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Abstract 

This paper is concerned with formulation and demonstration of new versions 

of equations that can help us resolve problems concerning maximal gaps between 

consecutive prime numbers, the number of prime numbers at a given magnitude 

and the location of nth prime number. There is also a mathematical argument on 

why prime numbers as elementary identities on their own respect behave the way 

they do.  Given that the equations have already been formulated, there are worked 

out examples on numbers that represent different cohorts. This paper has therefore 

attempted to formulate an equation that approximates the number of prime 

numbers at a given magnitude, from 𝑁 = 3 to 𝑁 = 1025. Concerning the location 

of an nth prime number, the paper has devised a method that can help us locate a 

given prime number within specified bounds. Nonetheless, the paper has 

formulated an equation that can help us determine extremely bounded gaps. Lastly, 

using trans-algebraic number theory method, the paper has shown that 

unpredictable behaviors of prime numbers are due to their identity nature. 

Introduction: 

From the days of Pharaonic Africa, through those of Euclid and 

Eratosthenes and those of Gauss, Euler and Legendre and finally to ours, 

the encryption of prime numbers remains like unresolved scandal in 

Analytic Number Theory. Cognitions of professional and hobbyist 

mathematicians have at least for better times been dedicated to solving 

the 3000 year question (Guy, 2013). To my view, this question is 

fourfold and it entails realization of equations or arguments that can 



determine and explain maximal gaps between prime numbers, the 

number of prime numbers at a given magnitude, the location of nth 

prime number in the prime sequence and reasons why primes behave the 

way they do. There seem to be no predictable occassionalism in prime 

numbers: a prime number can pop up at any point from 1 to ∞. The 

effect of this behavior has been realization of gaps between prime 

numbers whose sizes cannot be fully predicted. 

There are two general theoretical themes being articulated in Analytic 

Demonstrations: 

1. Natural trends in prime numbers are influenced by continuous and 

successive interactions of natural exponentials.  

2. Prime numbers, being original elementary identities with no unifiers or pre-

images for one-to-one correspondence, cannot be aligned entirely with the 

same relationship on an extended field. 

The whole essay is organized in two parts. PART I involves maximal 

gaps between prime numbers, the number of prime numbers at a given 

magnitude  and the location of nth prime number in the prime sequence. 

Part II is concerned with trans-algebraic number demonstrations and 

resolution on identity behaviors of prime numbers. 

Epicureans knew very well that the purpose of Philosophy, and 

hence that of Mathematical Logic, has to be making life happier, more 

tranquil and self-sufficient— with peace and freedom—and without pain 

and fear. I am pleased to read in literatures of currency that despite the 

known applications of prime numbers in cryptography, there are greatly 

proposed relatedness between trends in prime numbers and those in 

complex regions of science such as Quantum Mechanics (Cook, 2015). 

So it is my great hope that the current paper will just be so much 

applicable in those areas and even others. 

I have at large used services of trans-algebraic number method and 

statistical calculus and probability to derive and demonstrate my 

arguments. Hume argued in the Treatise of the Human Nature that when 



elementary substances are compounded, their properties in relation to 

other substance can be inferred (Hume, 2007). It is by this motivation 

that this analysis has considered the use of trans-algebraic number 

method to explain and resolve issues concerning general identity 

behaviors of prime numbers. Proper use of the Theory of Probability, 

and says Laplace, is essential to reduce ignorance and avoid inchoate 

assumptions about events that do not seem to be regulated by Laws of 

Nature. Laplace also noted in the Philosophical Essay on Probabilities 

that indeed laws of calculus are essential in realizing how statistical 

magnitudes decrease or increase (Laplace, 1902). I am aware of 

underway researches in the Riemann’s hypothesis and other hypotheses 

motivated by zeta () functions. Analytic Demonstrations has no 

developed faculties to make clear and developed critic of judgments on 

them. Therefore, safe Euler’s zeta () function, no allusion will be made 

on the entire class of zeta () functions in the ranks of current analysis. 

Analytic Demonstrations will be concerned with proposing equations 

and rendering discussions on them. Importantly, demonstration will be 

carried out on different numbers that represent different number cohorts. 

Without hazards, we will use results of such demonstrations to make 

opinions concerning the power of every equation to give results it 

purports to give. Applications of works of Euclid, Gauss, Legendre, 

Euler and Abel cannot be underestimated, and, therefore, we cannot 

begin this paper without appreciating their excellent intelligences with 

greatest esteems.  

