schmidhuber, 2009],
and in several earlier papers, Schmidhuber describes how mathematical “beauty”,
amongst other things, may be understood in terms of the compression of infor-
mation. His analysis, which is largely in terms of algorithmic information theory
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and related concepts [Li and Vitányi, 2014], is somewhat different from what has
been described in Sections 5 to 9, above, which attempts to reach down to rela-
tively “primitive” concepts like the discovery of matches between patterns and the
merging or “unification” of patterns that are the same.

12 Probabilities

If it is accepted that information compression is central in the structure and work-
ings of mathematics, then in view of the intimate connection between information
compression and concepts of prediction and probability (Section 3.2 and Appendix
D), there are reasons to think that mathematics is fundamentally probabilistic. Al-
though this seems to conflict with the apparent certainty of equations like 2+2 = 4,
a probabilistic foundation for mathematics is consistent with the discovery of ran-
domness in number theory:

“I have recently been able to take a further step along the path laid out
by Gödel and Turing. By translating a particular computer program
into an algebraic equation of a type that was familiar even to the
ancient Greeks, I have shown that there is randomness in the branch
of pure mathematics known as number theory. My work indicates
that—to borrow Einstein’s metaphor—God sometimes plays dice with
whole numbers.” [Chaitin, 1988, p. 80].

As indicated in this quotation, randomness in number theory is closely related
to Gödel’s incompleteness theorems. These are themselves closely related to the
phenomenon of recursion, a feature of many formal systems, several of Escher’s
pictures, and much of Bach’s music, as described in some detail by Douglas Hofs-
tadter in Gödel, Escher, Bach: An Eternal Golden Braid [Hofstadter, 1980].

13 Mathematics as compression of information

and the philosophy of mathematics

Amongst the several “isms” in the philosophy of mathematics—foundationism,
logicism, intuitionism, formalism, Platonism, neo-Fregeanism, and more—the three
which are perhaps most closely related to MAIC are psychologism (mathematical
concepts derive from human psychology), embodied mind theories (mathematical
thought is a natural outgrowth of human cognition), and intuitionism (mathemat-
ics is a creation of the human mind).
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Appendix A outlines some of the evidence in support of the view that much of
human learning, perception and cognition may be understood as compression of in-
formation. This is broadly consistent with the three schools of thought mentioned
above.

Probably the most distinctive feature of MAIC is that it does not, to my
knowledge, feature in any of psychologism, embodied mind theories, intuitionism,
or any other school of thought in the philosophy of mathematics. Also, MAIC may
be seen to apply not only to human thinking but also to varied kinds of artificial
device for the processing of information.

14 An apparent solution to the mystery of why

mathematics is so effective in science

In view of evidence that: 1) science is fundamentally a search for compression in
the world (Section 3); and evidence that 2) mathematics may be seen to be largely
a set of techniques for compressing information and their application (Section 4);
and bearing in mind 3) the afore-mentioned intimate relation between information
compression and concepts of prediction and probability (Appendix D); it seems
reasonable to conclude that those three things may explain why mathematics is
so effective as a means of representing scientific knowledge and in the making of
scientific inferences.

There is relevant discussion in Appendices B and D.

15 The anthropic principle

An objection to the arguments in Section 14 is that, while E = mc2 is undoubtedly
a compressed representation of the data that it describes, that observation does
not explain why nature can be so compressible.

A possible answer, via the anthropic principle, is that the world must be com-
pressible because otherwise everything in it, including ourselves, would be a soup
of randomness—meaning that we would not be here to observe things.

Of course, some aspects of the world are more compressible than others. In
social sciences, for example, it has proved difficult to find equations that are so
elegantly simple and powerful as E = mc2.
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16 Conclusion

This paper notes first that the effectiveness of mathematics in science appears to
some writers to be “mysterious” or “unreasonable”. Then reasons are given for
thinking that science is fundamentally a search for compression of empirical data.
At more length, several reasons are given for believing that mathematics is, funda-
mentally, a set of techniques for compressing information—including the matching
and unification of patterns, chunking-with-codes, schema-plus-correction, and run-
length coding—and their application. From there, it is argued that mathematics
has proved to be effective in science because it provides a means of achieving the
compression of information which lies at the heart of science.

Information compression may be seen to be important in both science and
mathematics, not only as a means of representing knowledge succinctly, but as a
basis for scientific and mathematical inferences—because of the intimate relation
that is known to exist between information compression and concepts of prediction
and probability.

That mathematics may be seen to be a set of techniques for compressing infor-
mation and their application, is in keeping with the view, supported by evidence,
that much of human learning, perception, and cognition may understood as the
compression of information.
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A Intelligence as compression of information

As noted in the Introduction, much of the thinking in this paper derives from
the SP theory of intelligence and its realisation in the SP computer model. This
theory, which is described quite fully in Wolff [2006] and more briefly in Wolff,
aims to simplify and integrate observations and concepts across artificial intelli-
gence, mainstream computing, mathematics, and human learning, perception, and
cognition.

