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Abstract

In this paper, it is argued that, despite its many strengths and undoubted
value in science, mathematics also has some weaknesses as a handmaiden
for science. There appears to be potential in developing a new mathematics
for science (NMFS) which is designed to overcome those weaknesses and to
meet more fully the needs of science.

As a background to the proposals: 1) The conclusions of a companion
paper are noted—that mathematics is, fundamentally, a set of techniques
for the compression of information and the application of those techniques;
2) That the effectiveness of mathematics in science is because it provides a
means of achieving the compression of information which lies at the heart
of science; 3) Since science and mathematics are products of the human
intellect, it should not be surprising to find that the workings of the human
mind has an influence on both of them; and 4) The significance of informa-
tion compression in science and mathematics is in line with an abundance
of other evidence for the significance of information compression in human
learning, perception, and thinking.

Continuing the theme of information compression as a unifying principle,
the SP theory of intelligence and its realisation in the SP computer model
demonstrate how diverse aspects of intelligence may be modelled via infor-
mation compression within the powerful framework of multiple alignment.

An NMFS is proposed, created as an amalgamation of mathematics as it
is today with the SP system as it is today, including developments in both
areas that are anticipated now. It is envisaged that, for reasons described
in the paper, the proposed NMFS will overcome several of the apparent
weaknesses in mathematics.

In several sections, there is discussion of some possible implications for
science of the proposed NMFS, including: potential for the long-sought-after
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unification of quantum mechanics and general relativity; expansion of the
concept of “object” in physics; ambiguity in human perception as an analogy
for the concept of superposition in quantum mechanics; the phenomenon of
discontinuous dependencies in natural languages as an analogy for nonlocal-
ity and entanglement in quantum mechanics; a “waterspout” interpretation
for some of the two-slits experiments; potential advantages of the proposed
NMFS in the realm of statistics; and its potential to be a vehicle for the
representation of all kinds of scientific knowledge, with consequent benefits
in the processing of that knowledge.

Keywords: information compression, multiple alignment, mathematics, quan-
tum mechanics, relativity, representation of knowledge, artificial intelligence.

1 Introduction

As the title of this paper suggests, it is about the development of a form of math-
ematics that is designed to meet the needs of science.

Creating a new mathematics for science (NMFS) may seem perverse since
mathematics has an exceptionally long history with many achievements, and it
has shown its value repeatedly in many branches of science. And yet a long his-
tory with many achievements does not exclude the possibility that bad habits and
blind spots may build up, and, as with any other human endeavour, it does not
exclude the need for periodic review and revision in the light of new thinking and
new insights.

A theme in these proposals is that: 1) Science is the product of the human
intellect so it should not be surprising that features of human thinking should have
an influence on scientific theories. 2) In much of science those kinds of influence
may be ignored. But 3) in physics, and quantum mechanics in particular, it seems
that aspects of human learning, perception and cognition can be important.

To anticipate a little, much of the thinking in this paper derives from the SP
theory of intelligence and its realisation in the SP computer model, outlined in
Appendix B.

In brief, the following main topics will be discussed:

• Some apparent shortcomings of mathematics as a handmaiden for science
(Section 2). Although mathematics as it is today is remarkably powerful
and successful, it has some weaknesses as a vehicle for expressing scientific
knowledge and for the making of scientific inferences.

• The significance of information compression in human cognition, in science,
and in mathematics (Section 3). As a background to what follows, and
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drawing on [59], this section outlines how human learning, perception, and
thinking may be understood as compression of information; how science may
be seen as, at root, the search for compression in the world;1 and how math-
ematics may be understood as a set of techniques for compression of infor-
mation and their application; and, for those reasons, why mathematics is so
effective in science.

• Towards a new mathematics for science (Section 4). This section proposes
the creation of an NMFS as an amalgamation of mathematics of today (with
projected developments) with the SP system as it is today (with projected
developments). This section describes how this development may help to
overcome the previously-described weaknesses of mathematics as a hand-
maiden of science.

• Some implications for science (Section 5). This section describes how the
proposed NMFS may provide new perspectives in several areas of science.

Owing to the close relationship between mathematics and logic, most of what
is said about mathematics in this paper is likely also to apply to logic. There is
relevant discussion in [49, Chapter 10].

2 Some apparent shortcomings of mathematics

as a handmaiden for science

As was mentioned in the Introduction, the long history of mathematics, with its
many achievements, does not guarantee that it is perfect. This section summarises
what appear to be some weaknesses in mathematics as a servant for science.

2.1 Shortcomings of mathematics in the representation of
knowledge and in artificial intelligence

Although areas of study like the representation of knowledge and artificial intel-
ligence can, and often do, make use of mathematics, they are not, in themselves,
normally regarded as part of mathematics. A possible exception is that there is
increasing recognition of the close relationship between statistics and optimization
as disciplines within mathematics and machine learning as a part of AI.2

1Here, and elsewhere in this paper, the word “world” will be used as a shorthand for the
observable universe.

2See, for example, “Machine learning”, Wikipedia, bit.ly/1SKDful, retrieved 2017-03-20:
“Machine learning is closely related to (and often overlaps with) computational statistics,
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Mathematics as the handmaiden of science would, almost certainly, be en-
hanced by the inclusion within it of insights gained and principles developed in
the study of how different kinds of knowledge can or should be represented, and
in the development of artificial intelligence.

As an example, artificial intelligence (and mainstream computer science) make
extensive use of the “object-oriented” concept of class-inclusion hierarchies, with
an associated form of inference called inheritance of attributes—but those ideas,
which can be very useful, appear not to have been adopted in mathematics.

2.2 Comprehensibility

The fact that many people can find mathematics incomprehensible will, in many
cases, simply reflect their interests or aptitudes, or insufficient training. But quan-
tum mechanics is different. Even the most highly trained people, with a keen
interest in the subject, can find quantum mechanics difficult to understand and
can be uncomfortable with the exhortation that one should “shut up and calculate”
[1, Locations 106 and 119].

The tentative view adopted here is that this situation arises from a weakness
in mathematics rather than a weakness in the brain power of such luminaries as
Albert Einstein.3

2.3 Under-expressiveness

At present, scientific knowledge is expressed with a combination of natural lan-
guage, diagrams, drawings, static photographs, videos, computer programs, and
mathematics. This works quite well but there seems to be a problem which is
probably more to do with human psychology than anything else.

Because of its long history and its power and precision, mathematics may be
seen to have a higher status than other means of representing scientific ideas. But
while some ideas can be expressed quite neatly with mathematics, others do not
sit well with the conventions that are available in mathematics as it is today. If
one is inclined to rely on mathematics as the means of expressing the core of any
scientific theory, some potentially useful ideas may get overlooked.

which also focuses in prediction-making through the use of computers. It has strong ties to
mathematical optimization, which delivers methods, theory and application domains to the
field.” See also the section headed “Relation to statistics” in the same source.

3Despite Einstein’s great achievements, “He struggled with maths” [33, Location 1012],
“[Quantum mechanics] seemed absurd to Einstein.” [33, Location 1537], and “[Einstein]
remains convinced that things could not be as strange as this theory proposed—and that,
‘behind’ it, there must be a further, more reasonable explanation.” [33, Location 1554].
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For example, concepts of heuristic search and backtracking are familiar in AI
but are not easily expressed with mainstream mathematics.4 For that reason, many
AI researchers use computer programming as their preferred means of creating
working models. This can yield insights that may be missed in research in which
mathematics is seen as the preferred means of expressing the essentials of any
theory.

2.4 Over-expressiveness

If may seem perverse to criticise mathematics on the one hand for being under-
expressive (Section 2.3), and on the other hand, in this section, for being over-
expressive. But it seems that those two weaknesses can co-exist.

The basic problem seems to be that, with mathematical notations, and also
with computer programs, it is all too easy to create structures that have the
hallmarks of mathematical rigour but are scientifically meaningless or wrong. Here,
in the following subsections, are some apparent examples.

2.4.1 The financial crisis of 2008

Writing about the financial crisis of 2008, John Lanchester says that banks re-
cruited many mathematical experts or “quants” who created mathematical com-
puter programs that were too complicated to be understood by banking managers,
and perhaps the quants themselves:

“Banking is all about the management of risk; and in this central re-
spect the bankers massively failed. They did so by relying on inaccu-
rate mathematical models which they themselves didn’t fully under-
stand. ... The result was that they failed as utterly and completely as
it is possible to fail.” [23, p. 142].

In a similar vein, Steve Keen writes:

“[One of the reasons for problems in economics] is the division of main-
stream economists into effective ‘castes’, with only a tiny but exalted
subset of the profession undertaking the detailed mathematical work
needed to discover the weaknesses in the theory. The vast majority of
economists believe that this high caste, the mathematical economists,
did their work properly, and proved that the theory is internally con-
sistent. The caste has indeed done its work properly, but it has proved

4A possible exception is when concepts of heuristic search and backtracking are cast in the
form of simulated annealing.
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precisely the opposite: that the theory is consistent only under the
most restrictive and specious of assumptions.

“However, rather than taking the next logical step, and acknowledging
that the foundations of economics are unsound and must therefore be
changed, most mathematical economists are so wedded to this way of
thinking, and so ignorant of the real world, that they instead invent
some fudge to disguise the gaping hole they have uncovered in the
theory.” [22, Location 1961].

It seems that more than a few people in the financial services industries have
been dazzled by the apparent rigour of mathematics and thereby led to make
serious errors. As argued in Section 4, certain disciplines are needed to constrain
what can be done when mathematics or computer programs are used as a means
of expressing a scientific theory, or something like an economic or financial model
which should have the rigour of a scientific theory.

2.4.2 String theory and multiverse theory

As described in Appendix D.4, there are concerns about string theory and multi-
verse theory.

The gist of the argument is that these mathematically-based theories are unfal-
sifiable because they are too general. For example, Peter Woit, writing about string
theory, says (as quoted in Appendix D.4): “It predicts nothing about anything,
since you can get pretty much any physics you want by appropriately choosing
how to to make six of the ten dimensions invisible.” [44, Location 1054].

As described in Appendix E, notions of falsifiability and unfalsifiability may
be interpreted in terms of information compression or, equivalently, simplicity and
power.

2.4.3 Hoax scientific papers

Mathematics features in some of the hoax scientific papers created by, for example,
SCIgen.5 and Mathgen.6 An example from Mathgen is Independent, Negative,
Canonically Turing Arrows of Equations and Problems in Applied Formal PDE,7

which was accepted for publication in the journal Advances in Pure Mathematics
in August 2012.8

This kind of thing suggests the need for more discipline in the evaluation of
mathematics when it is applied to science, as discussed in Section 4.

5See bit.ly/1mdOwaZ.
6See bit.ly/14JP0NB.
7PDF, bit.ly/2kxVMyK.
8See bit.ly/2kTJe94.
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2.4.4 Spaghetti programming, structured programming, and object-
oriented programming

Computer programming is not the same as mathematics but it’s relationship is
sufficiently close for it to be discussed here.

Up until about 1970, the use of the infamous “go to” statements in computer
programs allowed jumps from any part of a program to any other, a practice that
often led to “spaghetti” programs with complex and tangled control structures
that could be difficult to understand or to maintain [12].

These problems led to the introduction of the more disciplined “structured
programming” (see, for example, [20]) with consequent benefits in terms of com-
prehensibility, maintainability and reductions in cost. And then, following the
introduction of the Simula computer language [6], it became apparent that there
were even more benefits in “object-oriented programming”, something that is now
prominent in most software engineering.

Mathematics has somehow avoided the “go to” statement and the worst of
spaghetti programming. But, as indicated in Section 2.1, it may benefits from
class-inclusion hierarchies and inheritance of attributes. the main features of
object-oriented programming.

Also, it appears that, in both mathematics and computing, there is still more
to be done to control over-expressiveness, as described in Section 4.5.

2.4.5 Infinities

A prominent feature of mainstream mathematics and other formal systems (includ-
ing the SP system), and the subject of highly-original research by Georg Cantor,
is the ability to describe things that are infinitely big or infinitely small.

This can be done quite simply with a recursive function like that shown in
Figure 1. If the first line (‘if (x <= 0) return ;’) is taken out, the function
will, in principle, print out “hello, world” an infinite number of times, unless the
computer crashes, or its power supply fails, or it runs out of ink or paper, and so
on.

Although it can be fascinating to consider how infinities may come in different
sizes, and paradoxes that arise from the concept of infinity, the notion of infinity
can be problematic for science, as described in Appendix D.3.
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void create\_redundancy(int x)

{

if (x <= 0) return ;

printf("hello, world; ") ;

return create\_redundancy(x - 1) ;

}.

Figure 1: A simple recursive function showing how, via computing, it is possible
to create repeated (redundant) copies of “hello, world”. Reproduced from Figure
1 in [59].

3 The significance of information compression in

human cognition, in science, and in mathemat-

ics

As a background to what follows, this section summarises arguments in [59]:

• Human learning, perception, and thinking as compression of information.
In [59, Section 2] there is a summary of direct and indirect evidence that
much of human learning, perception, and thinking may be understood as
compression of information, in keeping with the fundamental importance of
information compression in the SP system (Appendix B). If that is accepted,
it should not be surprising to find that information compression is of central
importance in both science and mathematics, since they are both products
of the human intellect.

• On the “mysterious” effectiveness of mathematics in science. It is noted
that the effectiveness of mathematics in science appears to some writers to
be “mysterious” or “unreasonable”.

• Science as a search for compression in the world. Then reasons are given for
thinking that science is, at root, the search for compression in the world.

• Mathematics as a set of techniques for compressing information, and their
application. At more length, several reasons are given for believing that
mathematics is, fundamentally, a set of techniques for compressing informa-
tion, and their application.

• Mathematics assists in the compression of information in science. From
there, it is argued that the effectiveness of mathematics in science is because
it provides a means of achieving the compression of information which lies
at the heart of science.
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• The anthropic principle. The anthropic principle provides an explanation of
why we find the world—aspects of it at least—to be compressible.

Probably, [59] should be read in conjunction with the rest of this paper.
There is related discussion in Appendix A.

4 Towards a new mathematics for science

If it is accepted, at least provisionally, that mathematics is largely about com-
pressing information, it seems natural to consider whether or how that idea might
lead to new insights, new avenues for research, and remedies for the apparent
shortcomings of mathematics in the service of science, as outlined in Section 2.

Since, in what follows, the phrase “the proposed NMFS” is often needed, it
will for the sake of brevity be shortened to “P-NMFS”.