 

 

 

 

 



PART I: INFLUENCE OF EXPONENTIALS ON NATURAL 

TRENDS OF PRIME NUMBERS 

This part is concerned with exploiting the fact that natural trends of prime 

numbers are influenced by natural trends of exponentials. Primarily, the 

exponentials talked about involve common logarithm(log𝑁), natural logarithm 

(ln𝑁) and Euler’s number, 𝑒 = 𝟐. 𝟕𝟏𝟖𝟐𝟖𝟏𝟖𝟐𝟖𝟒𝟓𝟗𝟎𝟒𝟓𝟐𝟑𝟓𝟑𝟔𝟎𝟐𝟖𝟕𝟒𝟕𝟏𝟑𝟓𝟐𝟕 . The 

exponentials can have various derivatives depending on their levels of 

exponentiation. For instance, at the second level we can 

have loglog, lnlog, logln, and lnln. At the third and fourth levels we may have 

loglogln and loglnlnln respectively.  I have noted, as it will be shown in 

demonstrations, that natural trends of prime numbers are influenced by natural 

trends of exponentials.  So, one has to use the right and well appropriated 

exponentials to get better results about natural trends of prime numbers.  

 

A. ON THE MAXIMAL GAPS BETWEEN CONSECUTIVE 

PRIME NUMBERS, 𝒈(𝑷𝒏) 

The aim of this section is to formulate equations for maximal gaps and 

demonstrate how they can be determined and used in other areas of prime number 

analysis. Essentially, I am interested in finding an extremely bounded gap equation 

for ascertaining the maximum level at which no gap can exceed however large it is. 

A gap between consecutive prime numbers can, in simple terms, be defined as the 

number of composites between two consecutive prime numbers. Conventionally, a 

gap between consecutive prime numbers is denoted as 𝑔(𝑃𝑛), so that the question 

of finding the next prime number, 𝑃𝑛+1, after the gap is represented by: 

𝑷𝒏+𝟏 = 𝑷𝒏 + 𝒈(𝑷𝒏) + 𝟏,  

Explicitly, 𝑔(𝑃𝑛) is the gap between two prime numbers, 𝑷𝒏 and 𝑷𝒏+𝟏;  

Therefore: 

𝒈(𝑷𝒏) = 𝑷𝒏+𝟏 − 𝑷𝒏  

Excepting two prime numbers, 2 and 3, that have  𝑔(𝑃𝑛) = 0 between them, it is 

presumed from the twin prime conjecture that the least gap between two 

consecutive prime numbers is 1. It is also important to note that a gap between two 

prime numbers can become arbitrarily large, especially as prime numbers become 



larger (Tapia, & Støleum, 2016). This can easily be verified in the table that 

follows. 

Table 1: Occurrences of Prime Gaps 

 

Gap After Gap After Gap After Gap After 

0 2 33 1327 117 1349533 247 191912783 

1 3 25 9551 131 1357201 249 387096133 

3 7 43 15683 147 2010733 281 436273009 

5 23 51 19609 153 4652353 287 1294268491 

7 89 71 31397 179 17051707 291 1453168141 

13 113 85 155921 209 20831323 319 2300942549 

17 523 95 360653 219 47326693 335 3842610773 

19 887 111 370261 221 122164747 353 4302407359 

21 1129 113 492113 233 189695659 381 10726904659 

                                                                                                                                     

  

A proof of occurrence of arbitrarily large gaps between consecutive primes 

can be borrowed from Euclid’s work in consideration with a group of positive 

integers that bear the form: 

(n+1)! +2, (n+1)! +3, (n+1)! +4, ………, (n+1)! + n, (n+1)! + (n+1). 

With the axiom that the first term is divisible by 2, the second by 3, the third by 4 

and the last by n+1, we conclude that the numbers (n+1)! + 2 to (n+1)! + (n+1) are 

composites. Although there is no clear evidence to show a concrete sequential 

structure of prime number gaps, it is evident from the table and Euclid’s work that 

larger gaps are more likely to appear in larger prime numbers.  

In this regard, we can let the common proportion of any prime number relative to 

base 10 be log𝑃. From the prime number theorem of Gauss and Legendre, 

 𝜋(𝑥)~
𝑥

ln 𝑥  
  , we can elementarily let the natural rate at which such a prime number 

at the same relative proportion translate itself into the next prime number in the 

number sequence be represented by ln 𝑃 (Apostol, 2013). 