The SP system is founded on a considerable body of evidence pointing to
the significance of information compression in the workings of brains and nervous
systems, in language learning, in concepts of prediction and probability, and in
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solving problems in science and mathematics. Some of this evidence is summarised
in Wolff [1993]. That paper provides the basis for [Wolff, 2006, Chapter 2]. A
revised and updated account may be found in Wolff [2017].

Central to the workings of the SP system is information compression via the
matching and unification of patterns, and more specifically, information compres-
sion via the powerful concepts of multiple alignment, a concept that has been
borrowed and adapted from bioinformatics.

The success of the SP system in modelling several aspects of human learning,
perception, and cognition [Wolff, 2016], provides additional evidence for the sig-
nificance of information compression for an understanding of intelligence, broadly
construed.

B Generalisation in science

Science is not merely about describing things in an economical manner, it is about
making predictions or inferences that go beyond what has actually been observed.
As described in Appendix D, there is an intimate connection between information
compression and concepts of prediction and probability.

This appendix summarises some ideas discussed elsewhere (Wolff [2006, Sec-
tion 2.2.12], Wolff, Section 5.3) about how we can or should generalise our concepts
without over-generalisation (sometimes called under-fitting) or under-generalisation
(sometimes called over-fitting).

This issue is important in understanding how a child learns his or her first
language or languages. The learning of a given language, L, is based on a finite
sample of L that has been heard, normally quite large. This is represented by the
smallest envelope in Figure 2, marked as “A sample of utterances”.5 From that
finite sample, we learn to understand and to produce a range of possible utterances
that is much larger than the finite sample we have heard. This is represented by
the envelope marked “All utterances in language L”. But although that range of
utterances is large, it is smaller than the range of all possible utterances repre-
sented by the envelope marked “All possible utterances”. Notice that the smallest
envelope—the basis for learning—is partly inside the envelope for “All utterances
in language L” and partly outside it: children learn partly from good examples

5The weight of evidence is overwhelmingly against the nativist, Chomskian view that
children are born with substantial knowledge of the structure of language. Some of the
evidence is described in Wolff [1988, pp. 208–209 and pp. 210-211]. Perhaps the strongest
argument, not made in that publication, is that, to explain why a newborn baby can learn any
natural language, the nativist view depends on the existence of some kind of universal grammar
that describes the structure of every one of the thousands of natural languages and is in every
infant’s head at the time of his or her birth. Despite decades of research, no such universal
grammar has been found.
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of L and partly from corrupted examples of L, which are marked in the figure as
“dirty data”.

All possible
utterances

All utterances
in language L

A sample of
utterances

‘dirty
data’

Figure 2: Categories of utterances involved in the learning of a first language, L. In
ascending order size, they are: the finite sample of utterances from which a child
learns; the (infinite) set of utterances in L; and the (infinite) set of all possible
utterances. Adapted from Figure 7.1 in Wolff [1988], with permission.

In summary, learning L means generalising beyond the finite sample of ut-
terances that we have heard but without either over-generalisation or under-
generalisation, and it means somehow correcting for dirty data. Although young
children say things like “gooses” and “sheeps”—apparently overgeneralising from
what they have heard—they grow out of these errors. The weight of evidence is
that children can learn a first language without the need for explicit correction of
errors by adults or older children.6

There is evidence that learning of L can be achieved, without over-generalisation
or under-generalisation, correcting for dirty data, and without the need for explicit
correction of errors. Here’s how:

1. Start with a finite sample of L which we may call I. The sample may contain
dirty data as described above.

6Christy Brown was a cerebral-palsied child who not only lacked any ability to speak but
whose bodily handicap was so severe that for much of his childhood he was unable to
demonstrate that he had normal comprehension of speech and non-verbal forms of
communication [Brown, 2014]. Hence, his learning of language must have been achieved
without the possibility that anyone might correct errors in his spoken language.
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2. Compress I using something like the SP system, designed to achieve high
levels of lossless information compression.7

3. The result of compressing I, which we may call IC, may be divided into two
parts: a ‘grammar’ G, and an ‘encoding’ of I in terms of G, which we may
call E.

4. Of G and E, the most interesting seems normally to be G, which may be
regarded as a ‘theory’ of I. It appears that, normally, G represents a distil-
lation of the ‘essence’ of I, weeding out any dirty data in I, and generalising
from I without overgeneralising. E is a description of I in terms of the theory,
G.

This solution for language learning appears to be general and applicable to the
learning of any kind of kind of knowledge. It seems likely that, for example, it will
provide a solution to the problem of how, via unsupervised learning, a concept like
‘horse’ may be learned without under-generalisation (meaning that, for example,
the system would only recognise horses that are very similar to, or identical with,
the examples of horses in I), and without over-generalisation (meaning that, for
example, the system would regard cows, sheep, or dogs, as horses).

It appears that this solution is altogether simpler and more comprehensive than
several alternatives, as discussed in Wolff [2016, Section V-H].

Without such generalisation, any learning system would be severely handi-
capped: only able to recognise or understand things that were exactly the same
as it had seen before.