In broad terms, the suggested advantages of P-NMFS are: 1) It would expand
the scope of mathematics with new ways of representing and processing knowledge.
2)It would introduce a new discipline into mathematics: quantitative evaluation of
calculations in terms of information compression. This may help to guard against
unfalsifiable theories and spurious applications of mathematics.

The suggestion here, to be developed in the rest of this section, is that:

• Since information compression is central in the organisation and workings of
the previously-mentioned SP theory of intelligence and its realisation in the
SP computer model (outlined in Appendix B); ...

• And since the SP theory, with the powerful concept of multiple alignment,
has strengths in several aspects of intelligence [57] and has potential as a
universal framework for the representation and processing of diverse kinds of
knowledge (UFK) [53, Section III]; ...

• And in view of evidence that information compression is central in the or-
ganisation and workings of mathematics (Section 3); ...

• We may conclude that an NMFS, with advantages over ‘ordinary’ mathe-
matics, may be created as some kind of amalgamation of the SP system with
mathematics, each one as it is now or with developments that are anticipated
now.

With regard to the last point, it may seem outlandish to incorporate a theory of
intelligence in P-NMFS, but, as was noted in Section 2.1, there is increasing recog-
nition already of, for example, the close relationship between machine learning as
a branch of AI, and statistics and optimization as branches of mathematics.
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With regard to amalgamation, it is true that mathematics may borrow ideas
from the SP system, and vice versa, without the two things being combined. But
the amalgamation may create a richer and more coherent structure:

• By introducing structures and processes from the SP system such as multiple
alignment and unsupervised learning.

• By interpreting mathematical concepts, as far as possible, within the SP
framework, and modifying the SP framework where necessary.

• By dropping structures and processes from one area where equivalent things
can be done better with structures and processes from the other area.

The amalgamation may be seen to be a richer source of concepts than mathe-
matics by itself or the SP system by itself, with or without borrowing, especially
when information compression is seen as a bridge between the two.

The subsections below outline what the amalgamation might look like, empha-
sising features that are different from mainstream mathematics.

For the sake of brevity, mathematics as it is today, with developments that are
anticipated now, will be abbreviated as “MT”; and the SP system as it is today,
with developments that are anticipated now, will be “SP”.

4.1 Probabilities

In view of the intimate connection between information compression and concepts
of prediction and probability ([36, 38, 24], [59, Appendix D]), P-NMFS, like SP,
would be fundamentally probabilistic. This should not be seen as a problem since
it has been recognised for some time that the same is true of MT:

“I have recently been able to take a further step along the path laid out
by Gödel and Turing. By translating a particular computer program
into an algebraic equation of a type that was familiar even to the
ancient Greeks, I have shown that there is randomness in the branch
of pure mathematics known as number theory. My work indicates
that—to borrow Einstein’s metaphor—God sometimes plays dice with
whole numbers.” [9, p. 80].

As indicated in this quotation, randomness in number theory is closely related
to Gödel’s incompleteness theorems. These are themselves closely related to the
phenomenon of recursion, a feature of many formal systems (including SP), many
of Escher’s pictures, and much of Bach’s music, as described in some detail by
Douglas Hofstadter in Gödel, Escher, Bach: An Eternal Golden Braid [18].
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4.2 Versatility in the representation of knowledge via the
powerful concept of multiple alignment

With regard to apparent deficiencies of MT in the representation of knowledge
(Section 2.1), a major strength of SP—which P-NMFS would share—is the po-
tential of SP to be a universal framework for the representation and processing of
diverse kinds of knowledge (UFK) [53, Section III].

The SP system has the potential to be a UFK because, although SP patterns
are not very expressive in themselves, they come to life in the multiple alignment
framework. Within that framework, they may serve in the representation of sev-
eral different kinds of knowledge, including: the syntax of natural languages; class-
inclusion hierarchies (with or without cross classification); part-whole hierarchies;
discrimination networks and trees; if-then rules; entity-relationship structures [50,
Sections 3 and 4]; relational tuples (ibid., Section 3), and concepts in mathemat-
ics, logic, and computing, such as ‘function’, ‘variable’, ‘value’, ‘set’, and ‘type
definition’ ([49, Chapter 10], [54, Section 6.6.1]).

With the addition of two-dimensional SP patterns to the SP computer model,
there is potential for the SP system to represent such things as: photographs;
diagrams; structures in three dimensions [51, Section 6.1 and 6,2]; and procedures
that work in parallel [52, Sections V-G, V-H, and V-I, and Appendix C].

Since information compression is at the heart of SP—in the building of mul-
tiple alignments and in unsupervised learning—and since the techniques for the
compression of information within SP are very general, there is reason to believe
that the system may serve in the succinct representation of any kind of knowledge,
not just the examples that have been listed in this section.

4.3 Versatility and adaptability in intelligence via the pow-
erful concept of multiple alignment

With regard to apparent deficiencies of MT in artificial intelligence (Section 2.1),
multiple alignment, as it has been developed in SP, has the potential, as noted in
Appendix B, to be as significant for an understanding of human-like intelligence
as is DNA for biological sciences: it could be the “double helix” of intelligence.

SP has proved to be versatile not only in the representation of knowledge
(Section 4.2) but also in aspects of intelligence. The same would be true of P-
NMFS.

There is more detail in the two subsections that follow.
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4.3.1 How unsupervised learning may be achieved via the processing
of multiple alignments

SP has strengths and potential in “unsupervised” learning of new knowledge,
meaning learning without the assistance of a “teacher” or anything equivalent.
As outlined in Appendix B.2, unsupervised learning is achieved in SP via the pro-
cessing of multiple alignments to create Old patterns, directly and indirectly, from
New patterns, and to build collections of Old patterns, called grammars which are
relatively effective in the compression of New patterns.

Unsupervised learning appears to be the most fundamental form of learning,
with potential as a foundation for other forms of learning such as reinforcement
learning, supervised learning, learning by imitation, and learning by being told.

4.3.2 How other aspects of intelligence flow from the building of mul-
tiple alignments

By contrast with the way in which SP models unsupervised learning via the pro-
cessing of already-constructed ‘good’ multiple alignments, other aspects of intelli-
gence flow from the building of multiple alignments (Appendix B.1). These other
aspects of intelligence include: analysis and production of natural language; pat-
tern recognition that is robust in the face of errors in data; pattern recognition
at multiple levels of abstraction; computer vision [51]; best-match and semantic
kinds of information retrieval; several kinds of reasoning (more in Section 4.3.3,
next); planning; and problem solving.

4.3.3 How several kinds of reasoning flow from the building of multiple
alignments

In scientific research and in the applications of science, what is potentially one of
the most useful attributes of SP is its versatility in reasoning, described in [49,
Chapter 7] and [45, Section 10]. Strengths of the SP system in reasoning, derived
from the building of multiple alignments, include: one-step ‘deductive’ reasoning;
chains of reasoning; abductive reasoning; reasoning with probabilistic networks and
trees; reasoning with ‘rules’; nonmonotonic reasoning and reasoning with default
values; Bayesian reasoning with “explaining away”; causal reasoning; reasoning
that is not supported by evidence; the already-mentioned inheritance of attributes
in class hierarchies; and inheritance of contexts in part-whole hierarchies. There is
also potential for spatial reasoning [52, Section IV-F.1], and for what-if reasoning
[52, Section IV-F.2].
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4.4 Seamless integration of diverse kinds of knowledge and
diverse aspects of intelligence

Again with regard to apparent deficiencies of MT in artificial intelligence (Section
2.1), there is clear potential for SP to provide seamless integration of diverse kinds
of knowledge and diverse aspects of intelligence, in any combination. This is
because diverse kinds of knowledge and diverse aspects of intelligence all flow from
a single coherent source: SP patterns within the multiple alignment framework.

In this respect, there is a sharp contrast between SP and the majority of other
AI systems, which are either narrowly specialised for one or two functions or, if
they aspire to be more general, are collections or kluges of different functions, with
little or no integration.9

This point is important because it appears that seamless integration of diverse
kinds of knowledge and diverse aspects of intelligence, in any combination, are
essential pre-requisites for human levels of fluidity, versatility and adaptability in
intelligence.

4.5 A potential remedy for over- and under-expressiveness

It appears that the problems of under-expressiveness (Section 2.3) and over-
expressiveness (Sections 2.4 to 2.4.5) are the same as, or closely related to, the
problems of under-generalisation and over-generalisation described in [59, Ap-
pendix B]. And it appears that the remedy, in all cases, is the same: evaluate
the given theory in terms of information compression as described in Appendix E.

In brief, this means that, for anything that aspires to be, or purports to be, a
scientific theory or a scientific analysis that is expressed in terms of P-NMFS, it
is necessary: 1) to identify the body of raw data, I, to which it relates; and 2) to
provide a measure of information compression, comparing the size (in bits) of I in
its original state with the size (in bits) of I when it has been compressed.

Here are some additional comments about over-expressiveness, relating to what
was said before:

• The financial crisis of 2008. If, as a general rule, all bodies of mathematics
used in the financial services industries were to be evaluated in terms of
information compression as described in Appendix E, this might help to
forestall another banking crisis like that of 2008.

9Although Allen Newell called for the development of “Unified Theories of Cognition”
[27, 26], and researchers in “Artificial General Intelligence” are aiming for a similar kind of
integration in AI, it appears that none of the resulting systems are fully integrated: “We have
not discovered any one algorithm or approach capable of yielding the emergence of [general
intelligence].” [15, p. 1].
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• String theory and multiverse theory. The same kind of discipline may also
help to head off blind alleys in scientific theorising, as string theory and
multiverse theory appear to be.

• Hoax scientific papers. And if referees of academic papers were to apply the
same disciplines to any mathematics that may be presented in submitted
papers, this may help to weed out hoax scientific papers before they get
published.

• Spaghetti programming, structured programming, and object-oriented design.
As was described in Section 2.4.4, software engineering has, with increasing
benefits, progressed from spaghetti programming, through structured pro-
gramming, to object-oriented programming.

The SP system (and thus P-NMFS) promises to go further, yielding all the
benefits object-oriented programming (class-inclusion hierarchies, part-whole
hierarchies, and associated kinds of inheritance), but with the additional
benefit of seamless integration of the two kinds of hierarchy (Appendix B.1,
last paragraph).

More generally, SP promises seamless integration of the five variants of
ICMUP described in [59, Section 5], the several forms of knowledge men-
tioned in Section 4.2, and the encoding of discontinuous dependencies as
described in Section 5.8.

• Infinities. Although SP and P-NMFS, like other formal systems, would be
capable of describing things that are infinitely big or infinitely small, and
those kinds of infinities can be problematic in science (Section 2.4.5 and
Appendix D.3), the evaluation of any scientific theory in terms of information
compression (Appendix E) should have the effect of eliminating infinities.
Although this has not yet been explored in detail, it seems likely that any
infinity in a theory that is expressed in terms of SP or P-NMFS is likely to
lead to a relatively poor score in terms of information compression.

5 Some implications for science

This section explores some of the ways in which P-NMFS, with features outlined
on Section 4, may have an impact in aspects and areas of science.
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5.1 Potential for the unification of quantum mechanics and
general relativity

Since there would be potential with P-NMFS for the reinterpretation of both quan-
tum mechanics and the theory of general relativity in terms of concepts from SP,
there is a corresponding potential for the long-sought-after unification of quantum
mechanics and general relativity. In general, the provision of multiple alignment
as a UFK [53, Section III] is likely to facilitate the simplification and integration
of concepts wherever that is feasible.

That said, an implication of the ideas in this paper is that we are unlikely ever
to develop a “theory of everything” (Appendix D.1). It is likely that, quite often,
we must be content with theories, in one area or in diverse areas, that are fully or
partially independent of each other.

5.2 Information, waves, energy, and matter

If it accepted that science and mathematics are both fundamentally about com-
pression of information (Section 3), it is pertinent to consider what the information
is that is to be compressed.

Most directly and immediately the raw material for science (and for scientific
applications of mathematics) is the information that we receive via our eyes, ears,
nose, skin, and so on. But rather than attempting to develop different theories,
one for each of visual, auditory, nasal, haptic, and other forms of information, it
seems preferable to work with a more abstract concept of information, like that
developed by Claude Shannon and others. Here are some tentative ideas:

• Information as discriminable variations. It seems that all forms of informa-
tion, including those mentioned above, may be seen as discriminable varia-
tions in some substrate:

– Visual information means patterns that vary in space (across the retina)
and in time. Even something like a uniform monochromatic area that
does not change with time may be seen to contain discriminable vari-
ations because sinusoidal light waves are needed for us to register the
monochromatic colour.

– Auditory information means variations in pressure in the air. As with
vision, something like a constant pure note which, at first sight, ap-
pears not to contain any variation, cannot be heard without sinusoidal
variations in pressure.

– Similar things may be said about smells, touch sensations, and so on.
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This idea is similar to Shannon’s ?? concept of information, which may be
described informally as a “measure of the number of possible alternatives
for something” [33, Location 2565]: when alternatives are distributed across
time or space, they become discriminable variations in some substrate.

• Information as waves. Another way of expressing the idea that information
is discriminable variations in some substrate is to say that information is a
wave or waves, most simply in one dimension but also in two dimensions and
possibly more. This is true regardless of whether the wave is a classically
curvy kind of analogue thing or whether it is represented via step functions
as digital 0s and 1s.

• The possible equivalence of information and energy. Much of what has been
said here about information and waves, may also be said about energy. Forms
of energy such as light, heat and sound appear to be largely about variations
in some substrate:

“Today, physicists commonly accept the idea that information can
be used as a conceptual tool to throw light on the nature of heat.”
[33, Location 2637].

Since it is accepted that different forms of energy may be converted, one into
the other, it seems that the “energy-as-variations” idea may also apply to
such things as potential energy and elastic energy where variations are less
obvious.

On the strength of the dictum that “If it looks like a duck, swims like a
duck, and quacks like a duck, then it probably is a duck.”, there seems to
be a case for supposing that information and energy are the same thing.
Notwithstanding some criticisms, the similarity between the concept of en-
tropy in thermodynamics and the concept of entropy in information theory
lends support to this view.

A possible objection is that, with something like heat, the variations are
largely random and we often perceive random variations to be uninforma-
tive. It is true that most people regard white noise as boring and uninter-
esting. But in terms of classical information theory, any such random signal
is transmitting at or near the maximum for a given bandwidth.

• Information, waves, energy, and matter. From the foregoing, we may regard
information, waves, and energy as essentially the same thing. Then if it
accepted that, in accordance with Schrödinger’s wave mechanics, the entire
subatomic world may be seen to be made up of waves, it follows that the
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subatomic world may also be seen to be made up of “information-waves-
energy”.