Given this way, the next prime number  𝑷𝒏+𝟏, can elementarily be represented by 

the equation: 

  𝑷𝒏+𝟏 ≈ 𝑷𝒏 + (𝒍𝒐𝒈 𝑷𝒏   × 𝒍𝒏 𝑷𝒏), which can be appropriated well as: 



  𝑷𝒏+𝟏 ≈ 𝑷𝒏 + (𝒍𝒐𝒈 𝑷𝒏   × 𝒍𝒏 𝑷𝒏 − 𝟏) + 𝟏 

So,  𝒈(𝑷𝒏) ≈ 𝒍𝒐𝒈𝑷𝒏  × 𝒍𝒏 𝑷𝒏 − 𝟏  

Although 𝑔(𝑃𝑛) ≈ 𝑙𝑜𝑔𝑃𝑛  × 𝑙𝑛 𝑃𝑛 − 1 will be our leading equation, there is a need 

to consider local adjustments by developing appropriate local factors. 

General Local Factors 

General local factors in this regard act as standard errors for common 

statistical approximations. They are simply 𝑙𝑜𝑔 𝑃𝑛  and 𝑙𝑛 𝑃𝑛 depending on desired 

bounds. For very extreme bounds, near the gap ceiling or gap floor, one will have to 

use ± 𝑙𝑛 𝑃𝑛. Middle range gaps just require the use of ± 𝑙𝑜𝑔 𝑃𝑛 as the local factor 

for making adjustment. Since 𝑙𝑜𝑔𝑃𝑛  × 𝑙𝑛 𝑃𝑛 − 1 is the leading equation, it is 

expected that core gaps will conform to it. The leading equation is expected to 

represent an average or central region for all gaps regardless of their ranges. For this 

analysis, any gap that is less than the gap floor will not be considered maximal at its 

local point. Such a gap will be below the expected lowest range for all maximal gaps. 

Gaps for Prime Numbers, N≤ 𝟏𝟎𝟎𝟎 

Before demonstrating how we can estimate sizes of gaps using the formulated 

equations, it is important to put the gaps into three ranges: core gaps, mid-range gaps 

and extremely bounded gaps.  

Core Gaps:  

To estimate core gaps, one does not need to do any form of adjustments. This can be 

demonstrated in the following instances: 

a) The gap after the prime number 19: one can simply carry out the following 

operation: 

log 19 × ln 19 − 1 =  2 . 7652119475 ≈ 3 

b) The gap after the prime number 293: carry out the operation: 

log 293 × ln 193 − 1 = 13.012234 ≈ 13 

c) The gap after the prime number 317: carry out the following operation: 

log 317 × ln 317 − 1 = 13.403354622 ≈13 

Mid-range Gaps: 

Mid-range gaps are those found between 𝑙𝑜𝑔𝑃𝑛  × 𝑙𝑛 𝑃𝑛 − 1  and (𝑙𝑜𝑔𝑃𝑛  ×

𝑙𝑛 𝑃𝑛 − 1) ±  𝑙𝑜𝑔 𝑃𝑛 . For instance: 



a) Finding the gap after 13: It involves the following operation: 

(log 13 × ln 13 − 1) + log  13 = 2.971151638 ≈ 3  
b) Finding the maximal gap after 23: the following operation can be carried 

out: 

(log 23 × ln 23 − 1) + log  23 = 4.6314175894 ≈ 5  

Extremely-bounded Gaps: 

These are gaps found between the mid-range and the ceiling or floor of maximal 

gaps. The ceiling or the floor of maximal gaps is simply given by the equation:  

 (𝑙𝑜𝑔𝑃𝑛  × 𝑙𝑛 𝑃𝑛 − 1) ±  𝑙𝑛 𝑃𝑛 

To use this equation one can practice on the following prime numbers: 

(a) After 7: as  (𝑙𝑜𝑔7 × 𝑙𝑛 7 − 1) +  𝑙𝑛7 = 2.5903950021 ≈ 3 

(b) After 113: as (log 113 × 𝑙𝑛 113 − 1) + 𝑙𝑛113 = 13.433085843 ≈ 13 

(c)     After 863: as (log 863 × ln 863 − 1) − ln  863 = 12.088235825 ≈ 12 . 
The real gap is 13. However, as a matter of categorical approximation, the gap 

is between the mid-range and the floor. So, it is extremely-bounded.   

 

Gaps for Prime Numbers, N≥ 𝟏𝟎𝟎𝟎 

For prime numbers after N≥1000, maximal gaps start appearing arbitrarily 

larger to the point of not being estimated by the leading equation 𝑙𝑜𝑔𝑃𝑛  × 𝑙𝑛 𝑃𝑛 −

1 with general local factors alone. Appropriations have to be made with regards to 

underlying changes in log P and ln P. The leading equation has to be multiplied by 

a new adjustor, 𝛾.  

