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Abstract

The calculation of lookback time and particle horizon in the ΛCDM model is simplified by use of an 
explicit formula for the cosmic expansion scale factor S(t). 
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In describing the universal expansion S(t),1 we distinguish the physical position r (t) of an object 
from its permanent (“comoving”) coordinate x through the relation2

r=S (t ) x .
We postulate that light travels on null geodesics.  At the infinitessimal level, this means

ds2
=0=dr2−c2 dt 2 ,

where the increment ds is relativistically invariant.  We also have dr=S (t)dx , at a fixed time t.     
Therefore,

S (t)2dx 2=c2 dt 2

and
c dt
S (t)

=dx .

So c dt /S ( t) is an increment of coordinate distance, and we can track a light signal from one given x 
to another by integrating S (t)−1 between the times of emission and reception:

Δ x=c∫ S (t)−1 dt ,

where the limits of integration are tE and tR .  If the signal is both emitted and received a tiny bit 
later, the limits of integration are from tE+δ tE to tR+δ tR . But for Δ x to remain the same, what 
we add at time tR must precisely equal what we subtract at tE , i.e.,

c δt R/S (tR)=c δ tE /S (tE) .
If we think of c δt as the wavelength of the light, we have

λR

λE
=

S ( tR)

S (t E)
≡z+1 .

This is the standard definition3 of the cosmological redshift z.  It is an effect of the relentless expansion,
rather than a velocity effect.

If we extend the limits of integration so that tE=0 and tR=t0 (the age of the cosmos), and if the 
integral can actually be carried out, the result will determine the maximum possible distance a photon 
could ever have traveled, and thus an absolute limit on the greatest observable distance DH :

DH=S (t 0)∫ cdt /S (t) .
We have an explicit formula1 for S(t),

S 3
(t)=

4
3
πG

ρ0

λ
[cosh(3 t √λ)−1] ,

and we can exploit this to perform the integration numerically.  In doing so, we recognize that the 
denominator S(t) in the integral becomes vanishingly small as t →0 . Therefore, we work backwards 
from t 0 in terms of lookback time t 0−t , and we decrement time logarithmically.

Fig. 1 plots lookback time (red) and present physical distance (blue) versus redshift z, out as far as
z=12 . For the lowest redshifts, where most of the observational data lie, time and distance are well 

determined by z.  The curves then flatten and become less definitive.  Still, for a z value of 12, the 
graph estimates a lookback time near 13 Gyr, and a present distance of 32 Glyr.  Nothing travels faster 
than light, but while the light was traveling, the distance from emitter to receiver was increasing.
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The earliest t graphed in Fig. 1 is still almost a billion years after the beginning of expansion.  To go 
earlier than this, we must proceed very carefully.  Fig. 2 extends the graph of redshift versus time to 
much higher redshifts and much earlier times, but now employs a logarithmic scale for both variables.

The blue curve in Fig. 2 plots S (t0) /S ( t) , i.e., z+1.  The entire range of Fig. 1 fits into the lower-left 
corner of Fig. 2, where t / t0 < ~.027.4  Beyond that point, the curve is indistinguishable from a 
straight line.  I have terminated the graph at z = ~1100, the redshift attributed to the Cosmic 
Background Radiation, the earliest observational data, at t = 485,000 yrs.

The slope of the straight line in Fig. 2 is precisely (i.e., asymptotically) -2/3, although the y-intercept is 
not precisely 0.  Nevertheless,

S (t 0) /S ( t)=( t / t 0)
−2/3

is a useful approximation sometimes seen in the literature.  It provides the estimate

DH=c t 0∫
d τ

τ
2/ 3

,

where τ=t / t0 , and yields the value DH=3c t 0 , about 42 billion light-years.  We can improve upon
this somewhat by using the actual curve of Fig. 1 (for z < 12)  rather than this approximation.  We 
remove 3c t0[(1)

1/ 3
−(.027)

1/3
] = 29.5 Glyr, and we replace it with the 32 Glyr of Fig. 1, for a grand 

total of 44.5 Glyr. 

Fig. 2 employs the exact expression for S (t 0) /S ( t) and demonstrates that (t / t0)
−2 /3 is an excellent 

approximation in early times.  Moreover, and most importantly, this approximation yields a finite 
integral, i.e., it shows that a horizon exists.  Of course, the horizon recedes as time goes on.  We also 
note that the realm z < 12 encompasses more than 90% of lookback time as well as 70% of the present 
distance to the horizon.

One should bear in mind that the comoving coordinate x is conceptually important but arbitrary, if not 
altogether fictitious.   Together with its companion density5 ρ0 , it serves as a placeholder during 
development of the theory, which ultimately confronts observable z and ρ(t 0) .   There is no way to 
determine an x or ρ0 .  Nevertheless, in books and articles, one often sees the comoving coordinate 
discussed as if it were a real thing.

Similarly, we called the formula for S 3
(t) “explicit,” although it contains the arbitrary ρ0.  But it 

gives an unambiguous prediction of the ratio S (t1)/ S (t 2) at two different times, i.e., redshift.  As a 
practical matter, S (t) /S ( t0) easily normalizes S(t) to unity in our present era.

The explication in this and the previous article1 is based on a few general assumptions.  The universe is 
isotropic and homogeneous.  Therefore (surprisingly) there exists a universal time.6  Three-space is 
orthogonal to that time and could have curvature ±1, but is, in fact, “flat” (k=0).7  The large-scale 
motion we observe is described as a universal expansion S(t).  All these principles precede, and are 
independent of, General Relativity.8

GR allows a more comprehensive dynamics, which adds effects (such as radiation pressure) that are, 
however, irrelevant in our present era.  And it comes with a burden of dark verbiage that creates an 
intimidating mystique but does not help to clarify the subject at hand – the observable universe.  
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Fig. 1: Based on S(t), lookback time t 0−t (red) and present actual 
distance (blue) are plotted versus redshift.  The age

of the universe t 0 here is taken as 13.9 Gyr.
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Fig. 2: Based on S(t), a log-log plot of redshift versus τ=t / t0 ,
terminated at CMB time.  Asymptotically, a straight

line with slope (-) 2/3.

5



Notes

1. See “Cosmology on the Back of an Envelope,” viXra 1704.0303.

2. This r should be thought of as a straight line connecting us with the distant object.  In the expansion 
paradigm, r is required to be zero when t = 0, but not x. 

3. For example, Weinberg, Cosmology, 2008, p.10.

4. At the point where t / t0 = .027, log τ=−1.57 .

5. Some authors mean ρ(t 0) when they write ρ0.

6. See Weyl's Postulate.

7. See Robertson-Walker line element.

8. It needs to be said that the “Newtonian” approach to cosmology was discovered by E. A. Milne and 
W. H. McCrea in the face of considerable backlash from the GR cult.
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