More generally, since in accordance with Einstein’s equation, E = mc2,
matter of any kind is equivalent to energy, we may regard information, waves,
energy, and matter, as all the same thing. From the perspective of science-
and-mathematics-as-compression-of-information, it seems reasonable to use
the word information as a relatively short name for “information-waves-
energy-matter”.

There appear to be connections between this tentative conclusion, ideas
about the role of information compression in cognition, mathematics, and
science, discussed elsewhere in this paper, and some ideas about information
and physics described in [33, Chapter 12], discussed briefly in Appendix C.

• A fractal character to the world. If information is the modelling clay from
which everything else is constructed, we may guess that, for the most part, it
has an analogue character without the step functions of digital information.
We may also guess that, like a fractal pattern, we may in principle drill down
as far as we like, resolving more and more detail as we go deeper.10

• Limits on resolution. Whether or not there are theoretical limits on how
deep we can go, there will certainly be practical limits on resolution set by
the limitations of available technologies for making observations, including
the minimum sizes of the the basic building blocks for those technologies,
such as the wave lengths of this or that form of radiation used to probe
the structure of matter. And there may be limits on resolution imposed by
scientists themselves, seeking to focus on higher-level regularities in data,
without distractions from lower-level detail.

• Most theories are emergent. An implication of the idea that everything is
made of waves with a fractal character so that the depth or detail that we
may consider is constrained only by limits on the resolution of available tech-
nologies for making observations, is that most theories are emergent, in much
the same way that the relatively neat equations for the gas laws (Boyle’s Law,
Charles’s Law, etc) emerge from an underlying messiness and unpredictabil-
ity implied by the kinetic theory of gases. Other possible examples are the
concepts of time and space, which, in the theory of look quantum gravity,

10But see Appendix D.3 about the hazards of assuming too readily that anything in the
world is infinite. Also, “The central prediction of loop theory is ... that space is not a
continuum, it is not divisible ad infinitum, it is formed of ‘atoms of space’.” [33, Location
1818], and “... arbitrarily small chunks of space do not exist. There is a lower limit to the
divisibility of space.” (ibid. Location 1834).

17



emerge from the more fundamental concept of the quantum gravitational
field [33, Chapter 7].

An implication of this view is that we should not be surprised if things get
more complicated, not simpler, as we dig deeper. This point will be revisited
in Section 5.9.

5.3 The need for approximations

It has been recognised for a long time that, in applying mathematics to science,
it may be necessary to make approximations—and the same is likely to be true of
P-NMFS. The main reasons for making approximations with P-NMFS are likely
to be:

• Computational complexity and heuristic search. Assuming that P-NMFS
embraces processes like the building of multiple alignments (Appendix B.1)
and unsupervised learning in the SP framework (Appendix B.2), the making
of approximations is an integral part of heuristic search in both of those
processes.

Apart from the building of multiple alignments or unsupervised learning,
there may be other areas, particularly in AI, where computational complex-
ities impose limits that may be practical or theoretical or both, that force
us to retreat from what is theoretically ideal, and to be content with results
that are “reasonably good”.

• Limits on resolution. As mentioned under the heading “Limits on resolution”
in Section 5.2, there will be practical limits on resolution in the gathering of
raw data, and there may be limits imposed by scientists themselves, seek-
ing to focus on higher-level regularities in data. Both these things imply
approximations in the development and application of theories.

• Generalisation. A very important aspect of any kind of learning is gen-
eralisation from the data which is the basis for learning, without under-
generalisation or over-generalisation [59, Appendix B]. Generalisation is what
allows us to make judgements about things which are similar to but not ex-
actly the same as what we have seen before. Although generalisation is
important, it may be seen as a form of approximation.

5.4 Sources of uncertainty in science

An implication of the perspective developed in this paper is that uncertainties,
with corresponding probabilities, will be an inescapable feature of how we observe
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and theorise about natural phenomena. This section summarises what appear to
be the main sources of uncertainty in science:

• Good old-fashioned noise. An implication of the ideas: 1) that everything is
made of waves with a fractal character (Section 5.2); and 2) that all theo-
ries are emergent (ibid.); is that our observations will never fit any theory
precisely and that there will always be unpredictability or noise, both au-
ditory and otherwise, of the kinds that are familiar in the workings of cars,
television sets, electric toothbrushes, and so on.11

• Uncertainties arising from the making of approximations. As outlined in
Section 5.3, there are several reasons why, in science, it is often necessary
to make approximations. Any such approximation will be a source of uncer-
tainties.

• Uncertainties associated with ill-defined entities. The boundaries of some-
thing like a stone are reasonably clear. But the boundaries of something like
a cloud or a forest can be much less clear, as can be seen from the windows
of a plane as it flies into a cloud or out of it. It seems that this kind of fuzzi-
ness is most pronounced amongst quantum-level entities such as electrons,
protons, neutrons, and the like.

• Inferences. Since science is not merely about describing the world but is also
about making inferences about the world, and since many such inferences are
normally uncertain, the making of inferences is a key source of uncertainty
in science.

• Uncertainties in mathematics and other formal systems. In view of the ran-
domness that has been shown to exist in number theory, noted in Section
4.1, and since similar conclusions are likely to apply to other formal systems
that exhibit recursion, including SP, it seems that there is an unavoidable
source of uncertainty in any body of science that relies at least partly on
mathematics or some comparable formal system.

• Observer effects. A prominent feature of quantum mechanics is that, when
we are trying to observe or make measurements of things that are very small,
our sensing devices may easily have an impact on whatever it is that is the
focus of interest. This is a further source of uncertainty in science.

• Uncertainties arising from measurements of speed. Since: 1) The measure-
ment of the speed of an object requires measurements of position from at

11See also the comment about white noise in Section 5.2.
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least two different time frames; and since 2) Abstraction of an object concept
from raw data as described in Section 5.5 is a process that takes time; It is
likely that there will be corresponding uncertainties about the speed of the
object at any one position.

These sources of uncertainty appear to be different from those that are the
basis for Heisenberg’s uncertainty principle.

With the possible exception of observer effects, these sources of uncertainty
apply at all levels of analysis in science, not merely at the sub-atomic level.

With regard to Einstein’s famous dictum that “[God] does not play dice.”
[19, Location 6056], a tentative answer to the implied question is that we can
never know. On the strength of the uncertainties described above, it seems that
uncertainties in science arise largely, perhaps exclusively, from shortcomings in our
means of making observations, or in our methods for analysing observations, or
in our desire to make inferences. There seems to be some kind of glass wall that
separates us from the “real” world.

5.5 The discovery and processing of objects

Objects, such as galaxies, stars, and planets, and, less certainly, molecules, atoms,
and sub-atomic particles, have important roles in theoretical physics, and in related
fields such as cosmology. But the way in which such objects are conceived in
those fields—as theoretical primitives—contrasts sharply with the way in which
objects are conceived in artificial intelligence, cognitive psychology, and indeed SP,
where they are seen as relatively high-level concepts that must be abstracted or
constructed from raw data.

5.5.1 Abstraction of perceptual objects from random-dot stereograms

Consider, for example, how a perceptual object may be abstracted from a random-
dote stereogram, as described in [21]. In brief, each of the two images shown in
Figure 2 is a random array of black and white pixels, with no discernable structure,
but they are related to each other as shown in Figure 3: both images are the same
except that a square area near the middle of the left image is further to the left in
the right image.

When the images in Figure 2 are viewed with a stereoscope, projecting the
left image to the left eye and the right image to the right eye, the central square
appears gradually as a discrete object suspended above the background. Although
this illustrates how stereoscopic vision aids depth perception—a subject of some
interest in its own right—the main interest here is on how we see the central
square as a discrete object. There is no such object in either of the two images
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Figure 2: A random-dot stereogram from [21, Figure 2.4-1], reproduced with per-
mission of Alcatel-Lucent/Bell Labs.

Figure 3: Diagram to show the relationship between the left and right images
in Figure 2. Reproduced from [21, Figure 2.4-3], with permission of Alcatel-
Lucent/Bell Labs.



individually. It exists purely in the relationship between the two images, and seeing
it means matching one image with the other and unifying the parts which are the
same.

Seeing the central object means finding a ‘good’ match between relevant pixels
in the central area of the left and right images, and likewise for the background.
Here, a good match is one that yields a relatively high level of information com-
pression. Since there is normally an astronomically large number of alternative
ways in which combinations of pixels in one image may be aligned with combina-
tions of pixels in the other image, it is not normally feasible to search through all
the possibilities exhaustively.

As with the building of multiple alignments (Appendix B.1), it is necessary to
use heuristic techniques, building solutions in stages and weeding out low-scoring
partial solutions at each stage. This can give results that are “reasonably good” but
are not guaranteed to be theoretically ideal. One such method for the analysis of
random-dot stereograms has been described by Marr and Poggio [25]. An example
showing how the SP computer model may produce a plausible result with a one-
dimensional analogue of a random-dot stereogram is described in [51, Section 5,
Figure 9].

5.5.2 More about the abstraction of perceptual objects

Random-dot stereograms demonstrate rather clearly how something that we see
as a discrete object-like entity—the central square in the example above—must
necessarily be the product of a relatively complex process of analysis, and it should
not be regarded as a theoretical primitive. Of course, random-dot stereograms are
highly artificial, but there are reasons to believe that processes for the recognition
of real-world objects or object-like entities, by natural or artificial systems, are
likely to be at least as complex:

• The discovery of words in natural language. Words are widely-regarded as
natural elements of speech but an examination of speech as it may appear
on an oscilloscope screen or in a sound spectrogram shows that we speak
in “ribbons”, without any consistent physical marker between one word and
the next.

It as been shown via computational modelling, in more than one study (see,
for example, [29, 11, 46]), that much of the word structure of language may
be discovered by statistical analysis, similar in many respects to the way in
which the central object may be abstracted from a random-dot stereogram,
without the need for physical markers between one word and the next, with-
out the assistance of any pre-supplied dictionary, and without the need for
a “teacher” or anything equivalent.
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Here, the statistical analysis is essentially a process of searching for repeating
patterns which, collectively, via a parsing of the raw data, yield relatively
high levels of compression of the data. New patterns are built up hierarchi-
cally by pairwise joining of smaller patterns including atomic symbols.

• The discovery of word-like entities by SP. Similar results have been obtained
with the SP computer model, discovering word-like entities in language-like
texts via unsupervised learning [49, Chapter 9]. As with the earlier work,
the essence of the process is the development of one or more grammars, each
one comprising a collection of SP patterns that, together, yield high levels of
information compression. But the overall organisation of the model is rather
different, with multiple alignment as the central organising principle instead
of the hierarchical pairwise building of patterns.

• Motion as an aid in the discovery of objects. Apart from stereoscopic vision
or the statistical analysis of the structure of language, an important aid to
the discovery of an object concept in vision is motion of the object against
its background [51, Section 5.2]. Here, successive frames in a stream of vi-
sual information play the parts of the left and right images in a stereoscopic
display. As with a random-dot stereogram, the matching and unification of
patterns, revealing differences between frames, provides a means of picking
out a moving object as a discrete entity, distinct from its background. An-
imals that rely on camouflage for protection gain most benefit by staying
still. If or when such an animal moves, it becomes much more easily seen
(ibid.).

• Objects in three dimensions. As noted in Section 5.5.1, viewing the world
with two eyes aids the perception of depth in vision. But, in addition, a
knowledge of the three-dimensional form of an object may be built up by
stitching together overlapping views of the object from several different an-
gles, in much the way that a panoramic digital photograph of a scene may
be created by stitching together neighbouring but overlapping views of the
scene [51, Sections 6.1 and 6.2].

In addition to the evidence from random-dot stereograms (Section 5.5.1), these
examples lend support to the view that objects are not “objectively” present in the
world. They are constructs of the human brain or of artificial brain-like systems,
created via a relatively complex process of compressing information. Implications
of this view are discussed in several other sections.
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5.6 Motion, speed, velocity, momentum, and acceleration

An important concern of physics and cosmology is, amongst other things, the
motion of any given object (relative to some other object or to some kind of back-
ground), and, more specifically, its speed, velocity, momentum, and acceleration.

As we have seen (Section 5.5.2), motion can itself be an important means
of isolating an object from its surroundings via the matching and unification of
patterns. But those processes which allow an object to be isolated as a discrete
entity may also provide a means of assessing is speed, velocity, and so on.

There are potential benefits in reinterpreting existing concepts of objects and
their motions, speeds, and so on, in terms of relevant concepts from SP. However,
there is work still to be done in developing relevant concepts within the framework
of SP (Appendix B.10). Some preliminary ideas are described in [51, Section 5.3,
Figure 10].

Probably, the most effective means of developing these and related questions
about how aspects of the world could or should be encoded within SP is, first,
to solve some residual problems in how the system achieves unsupervised learning
[45, Section 3.3], and then use the improved processes for learning to discover how
the system itself may encode motion, speed, and so on. That in itself may suggest
further refinements in the learning processes.

5.7 Superposition

“The idea of superposition is not unique to quantum mechanics but is
a general property of all waves. Imagine watching someone dive into
an empty swimming pool. You will see the ripples travel outwards
along the surface of the water as simple undulations all the way to the
other end of the pool. This is in stark contrast to the state of the
water when the pool is full of people swimming and splashing about.
The turbulent shape of its surface is now due to the combined effect of
many disturbances and is achieved by adding them all together. This
process of adding different waves together is known as superposition.”
[1, Location 1025].12

A potentially useful analogy for the concept of superposition in quantum me-
chanics is ambiguity in the realm of human perception. Consider, for example,
what happens when we hear a short portion of sound that, using a simplified

12This description of superposition is distinctly less puzzling than it is in the idea of a
“qubit” as a superposition of 0 and 1. In the first case, there are two or more waves that can be
added together in the normal way. With a qubit, it is less clear how 0 and 1 may be added
together in the manner that is understood in quantum mechanics unless they are both waves.
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version of the phonetic alphabet, may be written: ‘ae i s k r ee m’. We may
hear this as “ice cream” or “I scream” and may perhaps swither between the two
interpretations as we review what we have heard.

This ambiguity can be modelled with SP as shown in Figure 4. The two
multiple alignments shown are the two best multiple alignments created by the SP
computer model with ‘ae i s k r ee m’ as a New pattern shown in row 0, and a
collection of appropriate Old patterns like those in rows 1 to 3 of the two multiple
alignments, one pattern per row.

