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The purpose of this document is to show the complexity of verifying the validity of a deterministic
conformant plan. We concentrate on a simple version of the conformant planning problem (i.e., one where
there is no precondition on the actions and where all conditions are defined as sets of positive or negative
facts) in order to show that the complexity does not come from solving a single such formula.

Conformant Plan Validity

Let F be a set of facts; a fact is denoted by f ∈ F . The extension Ext(F ) of F is the set of facts and their
negations: Ext(F ) =

⋃
f∈F {f,¬f}. To simplify notations we use ¬(¬f) to denote f .

A state q ⊆ F is represented by a set of facts assumed to be true. We write ext(q) ⊂ Ext(F ) the
extension of the state q defined as the set of facts in q and the negation of the facts not in q. Formally
ext(q) = {f | f ∈ q} ∪ {¬f | f ∈ F \ q}.

An action is a set of pairs prei � eff i called conditional effects where prei ⊂ Ext(F ) and eff i ⊂ Ext(F )
are subsets of extended facts. The conditional effect prei�eff i indicates that if prei is satisfied in the current
state then eff i will be true in the next state. Formally applying an action a = {pre1 � eff 1, . . . , prek � eff k}
in state q leads to the state q′ = a(q) that can be computed as follows:

• Let E =
⋃

prei⊆ext(q) eff i be the set of effects of the action;

• If {f,¬f} ⊆ E for some fact f ∈ F , then q′ is undefined (no contradiction);

• q′ = (q ∪ E) \ {¬f | f ∈ E}.

The conformant planning problem is the tuple P = 〈F,A, I,G〉 where F is the set of facts, A is the set
of actions, I ⊂ Ext(F ) is the initial belief defined as a set of literals, G ⊂ Ext(F ) is the goal.

A state q is an initial state if I ⊆ ext(q); notice that the facts are initially partitioned into two categories:
the facts whose value is known ({f ∈ F | (f ∈ I) ∨ (¬f ∈ I)}), and the facts whose value is unknown and
independent from that of other facts ({f ∈ F | {f,¬f} ∩ I = ∅). A state q is a goal state if G ⊆ ext(q).

A plan π is a sequence of actions. A plan is valid for a state q if successively applying all actions in the
plan from q leads to a goal state G ⊆ ext(π(q)). A plan is a valid conformant plan for problem P if it is a
valid for every initial state of P .

Definition 1 The conformant plan validity problem is a conformant planning problem P together with a
plan π. The decisional problem asks whether π is a valid conformant plan.

In the rest of this document we show that this problem is co-NP-complete by first proving membership
in the co-NP-hard class, and hardness by reduction from SAT.
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Membership

Membership of conformant planning validity to co-NP-hard class should be obvious: if the plan is not
valid, guess an initial state where the plan does not apply (checking that this state is initial is polytime);
then simulate the execution of the plan (in polytime); finally check that the reached state does not belong
to the goal state (in polytime again).

Reduction

A SAT problem S is a set V of n propositional variables together with a set C of m clauses {c1, . . . , cm}.
Each clause ci is a subset of ki literals, where a literal is a variable v ∈ V or its negation ¬v. An assignment
α : V → {⊥,>} satisfies a clause c if there exists a variable v ∈ V such that either α(v) = > and v ∈ c,
or α(v) = ⊥ and (¬v) ∈ c. A SAT problem is satisfiable if there exists an assignment that satisfies all the
clauses. Verifying the satisfiability of a SAT problem is an NP-hard problem.

Here is an informal explanation of the reduction. We define a conformant planning problem that “sim-
ulates” the SAT problem. The set of initial states represents all the possible assignments of variables V . It
plays the role of the assignment function α. For an initial state, the plan checks the validity for each clause
and it fails (does not reach the goal) if all clauses are satisfied. Consequently the SAT formula is satisfiable
iff the plan is invalid.

The set of facts of the planning problem is partitioned in three subsets: the first subset models the
assignment (unspecified in the initial state, so that all assignments are considered); the second subset records
whether each clause has been proved satisfied (initially false, set by actions ai): this models the role of the
disjunction in each clause; the last subset records whether all clauses have been proved satisfied (initially
false, set by action a): this models the role of the conjunction in the SAT formula.