Where 𝛾 = {|𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑜𝑔𝑃𝑛| + |𝑙𝑛𝑙𝑛𝑙𝑛𝑃𝑛| + |𝑙𝑜𝑔𝑙𝑛𝑙𝑛𝑃𝑛|} 

So the new complete equation is:  

𝒈(𝑷𝒏) =

{
 
 

 
 
{(𝒍𝒐𝒈𝑷𝒏  × 𝒍𝒏 𝑷𝒏 − 𝟏)}𝜸                                                                           𝒇𝒐𝒓 𝒄𝒐𝒓𝒆 𝒈𝒂𝒑𝒔 

{(𝒍𝒐𝒈𝑷𝒏  × 𝒍𝒏 𝑷𝒏 − 𝟏)}𝜸 ± 𝒍𝒐𝒈𝑷𝒏                                        𝒇𝒐𝒓 𝒎𝒊𝒅 − 𝒓𝒂𝒏𝒈𝒆 𝒈𝒂𝒑𝒔

{(𝒍𝒐𝒈𝑷𝒏  × 𝒍𝒏 𝑷𝒏 − 𝟏)}𝜸 ± 𝒍𝒏𝑷𝒏                            𝒇𝒐𝒓 𝒆𝒙𝒕𝒓𝒆𝒎𝒆𝒍𝒚 𝒃𝒐𝒖𝒏𝒅𝒆𝒅 𝒈𝒂𝒑𝒔

 

 

 



Just around the Core:  

(a) After the prime number 10726904659:  

(10.030474421*23.096020877-1)1.6415708223 

(230.7) 1.6415708223≈ 379. The real gap is 381. 

(b) After the prime number 42842283925351: 

(13.6318726150482*31.388546673004-1) 1.82953956712 + 

13.6318726150482 

=782.8≈ 783. The real gap is 777. 

In the Mid-range: 

(a) After the prime number 492113: 

(5.6920648378*13.106463644-1)1.4774689955+5.6920648378 

=114.43798≈114. The real gap is 113. However due to our categorical 

approximation, the gap is between the core line and the mid-range line.  

(b)  After the prime number 277900416100927: 

(14.44388919705* 33.25828395-1) 1.862933372305−14.44388919705  

= 878.60718875094159531523705220501 

≈ 879. The correct answer is 879. This gap lies on the floor.  

In the Extremely-bounded Region: 

(a) After the prime number 1327: 

(3.122871*7.1907-1)1.2803123973 +7.1907 

34.66051063≈ 35. The real gap is 33, which is between the mid-range 

and the ceiling.  

(b) After the prime number 218209405436543: 

(14.33887347*33.0164763-1) 1.85875512805 +33.0164763 

878.11138027270345147418409605+ 33.0164763= 911. The real gap is 

906. Note that the prime number 218209405436543 is less than the 

previously analyzed prime number 277900416100927 which has the gap of 

879.  



(c) After the prime number 1129:  

(3.052694*7.0291-1)1.2724478144− 7.0291=19.0023 ≈ 19. The correct 

answer is 21 composites. Thus, it is between the floor and the mid-range. 

 

Section Remark: 

From the above chosen prime numbers for demonstrations, it is evidenced 

that the gap after a prime number  𝑃𝑛 cannot exceed (𝑙𝑜𝑔𝑃𝑛  × 𝑙𝑛 𝑃𝑛 − 1) + 𝑙𝑛 𝑃𝑛 , 

as the upper bound, and (𝑙𝑜𝑔𝑃𝑛  × 𝑙𝑛 𝑃𝑛 − 1) − 𝑙𝑛 𝑃𝑛, as the lower bound when 

N≤ 1000. If N≥ 1000, It is also expected that the gap after a prime number  𝑃𝑛 

cannot exceed {(𝑙𝑜𝑔𝑃𝑛  × 𝑙𝑛 𝑃𝑛 − 1)}𝛾 + 𝑙𝑛𝑃𝑛 on the upper end and 

{(𝑙𝑜𝑔𝑃𝑛  × 𝑙𝑛 𝑃𝑛 − 1)}𝛾 − 𝑙𝑛𝑃𝑛 on the lower end. Applications of these extremely-

bounded results are essential in section C when determining the bounded location 

of a given prime number. 

 

 

 

B.  ON THE NUMBER OF PRIMES AT A GIVEN 

MAGNITUDE ∅𝑷 

This section involves derivation of a prime number counting function, 

including local factors for making appropriate adjustments as one goes along the 

path followed by prime numbers.  

The normalizer 

We begin with stating the Euler Product Formula such that the zeta of s can be 

presented as the product of all primes p in the form of  
1

(1−𝑝−𝑠)
 . 