0 ae i s k r ee m 0

| | | | | | |

1 | | | N 0 k r ee m #N 1

| | | | |

2 NP 2 A | | | #A N #N #NP 2

| | | | |

3 A 0 ae i s #A 3

(a)

0 ae i s k r ee m 0

| | | | | | |

1 | | V 0 s k r ee m #V 1

| | | |

2 S 0 NP | | #NP V #V ADV #ADV #S 2

| | | |

3 NP 1 ae i #NP 3

(b)

Figure 4: A multiple alignment showing the two best parsings of the phoneme
sequence ‘textttae i s k r ee m’ created by the SP computer model. Reproduced,
with permission, from Figure 5.3 in [49].

Consider now what happens when we augment the New pattern with some
disambiguating context in, for example, a pattern like ‘ae i s k r ee m l ae

w d l i’. In this case, the ambiguity disappears as can be seen in the multiple
alignment shown in Figure 5 (a), a multiple alignment showing the “I scream”
interpretation, without any rival interpretation. Likewise, there is just one “ice
cream” interpretation, shown in Figure 5 (b), when ‘textttae i s k r ee m i z k o
l d’ is supplied to the SP computer model with an appropriate collection of Old
patterns.
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0 ae i s k r ee m l ae w d l i 0

| | | | | | | | | | | | |

1 | | | | | | | ADV 0 l ae w d l i #ADV 1

| | | | | | | | |

2 S 0 NP | | #NP V | | | | | #V ADV #ADV #S 2

| | | | | | | | | | |

3 | | | | V 0 s k r ee m #V 3

| | | |

4 NP 1 ae i #NP 4

(a)

0 ae i s k r ee m i z k o l d 0

| | | | | | | | | | | | |

1 | | | | | | | | | A 2 k o l d #A 1

| | | | | | | | | | |

2 S 1 NP | | | | | | | #NP VB | | #VB A #A #S 2

| | | | | | | | | | | | |

3 | | | | N 0 k r ee m #N | | | | | 3

| | | | | | | | | | |

4 NP 2 A | | | #A N #N #NP | | | | 4

| | | | | | | | |

5 A 0 ae i s #A | | | | 5

| | | |

6 VB 0 i z #VB 6

(b)

Figure 5: (a) A multiple alignment showing the best parsing found by the SP
computer model for the phoneme sequence ‘ae i s k r ee m’ when it is included
within the larger sequence ‘ae i s k r ee m l ae w d l i’. (b) A multiple
alignment showing the best parsing of the phoneme sequence ‘ae i s k r ee m’
when it is included within the larger sequence ‘ae i s k r ee m i z k o l d’.
Reproduced, with permission, from Figure 5.4 in [49].



The analogy with superposition as that is understood in quantum mechan-
ics is not exact but it is suggestive. When there is relatively little information
available, there may be a “superposition” of two possible interpretations of the
ambiguous pattern ‘ae i s k r ee m’. But when more information is available
(in the form of disambiguating context), perhaps corresponding to what happens
in a quantum mechanics experiment when a detector has been put in place, then
the “superposition” disappears and only one of the two possibilities is observed.

One possible objection to the forgoing is that there is nothing to show how the
pattern ‘textttae i s k r ee m’ might be analysed into two or more components in
a manner that is comparable with Fourier analysis. But similar results may be
obtained with a pattern like ‘A X B Y C Z’ which may be analysed into ‘A B C’
and ‘X Y Z’, somewhat like the analysis of a wave pattern created via superposition
into the wave patterns from which it was derived.

Another possible objection is that with superposition in quantum mechanics
there is nothing like the human brain or AI system that may interpret data in the
manner described above. In answer to this objection, any kind of non-human and
non-AI detector may exhibit comparable results. When information is limited,
there may be ambiguity in the sense that the detector may flip unpredictably from
one interpretation to another, but when fuller information is supplied, any such
ambiguity may be resolved.

5.8 Nonlocality, entanglement, multiple alignment, and
discontinuous dependencies

There is little doubt that the phenomena of “nonlocality” and “entanglement”
are genuine features of the world and not merely some “weirdness” in quantum
mechanics which may, at some stage, be explained away:

“Today, quantum nonlocality and entanglement are no longer the sub-
ject of philosophical debate. They are accepted as crucial features of
the quantum world. Indeed, entanglement of many particles could lead
to the development of a whole new technology not even dreamed of by
the quantum pioneers.” [1, Location 1274].

With the related concept of superposition, nonlocality and entanglement may
be described thus:

“[Superposition means that] a quantum particle can be in a combina-
tion of two or more states at the same time, while [nonlocality] says
that two quantum particles ... can somehow remain in touch with each
other however far apart they are. [Combining these two ideas], the
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idea of two dice remaining in (nonlocal) contact with each other how
ever far apart they are is known as entanglement.” (ibid. Locations
1229–1235).

A potentially useful analogy for nonlocality and entanglement is illustrated in
the multiple alignment shown in Figure 6. In this example, the sentence The winds
from the west are strong is identified as a sentence (defined by the pattern ‘<S> ...

</S>’ in column 10), and parsed into constituents such as a noun phrase (‘<NPa>
... </NPa>’ in column 7), a qualifying phrase (‘<Q> ... </Q>’ in column 4),
and so on.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13

<S>

<Num> ----------- <Num>

PL

</Num> ---------- </Num>

<NPb> -- <NPb>

<NPa> ------------------------- <NPa>

<D> ---- <D>

d1

the ------------------------------------------------------------- the

</D> --- </D>

<N> --- <N>

pln -------------------------------------------- pln

winds ------------------------------------------ winds

</N> -- </N>

</NPa> ------------------------ </NPa>

<Q> --------------------------------------------------- <Q>

<PP> -- <PP>

pp2

from ------------------- from

</PP> - </PP>

<NPa> ---------- <NPa>

<D> --------------------- <D>

d1

the ------------------------------------- the

</D> -------------------- </D>

<N> -- <N>

sngn

west --- west

</N> - </N>

</NPa> --------- </NPa>

</Q> -------------------------------------------------- </Q>

</NPb> - </NPb>

<V> -- <V>

plv -------------------- plv

are -------------------------------------------------------------------- are

</V> - </V>

<A> ---------------------- <A>

a1

strong --------------------------------------------------------------------------------------------------- strong

</A> --------------------- </A>

</S>

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 6: One of the two best multiple alignments created by the SP computer model with a store of
Old patterns like those shown in columns 1 to 12, one pattern per column (representing grammatical
structures, including words), and a New pattern (representing a sentence to be parsed), shown in
column 0. The other best multiple alignment created by the SP computer model is the same as the
one shown but with the Old patterns in a slightly different order across the columns.
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For present purposes, the key point of interest is that, within sentences like
this, there is a syntactic “dependency” between the plural subject of the sentence
(the winds) and the plural main verb (are). The rule here is that, in English at
least, if the subject is plural then the main verb must be plural, and if the subject
is singular then the main verb must be singular. This kind of dependency is often
described as “discontinuous” because it can jump over intervening structure such
as from the west, and there appears to be no limit on how big that intervening
structure may be.

Amongst the several ways in which discontinuous dependencies may be repre-
sented, one of the simplest is via the multiple alignment construct. This can be
seen in column 12 in Figure 6 where the symbol ‘pln’ is aligned with a matching
symbol within the noun-phrase structure for the winds, the symbol ‘plv’ is aligned
with a matching symbol within the verb-phrase structure for are strong.

The fact that ‘pln’ and ‘plv’ both appear in one pattern (the one shown in
column 12) is what marks the dependency between the two. This dependency
is a recurrent feature of English. It is anticipated that, when SP is more fully
developed, it will be able, via unsupervised learning, to discover that kind of
recurrent pattern for itself, instead of it being provided ready-made in the store of
Old patterns as was the case with the example in Figure 6.

Of course, computational linguistics is not the same as theoretical physics. But
insights gained in the first area may have traction in the second. It seems possible
that a non-local dependency between, for example, two entangled electrons, such
that one has a clockwise spin while the other has a counter-clockwise spin, may be
understood in a manner that is similar to our understanding of the phenomenon
of syntactic dependencies in natural languages. In both cases:

• There is a correlation between the two elements of the dependency.

• The dependency may bridge arbitrarily large amounts of intervening struc-
ture.

• There is a kind of ‘instant’ communication in the sense that, if we know one
element of a dependent pair, we know immediately what the other should
be.

A possible objection is that, with natural languages, it is possible for people to
make grammatical errors by saying things like The winds from the west is strong,
but there seems to be no counterpart in physics.

One possible answer is that, while people may make errors in speaking or
writing, such errors normally arise in the processes of writing or speaking and are
not normally part of a person’s considered knowledge of the language.
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Another possible answer is that any differences of this kind between linguistics
and physics is merely statistical—to do with differences in the strengths of relevant
correlations.

5.9 A “waterspout” interpretation for some of the two-slits
experiments

The famous two-slits experiment and its variations can indeed seem ‘weird’. Here,
a tentative “waterspout” interpretation of what is going on will be described,
which may help to make things less baffling. The account here will draw on Jim
Al-Khalili’s excellent description of the basic experiment and its variations, and
why they can be so puzzling [1, Chapter 1].

The basic experiment itself goes like this:

“First, a beam of light is shone on a screen with two narrow slits in it
that allow some of the light to pass through to a second screen where an
interference pattern is seen. This is a sequence of light and dark bands
that are due to the way the separate light waves emerging from the
two slits spread out, overlap and merge before hitting the back screen.
Where two wave crests (or troughs) meet they combine together to
form a higher crest (or lower trough) that corresponds to more intense
light and hence a bright band on the screen. But where a crest of one
wave corresponds with a trough of the other they cancel out resulting
in a dark patch. In between these two extremes some light survives
and there is a gradual blending in of the pattern on the screen. It is
therefore only because light behaves as a wave washing through both
slits simultaneously that the interference pattern appears.” [1, Chapter
1].

If the experiment is repeated with grains of sand, dropped through two slits in a
horizontal screen, we end up with two piles of sand and no evidence of interference
or other wave-like behaviour. But things are different if we repeat the experiment
with atoms:

“A special apparatus—let us call it an atomic gun for want of a better
name—fires a beam of atoms at a screen with two appropriately narrow
slits. On the other side, the second screen is treated with a coating that
shows up a tiny bright spot wherever a single atom hits it. ... First,
we run the experiment with just one slit open. Not surprisingly, we
get a spread of light spots on the back screen behind the open slit.
...[We may suppose that] some of the atoms may just be bumping off
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the edges of the slit rather than going cleanly through and this might
account for the spread. ... Next, we open the second slit and wait for
the spots to appear on the screen. ... you would naturally guess that it
would look like the two piles of sand. ... [But], surprise, surprise, atoms
just don’t behave like this. Instead, we see an interference pattern of
light and dark fringes just as we did with light. The brightest part of
the screen, believe it or not, is in the centre where we would not expect
many atoms to be able to reach! (ibid. Locations 164–185).

To add to the puzzlement:

“... not only has the double-slit experiment been performed with atoms,
but it has also been done by firing individual atoms one at a time! That
is, only when we see the flash of light on the back screen signalling
the arrival of the atom do we fire the next one, and so on. There
is only ever one atom travelling through our apparatus at any one
time. Each atom that manages to get through the slits leaves a tiny
localized spot of light somewhere on the screen. ... What we see is
quite incredible. The spots gradually build up on the screen and light
bands of an interference pattern slowly emerge where there is a high
density of spots. In between these bands are dark regions where no or
very few atoms land. ... To recap, each atom fired from the gun leaves
it as a tiny ‘localized’ particle and arrives at the second screen also as a
particle, as is evident from the tiny flash of light when it arrives. But in
between, as it encounters the two slits, there is something mysterious
going on, akin to the behaviour of a spread-out wave that gets split
into two components, each emerging from a slit and interfering with
the other on the other side. How else can we rationalize the way the
atom has to be aware of both slits at the same time?” (ibid. Locations
197–210).

Furthermore:

“With a detector in place that records which slit each atom passes
through, the interference pattern disappears. It is as though the atoms
do not wish to be caught in the act of going both ways at once, and
only travel through one slit or the other. Two bands form on the screen
adjacent to the slits as a result of particle-like behaviour, similar to
what happens with the sand. With the detector turned off we now
have no knowledge of the route taken by each atom. Now that their
secret is safe, the atoms revert to their mysterious wave-like behaviour
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and the interference pattern comes back! ... It is only when the atom
is being watched that it remains as a particle throughout. Clearly the
act of observing the atom is crucial.” (ibid. Locations 249–254).

And:

“In what are known as ‘delayed choice’ experiments it is possible to
have a detector in place and only switch it on after the atom has gone
through the slits. ... With modern high-speed electronics the detector
can be close enough to one of the slits to be able to tell whether the
atom had come through it, and yet it need only be switched on after
the atom, behaving like a spread-out wave, has emerged from both the
slits, but before it reaches the detector. Surely now it is too late for the
atom to suddenly decide to behave like a localized particle that has only
passed through one of the slits. Apparently not. In such experiments,
the interference pattern is nevertheless found to disappear.” (ibid.
Locations 261–268).

Here, in outline, is an alternative, and perhaps less puzzling, “waterspout”
view of what is going on with atoms in the two-slits experiments:13

• Smooth interference patterns from coherent light in the basic experiment are
what we would expect to see. With the coherent light that is used in the
basic two-slits experiment, we would expect to see the smooth interference
patterns that are in fact observed.

• Atoms may be, fundamentally, waves. Instead of supposing that atoms can
ever be like grains of sand, let us suppose, in accordance with the suggestions
in Section 5.2, that they always behave like waves.14

• Each atom may be a zone of relatively high energy within a wave. While
atoms may be, fundamentally, waves, we may suppose that they are not
exactly like the coherent light which features in the basic two-slits experi-
ment. Instead, we may suppose that each atom is a zone within a wave in
which there is a relatively high concentration of energy, perhaps in the form
of a relatively high frequency, or a relatively high amplitude, or both those
things.

13Similar things may be said about molecules [1, Locations 313–340]
14Strictly speaking, in accordance with Section 5.2, grains of sand are also waves which

cannot be recognised as discrete objects without a probabilistic analysis as described in Section
5.5.
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• The creation of a ‘waterspout’. When an atom hits the second screen in the
two-slits experiment, we may suppose that what happens is comparable in
complexity with what happens when ordinary waves on the sea crash into
a rocky shore (in accordance with the idea that all theories are ‘emergent’
(Section 5.2), meaning that any given theory is founded on something more
complex underneath).