Given a SAT problem S the conformant planning problem PS is defined as follows:

• F = {fv | v ∈ V } ∪ {fci | ci ∈ C} ∪ {fg},

• A = {a1, . . . , am} ∪ {a} where for all i,

ai =

{
{fv} � {fci} for all v ∈ ci
{¬fv} � {fci} for all ¬v ∈ ci

}
and

a =
{
{fc1 , . . . , fcm} � {fg}

}
,

• I = {¬fci | ci ∈ C} ∪ {¬fg}, and

• G = {¬fg}.

The plan πS is defined as: a1, . . . , am, a.

Properties of the Reduced Problem

Each initial state q represents implicitly an assignment αq, where variable v is assigned to > iff fv belongs
to the state. We say that “clause c is satisfied in state q” if αq satisfies c. This is denoted q |= ci.

Lemma 1 The state reached from an initial state by applying πS includes the fact fci iff the clause ci was
satisfied in the initial state. Formally:

∀ci ∈ C. ∀q ⊆ F. I ⊆ ext(q)⇒ (fci ∈ πS(q)⇔ q |= ci) .
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Proof sketch: The fact fci is initially false and the only action that changes its value is action ai (which
is part of πP ). This action sets fci iff q′ |= ci, where q′ is the state before the application of action ai. Given
that the facts fv are not modified by the actions in the plan, the action sets fci iff q |= ci, where q is the
initial state.

Lemma 2 The state reached from an initial state by applying plan πS includes fact fg iff all clauses are
satisfied in the initial state. Formally:

∀q ⊆ F. I ⊆ ext(q)⇒ (fg ∈ πS(q)⇔ ∀ci ∈ C. q |= ci) .

Proof sketch: The fact fg is initially false and the only action that changes its value is action a (which
is part of πP ). This action sets fg iff fci is true for all clause ci. From Lemma 1, this implies q |= ci for all
clauses ci.

Corollary 1 The plan πS is valid for PS iff S is not satisfiable.

Proof sketch: The plan πS is not valid for the planning problem iff it is not valid for some initial state q,
i.e. fg holds in πs(q). From Lemma 2 this implies q |= ci for all clause ci, i.e., it implies that S is satisfiable.
Thus, the plan πS is valid iff S is not satisfiable as in that case fg does not hold in πs(q).

Theorem 1 Conformant plan validity is co-NP-hard.

Proof sketch: Checking whether S is satisfiable is NP-hard. From Corollary 1, verifying whether S is
satisfiable can be reduced to verify whether πS is not valid for PS . Furthermore PS can be built in polytime
from S. Therefore conformant plan validity is co-NP-hard.

Additional Results

We discuss some extensions of the results. The proofs in the previous sections can be easily adapted for
these results, but we decided against, in order to keep the original proofs as simple as possible.

Non-deterministic conformant planning is a variant of the conformant planning problem where actions
can have non-deterministic effects, i.e., some predefined “optional” conditional effects may or may not trigger.

Theorem 2 Non-deterministic conformant plan validity is co-NP-complete

Proof sketch: Hardness is consequence of the fact that non-deterministic conformant planning is more
general than the deterministic variant. Membership is proved as follows: guess not only the initial state but
also all the optional conditional effects that trigger.

Theorem 3 Conformant plan validity is co-NP-complete even with a single conditional effect per action.

Proof sketch: This can be shown by splitting each action ai into ki actions ai,` where ` ∈ ci is one of the
literals of ci.

Theorem 4 Conformant plan validity is co-NP-complete even when the plan has only two actions.

Proof sketch: This can be shown by merging all actions ai into a single action. The resulting action has
the same semantics as all m original actions as all conditional effects are independent.

Notice that we cannot have both the property that there is a single conditional effect per action and the
property that the plan has only two actions.

Theorem 5 Conformant plan validity is co-NP-complete even when we have the guarantee that if the
plan is valid, then it is optimal.

Proof sketch: This can be shown by adding facts that guarantee that the plan is πS and nothing else.
Notice that we cannot have both the optimality property above and the property that there is a single

conditional effect per action, but we can enforce the property that there are only thee conditional effects per
action.
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