C Frequency of occurrence, sizes of patterns, and

ICMUP

A point to notice about ICMUP is that, to achieve lossless compression of in-
formation, it is necessary to use some kind of “code” to mark the positions of
redundant copies of any pattern that have been unified, as outlined under the
heading “Chunking-with-codes” in Section 6.1. And to ensure that there is an
overall compression of a given body of information, I, it is necessary to ensure
that:

7Ordinary compression algorithms, like the popular ‘ZIP’ algorithms, are not really suitable
because they are designed to work fast with low-powered computers and may thus miss
relatively large amounts of redundancy.
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• The given pattern must repeat more often in I than we would expect by
chance for patterns of that size. In general, large patterns yield more com-
pression than small ones, and the minimum frequency needed to achieve
information compression is smaller for large patterns than it is for small
patterns.

• The code should not be too large. Normally, its size should be at or near the
theoretical minimum needed to ensure an overall compression of I.

These points relate to the close connection between information compression
and concepts of prediction and probability, discussed in Appendix D.

D Information compression and concepts of pre-

diction and probability

It has been recognised for some time that there is an intimate connection between
information compression and concepts of prediction and probability, as described
in Ray Solomonoff’s Algorithmic Probability Theory [Solomonoff, 1964, 1997], and
in the closely-related Kolmogorov Complexity Theory [Li and Vitányi, 2014]. In-
formation compression and concepts of prediction and probability may be seen as
two sides of the same coin.

The close connection between those two things makes sense in terms of ICMUP
(Section 6):

• A pattern that repeats is one that, via inductive reasoning, we naturally
regard as a guide to what may happen in the future (more in Appendix D.2,
below).

• A pattern that repeats is one that, via unification, is likely to yield compres-
sion of information.

• A partial match between one pattern and another can be the basis for pre-
dicting the occurrence of the unmatched parts, a form of inference that is
sometimes called prediction by partial matching.8

D.1 Frequencies of occurrence, sizes of patterns, and prob-
abilities

A point of interest is that, in the same way that information compression depends
partly on the frequency of occurrence of a pattern that repeats, and also on its

8See “Prediction by partial matching”, Wikipedia, bit.ly/1BUtAYo, retrieved 2017-03-01.
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size (Appendix C), the probabilities of inferences that may be drawn from any
repeating pattern depend partly on the frequency of occurrence of the given pattern
and partly on its size. How relevant calculations are made in the SP system is
described in Wolff [2006, Sections and 3.7 7.2].

More specifically, a repeating pattern of size S can only yield inferences with
probabilities greater than chance if its frequency of occurrence within a given body
of information, I, is greater than the ‘threshold’ frequency of occurrence that would
be expected by chance for a pattern of size S; and that threshold frequency is
greater for small patterns than it is for large patterns.

Consider, for example, what inferences one might make from the occurrence,
in an English text, of the neighbouring letters, ‘th’. Given only those two letters,
one may guess that they may be part of several different words such as ‘the’,
‘this’, ‘that’, ‘those’, and so on, each one with a probability that is substantially
less than 1. But although, notwithstanding its fame, the pattern of words, ‘Let
me not to the marriage of true minds’, is much rarer in English than the
pattern ‘th’, we infer with near certainty that it will be followed by the words
‘Admit impediments’.

With regard to frequencies and sizes of patterns in the calculation of probabil-
ities:

• There is a sharp contrast between the SP system, which takes account of
both the frequencies and the sizes of patterns in calculating probabilities,
and frequentist approaches to statistics which emphasise the frequencies of
occurrence of entities, without taking account of their sizes.

• “Hebbian” learning, first proposed by neuroscientist Donald Hebb [1949,
p. 62], with a central role in most versions of “deep learning” [Schmidhuber,
2015], is focussed entirely on the frequency with which one neuron fires an-
other, without any role for the sizes of neural structures involved in learning,
perception and cognition.

D.2 Inductive reasoning

With regard to inductive reasoning mentioned in the first bullet point in Appendix
D:

“We can, of course, ... ask, as philosophers have done for many years:
‘What is the rational basis for inductive reasoning?’ Why do most
people have this strong intuition that because the sun has always risen
every morning it will do it again tomorrow, or because every paving
stone in a path has held our weight so far, the next one will too? None
of these conclusions can be proved logically.
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“It is no good arguing that inductive reasoning is rational because it
has always worked in the past. This argument eats its own tail. Here is
an argument why inductive reasoning is rational which does not depend
on the principle which it is trying to justify:

“If we assume that the world, in the future, will contain re-
dundancy in the form of recurring patterns of events, then
brains and computers which store information and make in-
ductive inferences will be useful in enabling us to anticipate
events. If it turns out that the world, in the future, does in-
deed contain redundancy then our investment in the means
of storing and processing information will pay off. If it turns
out that the world, in the future, does not contain redun-
dancy then we are dead anyway—reduced to a pulp of total
chaos!

“This kind of reasoning made fortunes for speculators after World War
II: it was rational to buy up London bomb sites during the war be-
cause, if the war were won, they would become valuable. If the war
were to be lost, the money saved by not making the investment would,
in an uncomfortable and uncertain future, probably not be much use
anyway.” [Wolff, 1991, pp. 28–29].
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