With ordinary waves in the sea, it can happen that, where there is a partic-
ularly large wave, or where a configuration of rocks concentrates the energy
in the wave, or both those things, a spout of water can be sent up which
is much higher than normal. With the two-slits experiment we may sup-
pose that something like this will happen wherever there is a relatively high
concentration of energy, as would be the case with an atom, and we may
suppose that the ‘waterspout’ is itself a zone in which energy is even more
concentrated.

• A ‘waterspout’ is not an atom. Assuming that things work roughly as de-
scribed, it is not hard to imagine that the metaphorical waterspout would
leave a relatively discrete mark on the sensitive screen. But, contrary to the
assumption that such a mark is caused by the impact of a bullet-like atom
(“Despite an atom being a tiny localized particle (after all, each atom hits
the screen at a single point)” [1, Location 190]), we may suppose that it is
an artifact, caused by the interaction of a wave and the second screen, which
has the appearance of having been produced by the impact of a bullet-like
atom.

• Each atom may pass through both slits, even when atoms are fired one at
a time. When atoms are fired, one at a time, at the double-slit screen, it
seems that each one, as a wave, would pass through both slits. As with any
wave passing through the two slits, there would be interference on the other
side. But, since the wave of any one atom would be relatively concentrated
in space and time, it seems likely that there would be a narrower range of
interference fringes than with coherent light, perhaps with only one dominant
crest that lasts for a relatively short time. The ‘waterspout’ from this crest
would create a flash of light which may be interpreted as “the atom” hitting
the screen. Nevertheless, interference associated with each atom, together
with likely variations amongst the several atoms, would allow a range of
interference fringes to be built up over time that is similar to interference
fringes with coherent light.

• A detector, switched on, may be enough to disturb interference patterns. In
versions of the experiment with atoms, and with one or more detectors for
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atoms that are switched on throughout the experiment, or delayed until
each atom has passed through the first screen, it seems possible that the
disappearance of interference patterns is simply the result of disturbance
by the presence of a detector that is switched on—in much the same way
that the ‘beats’ from two notes that are very close in pitch but not identical
can be disturbed by small changes in the arrangements; or, indeed, like the
quantum phenomenon of decoherence: how “large quantum systems [can be]
dramatically sensitive to uncontrolled external influences” [1, Location 1390].

• Contrast with quantum mechanics. In two respects, the interpretation of
two-slits experiments described here contrasts with how these experiments
are often interpreted in quantum mechanics:

– The interpretation described here—that an atom is always a wave but
may, when it interacts with a sensitive screen, create an artifact that
has the appearance of a small bullet-like entity—contrasts with the
quantum mechanics view that quantum-scale particles do not exist until
they are observed.15

– Instead of supposing that there is a “collapse of the wave function”
when the atom is detected, the scheme described above may be seen as
a process of interpretation, broadly similar to those described in Section
5.7 but performed by an inanimate screen rather than a human or other
animal.

5.10 Statistical theory

Within MT, statistical theory is well established and has proved its worth in many
applications in science and other areas. But of course there is always room for
improvement.

Potential advantages of SP, either on its own or as part of P-NMFS, include:

• The strengths of SP in the making of predictive inferences and the calcula-
tion of associated probabilities (Sections 4.1 and 4.3.3) flow directly from the
central role of information compression in the workings of SP, and because of

15“Electrons don’t always exist. They exist when they interact. They materialize in a place
when they collide with something else. ... When nothing disturbs it, an electron does not exist
in any place.” [33, Location 1331–1339]; and “[A quantum-scale object’s] position and velocity,
its angular momentum and its electrical potential, and so on, acquire reality only when it
collides—‘interacts’—with another object. It is not just its position which is undefined, as
Heisenberg had recognized: no variable of the object is defined between one interaction and the
next.” [33, Location 1365].
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the intimate relation between information compression and concepts of pre-
diction and probability (Appendix B.8). In effect, compression of incoming
data via unsupervised learning in SP achieves a thorough statistical analysis
of those data.

• The multiple alignment concept has proved to be a powerful vehicle for sev-
eral kinds of probabilistic reasoning (Section 4.3.2), and for their seamless
integration in any combination (Section 4.4). Collectively, these several kinds
of reasoning, working together, have potential as a powerful aid to statistical
inference.

• The SP system has proved to be an effective alternative to Bayesian reason-
ing, including reasoning in Bayesian networks and an alternative to Pearl’s
analysis [30, Section 2.2.4] of the phenomenon “explaining away” ([45, Sec-
tion 10.2], [49, Section 7.8]).

• In addition to its strengths in learning patterns of association, SP, via un-
supervised learning, has strengths and potential to learn entire structures,
including the potential to learn 3D structures ([51, Sections 6.1 and 6.2]).
In its strengths and potential for the learning of structures, it goes beyond
mainstream statistics.

5.11 All-or-nothing and probabilistic computations

Notwithstanding Gregory Chaitin’s discovery that, at a deep level, there is ran-
domness in number theory (Section 4.1), much of mathematics and logic has an
all-or-nothing flavour that assumes that, with calculations like 2 + 2 = 4 and de-
ductions like If all humans are mortal and Socrates is human, then Socrates is
mortal, the conclusions are certain, without any qualification.

Although that kind of certainty is often useful, it does not sit well with the view
that mathematics is fundamentally a set of techniques for compressing information,
and their application [59, Section 3], and that mathematics, for that reason, has a
probabilistic dimension (Appendix B.8).

P-NMFS, with an acceptance that mathematics is fundamentally about com-
pression of information, is likely to provide a more satisfactory perspective in which
there will, in certain situations, be inferences with probabilities that are 0 or 1 or
very close to those values (see, for example, [45, Section 10.1.3] or [49, Section
7.7.3]) but, very often, there will also be inferences with probabilities that are not
close to 0 or 1.

This kind of amalgamation of probabilistic and non-probabilistic forms of
reasoning—flowing from the view that information compression is a fundamen-
tal feature of mathematics, logic, and computing—is arguably more satisfactory
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than forms of “probabilistic logic” in which traditional concepts of probability and
of logic are bolted together without any deeper integration.

This is not merely a matter of theoretical purity. There are many areas of
science which are likely to benefit from smooth integration of probabilistic and
non-probabilistic forms of reasoning.

5.12 Uniformity in the representation of knowledge

As noted in Section 2.3, scientific knowledge is at present expressed with a combi-
nation of natural language, diagrams, drawings, static photographs, videos, com-
puter progrms, and mathematics. This has worked well for many years but there
are potential advantages with P-NMFS.

In view of the versatility of SP in the representation of diverse kinds of knowl-
edge and its potential as a UFK (Sections 4.2 and 4.3), there is potential for
P-NMFS to be a vehicle for the representation of all kinds of scientific knowl-
edge, via the use of SP patterns that are processed within the multiple alignment
framework.

It may seem strange, for example, to replace drawings of botanical specimens
or of anatomical parts of animals with representations via a new version of mathe-
matics,16 but SP and thus P-NMFS that incorporates SP has clear potential with
computer vision and the related field of computer graphics, as discussed in [51].
There is potential not only for 2D representations but also for the representation
of 3D structures, as discussed in [51, Section 6.1 and 6.2].

Of course it would be excessively labour-intensive for such representations to
be created by people in the manner of computer programming. Fortunately, there
is potential for SP to create SP representations automatically from photographs
and videos, with such inputs treated as New information.

The potential benefits of a uniform format for scientific knowledge are chiefly
in the processing of that knowledge, as described in Sections 5.12.1 and 4.3.3.

5.12.1 Unsupervised learning in science

An important reason for representing different kinds of scientific knowledge with
a uniform system is that it is likely to facilitate the discovery, via unsupervised
learning, of significant patterns, associations or structures that may otherwise
remain obscure.

A simple example, discussed in [53, Section III-A.1], is how the association
between thunder and lightning would be relatively hard for an artificial system to

16A notable early example of the application of mathematics to the description of botanical
and zoological forms is D’Arcy Thompson’s book On Growth and Form [41].
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discover if those two things were, on various occasions, referred to by a variety of
names or represented with different formalisms or formats.

Since people have little difficulty in learning that thunder is normally preceded
by lightning, we may guess that there is some uniformity in how those two things
are represented in our brains, despite the fact that thunder is something we hear
while lightning is something we see.

5.13 “Shut up and calculate” versus the DONSVIC prin-
ciple

There is an apparent conflict between the DONSVIC principle (Appendix B.4)
and the exhortation, to anyone who is trying to make sense of quantum mechanics
in terms of non-mathematical concepts, that they should “Shut up and calculate”
[1, Locations 106 and 119].

DONSVIC implies that one should be able to understand quantum mechanics
in terms that are natural and intuitive, while “Shut up and calculate” implies that,
with quantum phenomena, that aspiration is futile and that the mathematics of
quantum mechanics is all that matters.

In this connection, the word “natural” probably needs to be qualified. Phe-
nomena such as non-locality and entanglement (discussed in Section 5.8) can seem
seem unnatural when they are first encountered. But this may be attributed to the
fact that they are not things that are normally encountered in everyday life rather
than any intrinsic difficulty in understanding what they mean. The tentative view
adopted here is that the concept of naturalness in the DONSVIC principle may
apply to things like nonlocality and entanglement when one’s initial unfamiliarity
with the concepts has worn off.

But a different conclusion probably applies to quantum mechanics as a whole.
As was noted in Section 2.2, the absence of a satisfactory natural interpretation
of the mathematics of quantum mechanics may reflect a weakness in mainstream
mathematics rather than a weakness in the brain power of people like Albert
Einstein.

P-NMFS as described in Section 4 may, if it has been well developed, yield
an interpretation of the phenomena which are the subject of quantum mechanics
which is: 1) intuitive and natural, in accordance with the DONSVIC principle; and
2) as accurate as the mathematics in today’s quantum mechanics in the calculation
of predictions. As noted above, phenomena such as nonlocality and entanglement
appear to be genuine (Section 5.8), so if P-NMFS is working properly, it should
accommodate them.

In support of this view is the following somewhat speculative foray into cogni-
tive psychology. It seems that new concepts in science may, quite often, take shape
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in forms that do not directly match the conventions of mainstream mathematics.
Here are three putative examples:

• Michael Faraday developed his ideas without a knowledge of mathematics
and James Clerk Maxwell translated them into mathematical form.

“Without knowing mathematics, [Faraday] writes one of the best
books of physics ever written, virtually devoid of equations. He
sees physics with his mind’s eye, and with his mind’s eye creates
worlds.” [33, Location 623].

and

“Maxwell quickly realizes that gold has been struck with [Fara-
day’s] idea. He translates Faraday’s insight, which Faraday ex-
plains only in words, into a page of equations. These are now
known as Maxwell’s equations. They describe the behaviour of
the electric and the magnetic fields: the mathematical version of
the ‘Faraday lines’.” [33, Location 677].

• Charles Darwin described his theory of evolution by natural selection with
words and pictures. To this day, it is still normally described in the same
way.

• It seems that Albert Einstein’s ideas were generally developed first in non-
mathematical form and only later cast into mathematics:

“Einstein had a unique capacity to imagine how the world might
be constructed, to ‘see’ it in his mind. The equations, for him,
came afterwards; ... For Einstein, the theory of general relativity
is not a collection of equations: it is a mental image of the world
arduously translated into equations.” [33, Location 1025].

It seems possible that P-NMFS, by incorporating SP concepts of knowledge
representation and intelligence, may provide the means of representing and pro-
cessing scientific concepts in forms that are more in accord with the intuitions of
some leading scientists than is conventional mathematics.
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6 Conclusion

In this paper, it is argued that, despite its many strengths and undoubted value
in science, mathematics also has some weaknesses as a handmaiden for science
(Section 2). It has, for example: some shortcomings in the representation of
knowledge and in AI kinds of processing; under-expressiveness can be a problem;
and there are several problems with over-expressiveness, including problems with
infinities, and problems with mathematically-based scientific theories that appear
to be unfalsifiable.

To overcome the afore-mentioned weaknesses in mathematics, development of
P-NMFS may help to meet the needs of science more closely.

In its essentials, the proposal here is that P-NMFS may be created as an
amalgamation of mathematics as it is today with SP as it is today, including
developments in both areas that are anticipated now. It is envisaged that the
amalgamation would incorporate concepts from SP such as multiple alignment and
unsupervised learning, that concepts in mathematics would be interpreted within
the SP framework as far as possible, that SP may be modified where necessary, and
that structures and processes from one area would be dropped where equivalent
things can be done better with structures and processes from the other area.

In this paper, it is envisaged that P-NMFS, like SP, will be fundamentally
probabilistic, that it will exhibit versatility in the representation of knowledge and
versatility in aspects of intelligence including unsupervised learning, that it will
provide for the seamless integration of diverse kinds of knowledge and diverse as-
pects of intelligence, and that it will overcome the previously-mentioned problems
of under-expressiveness and over-expressiveness. In particular, P-NMFS will pro-
vide a means of evaluating scientific theories in terms of information compression
as described in Appendix E.

In several sections, there is discussion of some possible implications for science
of the NMFS proposal and the thinking behind it:

• Since there would be potential with P-NMFS for the reinterpretation of both
quantum mechanics and the theory of general relativity in terms of concepts
from SP, there is a corresponding potential for the long-sought-after unifi-
cation of quantum mechanics and general relativity. But it is unlikely that
anyone will ever develop a “theory of everything”, and it is likely that, quite
often, it will be necessary for us to accept two or more theories, in one area
or in diverse areas, that are fully or partially independent of each other.

• Without adopting the solipsistic view that each person’s ideas are the only
things that he or she can be sure of, with the possibility that the external
world might not exist, the view adopted here is that there is a world outside
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ourselves but that our knowledge of it is necessarily filtered through our
senses, sensing devices, methods of analysis including AI, and the ‘cognitive
machinery’ of our brains.

These filters can have a considerable impact on the shape of our theories.
More specifically, this paper proposes that multiple alignment, within SP,
may be a universal framework for the representation and processing of diverse
kinds of knowledge (UFK) [53, Section III], and that, potentially, all scientific
knowledge, including knowledge of physics, may be cast in that mould.

• The raw material for science may be seen to be information in the form of
waves which, for reasons given in Section 5.2, may encompass “energy” and
“matter”. It seems that all such information has a fractal character meaning
that, in principle, there is no limit to the level of detail we may consider. But
there will be practical limits set by our sensing technologies. And scientists
may sometimes choose to set higher limits in order to study higher-level
regularities in the world.

An implication of the idea that there is, in principle, no limit to the level
of detail we may consider, is that most theories are “emergent” in the same
way that the relatively simple gas laws emerge from the relative complexity
implied by the kinetic theory of gases.

• In the application of mathematics in science, there has often been a need to
make approximations, and it is likely that the same will be true of P-NMFS,
for reasons outlined in Section 5.3.

• Sources of uncertainty in science include: “noise” meaning unpredictability in
data (the non-redundant information that is left after our best compression
technique(s) have been applied); uncertainties arising from the making of
approximations; the making of scientific inferences; uncertainties related to
Gödel’s incompleteness theorems; observer effects; and uncertainties arising
from the measurement of speed.

• The way in which objects in physics and cosmology are conceived as theoret-
ical primitives contrasts sharply with the way in which objects are conceived
in artificial intelligence and cognitive science, where they are seen as rela-
tively high-level concepts that must be abstracted or constructed from raw
data. SP has strengths and potential in that kind of abstraction.

• Similar things may be said about concepts like motion, speed, velocity, mo-
mentum, and acceleration.
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• A potentially useful analogy for the concept of superposition in quantum
mechanics is ambiguity in the realm of human perception. This has been
illustrated with examples from the SP computer model.

• A potentially useful analogy for nonlocality and entanglement in quantum
mechanics is the phenomenon of discontinuous dependencies in natural lan-
guages. This has been illustrated with an example from the SP computer
model.

• Section 5.9 describes a “waterspout” interpretation for some of the two-
slits experiments. Here, a “waterspout” is a concentration of energy, like a
waterspout that may be created when waves in the sea crash into a rocky
shore. It is a possible artifact in the two-slits experiments, created when
an electromagnetic wave interacts with a sensitive screen. Interpreting each
spot on the screen as an artifact may be preferable to its interpretation as
the result of a particle hitting the screen.

• Potential advantages of SP in the realm of statistics may be seen: in the
way that compression of incoming data via unsupervised learning achieves,
in effect, a thorough statistical analysis of those data; in the way that the
multiple alignment concept has proved to be a vehicle for several kinds of
probabilistic reasoning and for their seamless integration in any combination;
in that SP has proved to be an effective alternative to Bayesian reasoning,
including reasoning in Bayesian networks; and in the way that SP can learn
structures as well as statistical associations and correlations.

• SP provides a potentially useful amalgamation of probabilistic and non-
probabilistic forms of reasoning, all flowing from the central role in the system
of information compression.

• In view of the versatility of SP in the representation of diverse kinds of
knowledge, there is potential for P-NMFS to be a vehicle for the representa-
tion of all kinds of scientific knowledge. The potential benefits of a uniform
format for different kinds of knowledge are chiefly in the processing of that
knowledge, especially in the automatic or semi-automatic creation of theory.

• P-NMFS may, if it has been well developed, yield an interpretation of the
phenomena which are the subject of quantum mechanics which is intuitive
and natural, and also as accurate as the mathematics in today’s quantum
mechanics. That expectation may apply to phenomena such as nonlocality
and entanglement that can seem strange at first.
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A Human cognition, science and mathematics

A little reflection shows that science and mathematics, as products of the human
mind, must necessarily be influenced by the psychology of learning, perception, and
thinking, meaning cognitive psychology. That influence appears to be strongest in
physics, especially quantum mechanics.

This appendix expands a little on the brief remarks in Section 3 about the
relationships amongst human cognition, science, and mathematics:

• Instead of a Platonist view that mathematical entities are “... numinous
and transcendent entities, existing independently of both the phenomena
they order and the human mind that perceives them.” [17, pp. 95–96],
mathematics may be seen as a psychological phenomenon, the product of
the human intellect, and a toolkit for the analysis of scientific observations
and for scientific theorising.

• The importance of information compression in science and mathematics (Sec-
tion 3) is in line with the abundance of other evidence for the importance
of information compression in human learning, perception, and cognition
([48, 58], [49, Chapter 2]).

• There is no need to adopt the solipsistic view that our ideas are the only
things we can be sure of and that the external world might not exist.17

• The view adopted in this paper is that there is a world outside ourselves but
that our knowledge of it is necessarily filtered through our senses, through
any artificial sensing devices that we may use, through methods of analysis
that we may apply (including artificial intelligence), and through our brains.
These filters, particularly the last, can have a considerable impact on the
shape of our theories and beliefs about the external world.

• More specifically, the conjecture, supported by evidence, that multiple align-
ment, within SP, may be a universal framework for the representation and
processing of diverse kinds of knowledge (UFK) [53, Section III], implies that
all scientific knowledge, including knowledge of physics, may be cast in that
mould.

Notice that this is not the kind of “catch all” theory that explains every-
thing and nothing (Appendix E). This is because it may be falsified with a

17It appears that, in rejecting solipsism, we may also be rejecting an important part of the
“Copenhagen” interpretation of quantum mechanics: “... by giving the observer ... a privileged
status, the Copenhagen interpretation denies the existence of an objective reality that exists in
the absence of observation.” [1, Location 1829]
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demonstration that one or more kinds of knowledge cannot in principle be
accommodated within the multiple alignment framework, as it is now or with
projected future developments. And it may at some stage become feasible
to evaluate the theory in terms of information compression.

• In this paper, aspects of physics where aspects of human cognition may be
seen to have an important role have been described in Sections 5.5, 5.6, 5.7,
and 5.8.

B Outline of the SP theory

The SP theory of intelligence and its realisation in the SP computer model is
the product of a long programme of research, seeking to simplify and integrate
observations and concepts across artificial intelligence, mainstream computing,
mathematics, and human learning, perception and cognition, with information
compression as a unifying theme.

The name “SP” is short for Simplicity and Power. This is because information
compression is central in the workings of SP and information compression may
be seen to be a process of maximising the simplicity of a body of information,
I, by extracting redundancy from I, whilst retaining as much as possible of its
non-redundant descriptive power. This may be seen to be equivalent to Occam’s
Razor [59, Section 2.1].

The SP system is described most fully in [49] and more briefly in [45]. Details
of related papers, many of them about potential applications of the system, may
be found on www.cognitionresearch.org/sp.htm.

The main sources of inspiration for the SP theory are:

• Research by Fred Attneave (see, for example, [2]), Horace Barlow (see, for
example, [3, 4]), and others, showing the importance of information compres-
sion in the workings of brains and nervous systems. Some relevant evidence
is presentedd in [59] (see also [48], [49, Chapter 2]).

• A programme of research developing computer models of language learning
(summarised in [47]) in which the importance of information compression
became increasingly clear.

• Ray Solomonoff’s research on Minimum Length Encoding, and Algorithmic
Probability Theory [36, 37, 38]. In [37], he argues that the great majority
of problems in science and mathematics may be seen as either “machine
inversion” problems or “time limited optimization” problems, and that both
kinds of problem can be solved by inductive inference via the principle of
minimum length encoding.
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Key features of SP are:

• Patterns and symbols. In SP, all kinds of information or knowledge are
represented as patterns, meaning arrays of atomic symbols in one or two
dimensions. Here, a ‘symbol’ is simply a mark that may be matched with
any other symbol to determine whether it is the same or different. No other
result is permitted. At present the SP computer model works only with one-
dimensional patterns but it is envisaged that it will be generalised to work
with two-dimensional patterns.

• The SP system as a brain-like system. The SP system is conceived as a
brain-like system that receives New patterns via its senses and stores some
or all of them in compressed form as Old patterns.

• Information compression via the matching and unification of patterns. The
SP system is dedicated to lossless information compression via the matching
and unification of patterns (ICMUP), as outlined in [59, Section 5].

• Lossless compression of information via the building and processing of mul-
tiple alignments. More specifically, SP is dedicated to lossless information
compression via the building and processing of multiple alignments, as out-
line in Appendices B.1 and B.2.

• Optional discarding of non-redundant information. As already mentioned,
SP is designed to achieve lossless compression of information, retaining all
non-redundant information and discarding only redundant information. But
for some applications, users may if they wish achieve lossy compression of
information by discarding some non-redundant information.

Other distinctive features of SP are described in Appendices B.3 to B.11.

B.1 The building of multiple alignments

Within SP, there are two key processes, described in this subsection and the one
that follows.

When the system has a reasonably large set of Old patterns in store, then,
when each New pattern is received, it is likely to be incorporated in a multiple
alignment like the one shown in Figure 7.
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0 1 2 3 4 5 6

<species>

acris

<genus> ---------------------------------------------------------------------------- <genus>

Ranunculus ------------------------------------------------------------------------- Ranunculus

<family> --------- <family>

Ranunculaceae ---- Ranunculaceae

<order> ------ <order>

Ranunculales - Ranunculales

<class> ------ <class>

Angiospermae - Angiospermae

<phylum> --------- <phylum>

Plants ----------- Plants

<feeding>

has_chlorophyll ------------------ has_chlorophyll

photosynthesises

<feeding>

<structure> ------ <structure>

<shoot>

<stem> ---------- <stem> ---------------------------- <stem>

hairy ----------- hairy

</stem> --------- </stem> --------------------------- </stem>

<leaves> -------------------------- <leaves>

compound

palmately_cut

</leaves> ------------------------- </leaves>

<flowers> ------------------- <flowers>

<arrangement>

regular

all_parts_free

</arrangement>

<sepals> -------------------------------------------------------- <sepals>

not_reflexed

</sepals> ------------------------------------------------------- </sepals>

<petals> -------- <petals> -------------------------------------------------------- <petals> --------- <petals>

<number> --------- <number>

five

</number> -------- </number>

<colour> -------------------------------------------------------- <colour>

yellow ---------- yellow

</colour> ------------------------------------------------------- </colour>

</petals> ------- </petals> ------------------------------------------------------- </petals> -------- </petals>

<hermaphrodite>

<stamens> ------------------------------------------------------------------------- <stamens>

numerous -------------------------------------------------------------------------- numerous

</stamens> ------------------------------------------------------------------------ </stamens>

<pistil>

ovary

style

stigma

</pistil>

</hermaphrodite>

</flowers> ------------------ </flowers>

</shoot>

<root>

</root>

</structure> ----- </structure>

<habitat> ------- <habitat> ------ <habitat>

meadows --------- meadows

</habitat> ------ </habitat> ----- </habitat>

<common_name> -- <common_name>

Meadow

Buttercup

</common_name> - </common_name>

<food_value> ----------------------------------- <food_value>

poisonous

</food_value> ---------------------------------- </food_value>

</phylum> -------- </phylum>

</class> ----- </class>

</order> ----- </order>

</family> -------- </family>

</genus> --------------------------------------------------------------------------- </genus>

</species>

0 1 2 3 4 5 6

Figure 7: The best multiple alignment created by the SP computer model, with a set of New patterns
(in column 0) that describe some features of an unknown plant, and a set of Old patterns, including
those shown in columns 1 to 6, that describe different categories of plant, with their parts and
sub-parts, and other attributes. Reproduced from Figure 16 in [45], with permission.



Here, the concept of multiple alignment in SP, which has been borrowed and
adapted from a similar concept in bioinformatics, means an alignment of two or
more sequences of symbols so that matching symbols are brought into line. In
SP, one of the sequences (sometimes more than one) is a New pattern which by
convention is shown in column 0. All the other sequences, one in each column of
the multiple alignment, are Old patterns.

For each New pattern, SP is designed to create or discover one or more multiple
alignments that allow the New pattern to be encoded economically in terms of the
Old patterns. How the encoding is done is described in [49, Section 3.5] and [45,
Section 4,1]. When ‘good’ multiple alignments have been found, the code pattern
for the best of them—which represents a compressed version of the New pattern—
may be added to the store of Old patterns.18 There may be a case for adding code
patterns for the second or third best multiple alignments as well.

As in bioinformatics, the process of creating or discovering ‘good’ multiple
alignments is complex, because, normally, there are astronomically large numbers
of possible multiple alignments for any given set of sequences. Most of them
are much less tidy and plausible than the one shown in Figure 7. To overcome
the complexity, it is necessary to use heuristic techniques, building each multiple
alignment in stages and weeding out low-scoring multiple alignments at each stage.
This can give results that are “reasonably good” but are not guaranteed to be
theoretically ideal.

The multiple alignment shown in Figure 7 may be seen to achieve the effect
of recognising an unknown plant, with features shown in column 0, as a Meadow
Buttercup (species acris, with features shown in column 1). At the same time, the
unknown plant is recognised as belonging to the genus Ranunculus (column 6), to
the family Ranunculaceae (column 5), to the order Ranunculales (column 4), and
so on. Different features are stored at different levels.

This example shows how, within the multiple alignment framework, it is possi-
ble to represent a class-inclusion hierarchy, as described in the last paragraph, and
also a part-whole hierarchy: ‘not reflexed’ (column 1), ‘sepals’ (columns 1 and
5), ‘flowers’ (columns 5 and 3), ‘structure’ (columns 3 and 2), and ‘phylum’
(column 2). And the example shows how those two kinds of hierarchy may be
integrated smoothly, without awkward incompatibilities.

B.2 Unsupervised learning

Unsupervised learning in SP may be seen to be achieved in stages:

18The SP71 computer model does not in fact add code patterns to its store of Old patterns.
But it is likely that later versions of the SP computer model will do that.
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• Storing New patterns directly. In the earliest phase, when there are relatively
few Old patterns in store, unsupervised learning will be largely a process of
adding New patterns directly to the store of Old patterns, normally with the
addition of two or more system-generated symbols as described below. Thus,
for example, a New pattern like ‘c o m e f o r b r e a k f a s t’ may
be stored as something like ‘A 1 c o m e f o r b r e a k f a s t #A’,
where ‘A’, ‘1’, and ‘#A’, are “identification” or “ID” symbols, for use by SP
at some later stage, for the creation of code patterns.

• Building multiple alignments. At later stages, when there is a reasonably
large number of Old patterns in store, it will become possible for the system
to build multiple alignments like the one shown in Figure 7. When there are
relatively few Old patterns in store, the best multiple alignments created by
the system will be relatively simple. With larger numbers of Old patterns
in store, it is likely that the best multiple alignments created by the system
will be relatively complex.

• The creation of grammars. As the system starts to build multiple alignments,
two other aspects of learning will come into play:

– The system begins to create Old patterns from partial matches between
patterns. For example, a partial match between ‘c o m e f o r b

r e a k f a s t’ and ‘c o m e f o r l u n c h’ may lead to the
creation of patterns like ‘c o m e f o r’, ‘b r e a k f a s t’, and
‘l u n c h’. Similar things may happen with code patterns that have
been added to the store of Old patterns.

– The system begins to create grammars—where each grammar is simply
a collection of Old patterns—which are relatively good at encoding New
patterns in terms of Old patterns. As with the building of multiple
alignments, there is normally an astronomically large number of possible
grammars and so it is necessary to use heuristic techniques to find
one or two that are relatively good. As with the building of multiple
alignments, this means the use of heuristic search: building grammars
in stages and, at each stage, weeding out the low-scoring grammars.
As before, this can give results that are “reasonably good” but are not
guaranteed to be theoretically ideal.

When the repository of Old patterns is initially empty, what is normally the
most interesting product of learning from a given body of information (I) (com-
prising New patterns) is the grammar (G) which yields a relatively small encoding
(E) of I in terms of G. Of the two main results, G and E, it is normally G which
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is of most interest. This represents a distillation of the “essence” of I, meaning
the recurrent features and structures in I.

It is anticipated that, when unsupervised learning in the SP computer model is
more fully developed, it will exploit all five of the variants of ICMUP described in
[59, Section 5.1]: chunking-with-codes, schema-plus-correction, run-length coding,
class-inclusion hierarchies with inheritance of attributes, and part-whole hierar-
chies with inheritance of contexts. It is also anticipated that it will be able to
encode discontinuous dependencies in structure, as described in Section 5.8.

B.3 Distinctive features and advantages of SP

Other features of SP are summarised in this and the following subsections.
Distinctive features of SP and its advantages compared with AI-related alter-

natives are described in [57]. In particular, Section V of the paper describes 13
problems with deep learning in artificial neural networks and how, in SP, those
problems may be overcome.

B.4 The DONSVIC principle

In connection with unsupervised learning, an important principle in SP is
DONSVIC: “The discovery of natural structures via information compression”
[45, Section 5.2]. The key idea here is that when techniques for information com-
pression are designed to achieve relatively high levels of information compression,
and when they are applied in such a way that they do in fact achieve relatively
high levels of information compressiom, the resulting structures are likely to be
ones that people will see as being natural.

This principle draws on the belief, supported by evidence ([48], [49, Chapter 2],
[58]), that the human brain is one of the most effective systems for the compres-
sion of information that is known to science, and that the way we conceptualise
the world, ‘naturally’, flows from the highly-effective ways in which we compress
information.

Of course, the word “natural” is not precise. And it may need to be qualified
in the light of concepts such as those associated with quantum mechanics (Section
5.13).

B.5 Integration of five basic techniques for the compres-
sion of information

An elegant feature of the multiple alignment concept is that it supports all five
of the variants of ICMUP described in [59, Section 5.1]. It also provides for the
seamless integration of these five techniques, in any combination. With the SP
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computer model, these things can be demonstrated in multiple alignments with
user-supplied patterns, but more work is needed for these techniques to be fully
realised via unsupervised learning.

B.6 Modelling commonsense reasoning and commonsense
knowledge in SP

Several problems for AI systems in the modelling of commonsense reasoning and
commonsense knowledge are described by Ernest Davis and Gary Marcus in [10].
How these problems may be solved via SP is described in a draft paper [55].

B.7 Versatility and adaptability in the representation of
knowledge and in aspects of intelligence

As is outlined in Sections 4.2, 4.3, and 4.4, SP exhibits versatility in the repre-
sentation of diverse kinds of knowledge, versatility in diverse aspects of intelli-
gence, including unsupervised learning, and seamless integration of diverse kinds
of knowledge and diverse aspects of intelligence in any combination.

These strengths of SP flow largely from the central role in the system of the
powerful concept of multiple alignment. This concept, as it has been developed in
SP, has the potential to be the “double helix” of intelligence, to be as significant
for an understanding of human-like intelligence as is DNA for biological sciences.

B.8 The SP system is fundamentally probabilistic

The intimate relation between information compression and concepts of prediction
and probability [36, 38, 24] means that SP is fundamentally probabilistic. For
that reason, it is easy to calculate absolute and relative probabilities for multiple
alignments and for inferences that may be drawn from multiple alignments ([49,
Section 3.7], [45, Section 3.7]).

By contrast with Bayesian networks, for example, which store their statistical
knowledge as tables of conditional probabilities, which can become very large,
SP stores all its statistical knowledge very much more simply as a frequency of
occurrence for each SP pattern, and uses that information for the calculation of
absolute and relative probabilities, if or when required. How Bayesian networks
may be modelled with SP is described in [49, Section 7.8] and [45, Section 10.2].

B.9 Software engineering and SP

Although it is not obvious at first sight, SP, via multiple alignment, may model
several different features of programming languages, with corresponding potential
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in software engineering [54, Section 6.6]. Features that may be modelled include:
procedure, function, or subroutine, with or without parameters; variables, values,
and types; conditional statements; repetition of procedures via recursion; the inte-
gration of ‘programs’ and ‘data’; and object-oriented design. There is also potential
for the processing of parallel streams of information as described in [52, Sections
V-G, V-H, and V-I, and Appendix C].

B.10 Unfinished business

As described in [45, Section 3.3], there there are still things to do in the develop-
ment of the SP computer model. In brief, with updates:

• The system needs to be generalised to process two-dimensional patterns as
well as 1D patterns.

• There is a need to understand better how perceptual features in speech and
in visual images may be abstracted from raw data.

• Two main weaknesses need to be remedied in the processes for unsupervised
learning: although the system learns the highest levels of abstraction, it
cannot learn intermediate levels; and the system does not learn discontinuous
dependencies in structure.

• A better understanding is needed of how the system may be applied to the
representation and processing of numbers.

• A better understanding is needed of how the system may be applied to
the representation and processing of concepts such as ‘motion’, ‘speed’, and
‘acceleration’ [51, Section 5.3], and other concepts that have not yet been
examined in the SP programme of research.

• The SP computer model needs a more ‘friendly’ user interface.

• Since SP, like other AI systems, is intrinsically ‘hungry’ for computer power,
especially with unsupervised learning, there are potential benefits in porting
the existing model on to an existing high-performance computer and apply-
ing parallel processing where possible. Although SP can be demanding for
computer power, there are reasons to believe that a mature version of SP is
likely to be very much less demanding than, for example, systems for deep
learning in artificial neural networks [34]. There is relevant evidence and
arguments in [53, Sections VIII and IX] and [57, Sections IV and V-E].
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B.11 SP-neural

There appears to be potential to translate key concepts in the SP theory—chiefly
the representation of knowledge with SP patterns, and the building of multiple
alignments—into equivalent concepts expressed in terms of neurons and their inter-
connections and inter-communications ([56], [49, Chapter 11]). These ideas, called
SP-neural, are radically different from “artificial neural networks” that are popular
in computer science, including artificial neural networks that feature in research on
“deep learning”. In particular, mechanisms for learning in SP, including SP-neural,
are quite different from mechanisms for learning in artificial neural networks [57,
Section V-D].

Figure 8 shows how a structure of class-inclusion relations and part-whole re-
lations may be represented by pattern assemblies—the neural equivalent of SP
patterns in the non-neural SP theory—and by connections between pattern as-
semblies.
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A …

AV …

VM …
purrs

barks

tabby white bib

D …M

suckles young

furry

backbone

eats breathes

Tibs …C

…MC

Figure 8: An example showing schematically how SP-neural can represent class-
inclusion relations and part-whole relations. Key: ‘C’ = cat, ‘D’ = dog, ‘M’ =
mammal, ‘V’ = vertebrate, ‘A’ = animal, ‘...’ = further structure that would be
shown in a more comprehensive example. Pattern assemblies—the neural equiva-
lent of SP patterns—are surrounded by broken lines and each neuron is represented
by an unbroken circle or ellipse. Lines with arrows show connections between pat-
tern assemblies and the flow of sensory signals. Connections between contiguous
neurons within each pattern assembly are not marked. ID-neurons—the neural
equivalent of ID-symbols in the non-neural SP theory—are larger than the others
and are labelled with oblique letters. All other neurons are C-neurons, the neural
equivalent of C-symbols. Each of these may be seen as a neural reference to the
cell assembly from which it receives signals. Reproduced with permission from
Figure 11.6 in [49].



C Information and physics

In his excellent book for non-specialists about quantum gravity, Carlo Rovelli
writes:

“Many scientists suspect today that the concept of ‘information’ may
turn out to be a key for new advances in physics. Information is men-
tioned in the foundations of thermodynamics, the science of heat, the
foundation of quantum mechanics and in other areas besides, with the
word quite often used very imprecisely.” [33, Location 2558].

This suggests that there may be some convergence between current thinking
amongst physicists about the role of information in theories of physics and what
has been said in this paper about information (Section 5.2) and, throughout this
paper, about the role of information compression in cognition, mathematics, and
science.

In the light of what Rovelli says elsewhere in [33], some tentative points of
similarity and difference are described in the following subsections.

C.1 The nature of information

As was noted in Section 5.2, the concept of information adopted by Rovelli (a
“measure of the number of possible alternatives for something” [33, Location 2565],
in accordance with Shannon’s [35] concept of information) is similar to the concept
of information adopted in this paper.

C.2 Information and communication

“Why is the notion of information useful, perhaps even fundamental, to
understanding the world? For a subtle reason: because it measures the
ability of one physical system to communicate with another physical
system.” [33, Locations 2583–2590].

This “communication” aspect to information chimes with Shannon’s concept
of information, described in [35], as illustrated by the title of that book: The
Mathematical Theory of Communication.

Here, there seems to be some discrepancy with the concept of information
adopted in the SP programme of research, where it has not so far appeared nec-
essary to bring a concept of communication into play. But see Appendix C.3.
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C.3 Correlations and redundancy

“The world isn’t ... just a network of colliding atoms: it is also a net-
work of correlations between sets of atoms, a network of real reciprocal
information between physical systems.” [33, Location 2614].

In this quote and elsewhere in [33, Chapter 12], the word “correlation” appears
to mean much the same as the word “redundancy” in this paper and in other
writings about information.

Readers who are familiar with the writings of Lewis Carroll will know that the
words And as in uffish thought he stood, are to be followed by The Jabberwock, with
eyes of flame, Came whiffling through the tulgey wood, And burbled as it came! We
can say that these two parts of the Jabberwocky poem are “correlated” with each
other because the first part is normally followed by the second part. But equally
we can say that there is redundancy, meaning repetition of information, in the way
that the two parts are frequently repeated together in the many copies of Through
the Looking-Glass, and in the many other places where the poem appears.

If, in relevant contexts, the words “correlation” and “redundancy” mean the
same thing, this may help to bridge the possible divide noted in Appendix C.2.

D This idea must die

This appendix considers some of the issues which are discussed in a collection of
papers, This idea must die [7], concentrating on those which are most relevant to
the main themes of this paper.

D.1 A theory of everything, and unification

The notion of a theory of everything:

‘... would be based on a parsimonious set of underlying mathematiz-
able universal principles that integrate and explain all the fundamental
forces of nature, from gravity and electromagnetism to the weak and
strong nuclear forces, incorporating Newton’s laws, quantum mechan-
ics, and general relativity. Fundamental quantities like the speed of
light, the dimensionality of spacetime, and the masses of the elemen-
tary particles would all be predicted, and the equations governing the
origin and evolution of the universe through to the formation of galaxies
and beyond would be derived—and so on.” [43, Locations 278–281].

In his paper, Geoffrey West gives credit for the great progress that has been
made towards the goal of developing a theory of everything, but points out, quite
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plausibly, that in this context the word “everything” is too strong: “Where’s
life, where are animals and cells, brains and consciousness, love and hate, etc,
etc?” (ibid., Location 288). The gist of his argument is that there is far too
much complexity in the world for it all to be described or predicted by “ ‘just’
turning the crank of increasingly complicated equations and computations” which
are “presumed, in principle, to be soluble to any sufficient degree of accuracy.”
(ibid., Location 291).

In the same vein, Marcelo Gleiser writes:

“The trouble starts when we take [the notion of unification of theories]
too far and search for the Über-unification, the Theory of Everything,
the arch-reductionist notion that all forces of nature are merely man-
ifestations of a single force. This is the idea that needs to go.” [14,
Locations 313–316].

and

“The impulse to unify it all runs deep in the souls of mathematicians
and theoretical physicists, from the Langlands program to superstring
theory. But here’s the rub: Pure mathematics isn’t physics. The power
of mathematics comes precisely from its detachment from physical re-
ality. A mathematician can create any universe she wants and play all
sorts of games with it. A physicist can’t; his job is to describe nature
as we perceive it. (ibid., Locations 322–326).

To be clear, it is not proposed that P-NMFS, as outlined in this paper, would be
a theory of everything, or the beginnings of such a theory. What is proposed here
is the beginnings of a framework for the creation or expression of theories. With
development, the multiple alignment framework may facilitate the integration or
“unification” of what may otherwise be inconsistent or incompatible theories (such
as quantum mechanics and the theory of general relativity).

But it is likely that a comprehensive unification of all scientific theories will
remain for ever out of reach, with some relatively successful theories where there are
islands of redundancy and predictability, and with large seas of unpredictability in
the areas in between. And even within the islands of redundancy and predictability
there will be a persistent need to make approximations (as described in Section
5.3), with corresponding limits on the accuracy or reliability of predictions.

Nevertheless, the integration or unification of ideas is to be welcomed wherever
it can be found.
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D.2 Simplicity

A. C. Grayling writes:

“Simplicity is a desideratum in science, and the quest for it is a driver
in the task of effecting reductions of complex phenomena to their com-
ponents. It lies behind the assumption that there must be a single force
in nature, of which the gravitational, electroweak, and strong nuclear
forces are merely manifestations; and this assumption in turn is an in-
stance of the general view that there might ultimately be a single kind
of thing (or stuff or field or as-yet-undreamt-of phenomenon) out of
which variety springs by means of principles themselves fundamental
and simple.

“Compelling as the idea of simplicity is, there’s no guarantee that
nature itself has as much interest in simplicity as those attempting
to describe it. ...” [16, Locations 358–364].

Yes, notwithstanding Isaac Newton’s slightly whimsical suggestion that “Na-
ture is pleased with simplicity” [28, p. 320], it’s not nature that has an interest
in simplicity, it is, as A. C. Grayling says, something that is of interest to those
attempting to describe nature. So if some aspect of nature is intrinsically complex,
then a good scientific description of it would also be complex, with the possible
exception of approximations that we may choose to make (Section 5.3).

And of course simplicity by itself may easily lead to over-simple theories. Hence
the need for it to be in balance with descriptive or explanatory power (Section 3
and Appendix E).

D.3 Infinity

Despite the elegance and mathematical importance of Georg Cantor’s work on
infinities, the concept of infinity can be problematic for science. Max Tegmark
writes:

“The assumption that something truly infinite exists in nature under-
lies every physics course I’ve ever taught at MIT—and, indeed, all
of modern physics. But it’s an untested assumption, which begs the
question: is it actually true?” [40, Location 804].

He goes on to say:

“There are in fact two separate assumptions: ‘infinitely big’ and ‘in-
finitely small.’ By infinitely big, I mean that space can have infinite
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volume, that time can continue forever, and that there can be infinitely
many physical objects. By infinitely small, I mean the continuum—the
idea that even a liter of space contains an infinite number of points, that
space can be stretched out indefinitely without anything bad happen-
ing, and that there are quantities in nature that can vary continuously.
The two assmptions are closely related, because inflation, the most
popular explanation of our Big Bang, can create an infinite volume by
stretching continuous space indefinitely.

“The theory of inflation has been spectacularly successful and is a
leading contender for a Nobel Prize. It explains how a subatomic speck
of matter transformed into a massive Big Bang, creating a huge, flat,
uniform universe, with tiny density fluctuations that eventually grew
into today’s galaxies and cosmic large-scale structure—all in beautiful
agreement with precision measurements from experiments such as the
Planck and the BI-CEP2 experiments. But by predicting that space
isn’t just big but truly infinite, inflation has also brought about the
so-called measure problem, which I view as the greatest crisis facing
modern physics. Physics is all about predicting the future from the
past, but inflation seems to sabotage this. When we try to predict
the probability that something particular will happen, inflation always
gives the same useless answer: infinity divided by infinity. The problem
is that whatever experiment you make, inflation predicts there will be
infinitely many copies of you, far away in our infinite space, obtaining
each physically possible outcome; and despite years of teeth-grinding
in the cosmology community, no consensus has emerged on how to
extract sensible answers from these infinities. So, strictly speaking, we
physicists can no longer predict anything at all!

“This means that today’s best theories need a major shakeup by re-
tiring an incorrect assumption. Which one? Here’s my prime suspect:
∞.

“A rubber band can’t be stretched indefinitely, because although it
seems smooth and continuous, that’s merely a convenient approxima-
tion. It’s really made of atoms, and if you stretch it too far, it snaps.
If we similarly retire the idea that space itself is an infinitely stretchy
continuum, then a big snap of sorts stops inflation from producing an
infinitely big space and the measure problem goes away. Without the
infinitely small, inflation can’t make the infinitely big, so you get rid of
both infinities in one fell swoop—together with many other problems
plaguing modern physics, such as infinitely dense black-hole singulari-
ties and infinities popping up when we try to quantize gravity.” (ibid.,
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Locations 804–827).

Tegmark acknowledges that “infinity is an extremely convenient approximation
for which we haven’t discovered convenient alternatives.” (ibid., Location 830),
but warns that “Despite their seductive allure, we have no direct observational
evidence for either the infinitely big or the infinitely small.” (ibid., Location 837).

In a similar vein, writing about the elimination of the concept of infinity in the
theory of quantum gravity, Rovelli writes:

“The infinitely small no longer exists. The infinities which plague con-
ventional quantum field theory, predicated on the notion of a con-
tinuous space, now vanish, because they were generated precisely by
the assumption, physically incorrect, of the continuity of space. The
singularities which render Einstein’s equations absurd when the grav-
itational field becomes too strong also disappear: they are only the
result of neglecting the quantization of the field.” [33, Location 2130].

Again, Jim Al-Khalili writes:

“An obvious question, with history as our guide, is whether the electron
and quarks are indeed fundamental, or made of yet smaller pieces like
Russian dolls. The honest answer is: we don’t know! All we can say
is that with the best experiments we are able to do today, there is no
hint of deeper structure.” [1, Locations 2478–2484].

In short, we should not lose sight of the empirical foundations of any theory,
and we should take care that inferences that derive from any theory do not run
too far ahead of their empirical underpinnings, as discussed in Appendix E.

D.4 String theory and multiverse theory

Some of the contributors to [7] express reservations about string theory and mul-
tiverse theory:

• Frank Tipler writes:

“Since string theorists have failed to propose any way to confirm
string theory experimentally, string theory should be retired, to-
day, now.” [42, Location 1002].

• Peter Woit writes:
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“The idea of unifying physics by positing strings moving in ten
space/time dimensions as fundamental entities was born in 1974
and became the dominant paradigm for unification from 1984 on.
After forty years of research and tens of thousands of papers, what
we’ve learned is that this is an empty idea. It predicts nothing
about anything, since you can get pretty much any physics you
want by appropriately choosing how to to make six of the ten
dimensions invisible.” [44, Locations 1054–1055].

• Paul Steinhardt writes:

“A pervasive idea in fundamental physics and cosmology that
should be retired: the notion that we live in a multiverse in which
the laws of physics and the properties of the cosmos vary ran-
domly from one patch of space to another. According to this view,
the laws and properties within our observable universe cannot be
explained or predicted, because they’re set by chance. Different
regions of space too distant to ever be observed have different laws
and properties, according to this picture. Over the entire mul-
tiverse there are infinitely many distinct patches. Among these
patches, in the words of Alan Guth, ‘anything that can happen
will happen; in fact, it will happen an infinite number of times.’
Hence, I refer to this concept as a Theory of Anything.

“Any observation or combination of observations is consistent with
a Theory of Anything. No observation or combination of observa-
tions can disprove it. Proponents seem to revel in the fact that
the theory cannot be falsified. The rest of the scientific community
should be up in arms, since an unfalsifiable idea lies beyond the
bounds of normal science. Yet, except for a few voices, there has
been surprising complacency about (and in some cases grudging
acceptance of) a Theory of Anything as a logical possibility. ...”
[39, Locations 893–903].

• And Gregory Benford writes:

“... it’s hard to devise an elegant cosmological theory that yields
directly the small cosmological constant we observe. Some solve
this problem by invoking the anthropic principle, and thus multi-
verses of some sort. But this ventures near a violation of another
form of the elegance standard, Occam’s razor. Imagining a vast
sea of multiverses, with us arising in one where conditions produce
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intelligent beings, seems excessive to many of us. It invokes a plen-
titude we can never see. The scientific test of multiverse cosmology
is whether it leads to predictable consequences.

“Can multiverses converse with one another? That would be a
way of verifying the basis of such theories. Most multiverse mod-
els say there’s no possible communication between the infinitude
of multiverses. Brane theory, though, comes from models where
no force law operates between branes except gravitation. Per-
haps someday an instrument like LIGO, the Laser Interferome-
ter Gravitational-wave Observatory, can detect such waves from
branes. But is it elegant to shift confirmation onto some far future
technology? Sweeping dust under a rug seems inelegant to me.”
[5, Locations 5371–5378].

These concerns relate to the issue of how scientific theories should be evaluated,
discussed in Appendix E.

E The formation and evaluation of scientific the-

ories

What is envisaged here is that, at some stage, SP and P-NMFS may provide a
means, via unsupervised learning, for the automatic or semi-automatic creation of
scientific theories.

An important part of any such process, and also in traditional methods for the
formation of theories, is distinguishing ‘good’ theories from ‘bad’ ones. Here are
brief notes on two influential views about how scientific theories can or should be
evaluated:

• Karl Popper and falsifiability. In The Logic of Scientific Discovery [32],
and in Conjectures and Refutations [31], Karl Popper argues that scientific
theories cannot be confirmed, only falsified. Although these ideas have been
criticised, they serve as a welcome antidote to such things as Freud’s theory
of dreams [13] which was constructed in such a way that it can always be
made to fit any evidence, meaning that it can never be falsified. For that
reason, Popper argues that such theories should not be regarded as scientific.

• Occam’s Razor. As we have seen (Section 3), it is widely accepted that any
good scientific theory should conform to Occam’s Razor, meaning that it
should combine simplicity with explanatory or descriptive power. This may
be seen to be equivalent to the lossless compression of a body of observational
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data, I, with the qualification that the results of compression may be divided
into two parts: a ‘grammar’ G, and an ‘encoding’ of I in terms of G, which
we may call E, and normally we would be more interested in G, the ‘theory’
of I, than in E.

It would take us too far afield in this paper to discuss the matter in detail. In
brief, the hypothesis favoured here is that notions of falsification may be seen at
work within a conceptual framework like SP in which information compression is
centre-stage.

In support of that hypothesis, the way in which the appearance of one black
swan can, with 100% certainty, invalidate the generalisation that “All swans are
white” is somewhat like the way that, within the SP framework, the news that
“Tweety is a penguin” can lead, with 100% certainty, to the conclusion that
“Tweety cannot fly”, by contrast with the conclusion that “Tweety can fly (with
probably 0.66)”, based on the knowledge that “Tweety is a bird”—and without the
additional knowledge that “Tweety is a penguin” ([45, Section 10.1], [49, Section
7.7]).

Although falsifiability is useful in distinguishing good scientific theories from
bad ones, it has not eliminated scientists’ reliance on somewhat vague “gut feel-
ings” about this or that theory, or on such imprecise notions as “beauty” or “el-
egance” in a theory, and it has not eliminated the way in which judgments may
be coloured by emotional attachments to one’s own theories, or by success or
otherwise in winning publicity for a given theory.

There is a pressing need for something more precise and disciplined, and this
is where SP may help. There is potential with SP for the quantitative evaluation
of any given scientific theory, T, in terms of information compression:

• With fully-automatic unsupervised learning. Although, with the current SP
computer model, there is still unfinished business in the development of
unsupervised learning (Appendix B.10), there is clear potential for the fully-
automated unsupervised learning of scientific theories [54, Section 6.10.7].

Any T would be delivered with a measure of information compression, com-
paring the size, SI , (in bits) of the raw data (I) which provides the basis for
T with the size, SIC , (in bits) of those data when they have been compressed
(IC). What has proved to be a useful measure is a ratio of the two: SIC/SI .

19

In comparing one theory with another, measures of information compression
as just described would be most useful if rival theories are derived from the

19In the SP computer model, SIC is the measure of success that is used in unsupervised
learning [49, Section 9.2.6.1]. This is satisfactory because, for any given run of the program, SI

is constant.
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same I. But even if rival theories are derived from different Is, measures of
information compression may still prove useful in comparing theories, espe-
cially if there is overlap amongst different Is, the larger the better.

• With traditional methods for the development of theories, or with semi-
automatic unsupervised learning. Without the fully automatic unsupervised
learning of scientific theories, traditional methods would still be available
for the development of scientific theories, and there is potential for the use
of such methods in conjunction with semi-automatic unsupervised learning.
Either way, there is potential for the quantitative evaluation of fully- or
partially-developed theories, along the lines outlined above. For any given
body of mathematics, or any given computer program, it would be necessary
to show that it can achieve substantial compression of information with one
or more representative bodies of data.

E.1 Working with data that has been encoded

A potential complication with this scheme is that the reference body of data for any
theory, I, may not be “raw” data in the sense that it has been drawn directly from
the environment. For various reasons, it may have been encoded already in terms
of some theory or encoding scheme. In cases like that: 1) it may be necessary to
decode I before it is used for the creation of T via unsupervised learning, or before
it is used in the evaluation of a given theory in terms of information compression;
or 2) It may sometimes make sense to use I in its encoded form as the basis for
unsupervised learning or for the evaluation of a given theory that has I in its
encoded form as its reference data. These and related issues are discussed more
fully in [53, Section IV-B].

E.2 Striking a balance between over-general and over-
specific theories

Quantitative measures of information compression should help to steer us away
from weak theories, including ones like these:

• Over-general theories. Some theories are too general to be useful, exhibit-
ing over-generalisation as described in [59, Appendix B]. They may be ad-
mirably simple but they are lacking in descriptive or explanatory power:
they explain nothing because they explain everything. For example, a rather
unhelpful ‘theory’ of knowledge would be that all kinds of knowledge may
be represented with 0s and 1s. This is true but it gives us no handle on
such knowledge-related issues as how to use knowledge in reasoning, how to
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recognise things, and so on. As described in Section 2.4.2 and Appendix
D.4, string theory and multiverse theory may be over-general theories of this
kind.

• Over-specific theories. Some theories are too specific to be useful, exhibiting
under-generalisation as described in [59, Appendix B]. These are theories
that, to a large extent, re-describe the observations they are meant to explain.
They deliver little or nothing in terms of simplicity and, because there is little
or no generalisation, they are weak in terms of descriptive or explanatory
power.

In the light of the observations in [59, Appendix B], it seems likely that over-
general and over-specific theories will both score worse in terms of information
compression than theories that strike a balance between generality and specificity.

E.3 Hypothetical constructs

The emphasis here on the compression of raw data may suggest that unsupervised
learning in SP is merely a form of statistical analysis that is incapable in principle
of forming the kinds of hypothetical construct—such as ‘electrons’, ‘photons’, and
the like—that have proved to be so useful in the development of science.

But although SP can discover correlations and associations between things, it is
designed also to discover object-like entities such as words [49, Section 9.4], it has
potential to discover 3D structures [51, Sections 6.1 and 6.2], and it is anticipated
that, when some residual problems in the SP computer model have been solved [45,
Section 3.3], it will be able to discover such structures as class-inclusion hierarchies
and part-whole hierarchies.

In short, there is potential for the system to create or discover hypothetical
constructs, as would be needed in any system for the automatic or semi-automatic
creation of new theories.

F Quantum mind, quantum cognition, and the

SP theory

Discussions in this paper about human learning, perception, and cognition, SP, and
quantum mechanics may suggest, on a superficial reading, that what is proposed
is merely a variant of ideas about “quantum mind”20 or “quantum cognition”.21

20See, for example, “Quantum mind”, Wikipedia, bit.ly/2nmtgoN, retrieved 2017-03-15
21See, for example, “Quantum cognition”, Wikipedia, bit.ly/2mYHg74, retrieved 2017-03-15
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The point of this short appendix is to emphasise that the proposals in this
paper are radically different:

• Quantum mind theories propose that “quantum mechanical phenomena, such
as quantum entanglement and superposition, may play an important part in
the brain’s function and could form the basis of an explanation of conscious-
ness”.22

• Quantum cognition theories “[apply] the mathematical formalism of quantum
theory to model cognitive phenomena such as information processing by
the human brain, language, decision making, human memory, concepts and
conceptual reasoning, human judgment, and perception.23

• By contrast, the SP theory of intelligence proposes that artificial intelligence,
mainstream computing, mathematics, and human learning, perception, and
cognition may, to a large extent, be understood as information compression
via the matching and unification of patterns, and, more specifically, via a
concept of multiple alignment, borrowed and adapted from bioinformatics.
And in this paper it is proposed that there are potential benefits in developing
P-NMFS from an amalgamation of mathematics with the SP system and
that, within that new framework, there is potential for new syntheses in
science, including new thinking about the phenomena that are the subject
of quantum mechanics.
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