In this regard,  s) =∏
1

(1−𝑝−𝑠)
 𝑝  

The expanded form of this function can be given as: 



s) = 1+ 
𝟏

𝟐𝒔
+

𝟏

𝟑𝒔
+

𝟏

𝟒𝒔
+

𝟏

𝟓𝒔
+

𝟏

𝟔𝒔
+⋯……………… .∞ 

Just as we do with the sieve of Eratosthenes, one can eliminate all prime numbers 

together with their multiples from the right hand side, as one makes necessary 

treatments on the left hand of the equation (Abramowitz, & Stegun, 2012). 

Therefore, as one approaches infinity, to obtain the nth prime numbers, and hence 

the number of prime numbers ∅𝑃 at 𝑁, one will have to remain with the equation: 

(𝟏 −
𝟏

𝒑𝒏
𝒔) . (𝟏 −

𝟏

𝒑𝒏−𝟏
𝒔 ) . (𝟏 −

𝟏

𝒑𝒏−𝟐
𝒔 )……(𝟏 −

𝟏

𝟓𝒔
) . (𝟏 −

𝟏

𝟑𝒔
) . (𝟏 −

𝟏

𝟐𝒔
).  s) = 1 

This equation can be simplified to acquire the form: 

∏
𝟏

(𝟏−𝒑𝒔)
 𝒑 .s) = 1 

Visibly, there are two spectral distributions that have to be normalized for one to 

consider before carrying out statistical operations of finding a counting function. 

Further, it should also be noted that the distributions are inform of a product and 

one has to consider getting their products to form a general normalizer value of the 

whole product distribution (Kim, 2015).  But first let us consider the Gaussian 

integral which is given as: 

∫ 𝒆−𝒙
𝟐
𝒅𝒙 = √𝝅

∞

−∞
  As the normalizer of a single spectral distribution (Major, 

2013).  

In case of two product spectral distribution, Fubini’s theorem can be applied 

(Morozov, & Shakirove, 2009; Taillie,   Patil, & Baldessari, 2012). ). In this 

regard, a product integral is seen as an integral of an area, so that: 

∫ 𝑒{𝜁(𝑠)}
2∞

−∞
𝑑𝜁(𝑠) ∫ 𝑒

{∏
𝟏

(𝟏−𝒑𝒔)
} 𝒑

2
∞

−∞
𝑑(∏

𝟏

(𝟏−𝒑𝒔)
} 𝒑   

This yields (√𝜋)× (√𝜋) = 𝜋 = 3.1415926535897932384626433832795 

Probability of a number in the distribution 

For a large N, for instance N=1 million, the probability that a given number 

will be chosen can be given by 1/𝑛. However, there is a need to integrate over the 

range that 1/𝑛  is defined. This yields ln 𝑛, and as the distribution goes to infinity, 



there is need to multiply the probability integral with Euler’s number 𝑒 to result 

in 𝑒. ln 𝑛 (Wasserman, 2013). 

Error Term 

In statistics, it is usually believed that an experimenter is likely to record 

more erroneous results when the sample of the population being studied is small. 

Thus, as the sample size increases, average recorded errors are more likely to be 

reduced (Wasserman, 2013). 

So, let 1/ log𝑛 represent the rate at which such average errors are occurring. 

Integrating the range over which 1/ log 𝑛 is defined will result in ln log 𝑛.   

The Leading Equation for Prime Number Counting 

One has to normalize the number that represent the magnitude at which the 

number of prime numbers is being sought by multiplying it by the normalizer. The 

resulting product, 𝜋𝑛 has to be divided by appropriated probability value 𝑒. ln 𝑛. 

The quotient can be added to the error term, 𝑙𝑛𝑙𝑜𝑔𝑛, to get the approximate 

number of primes at such magnitude. The leading equation for prime counting is: 

  

∅𝑷 ≈
𝝅.𝒏

𝒆. 𝐥𝐧 𝒏
+ 𝐥𝐧 𝐥𝐨𝐠𝒏 

 

The Number of Prime Numbers at N< 𝟐𝟎𝟎𝟎 

Calculating ∅𝑃 at N< 2000 does not need any local adjustments on the 

equation, and therefore it can be used without alterations.  

Table 2: Selected Examples  

At Magnitude N= 

 

Commentary 

8: 

∅𝑃 =
𝜋. 8

𝑒. ln 8
+ ln log 8 

 

∅𝑃 = 4.3444 ≈4 

Correct approximation 

25:  



 

∅𝑃 =
𝜋. 25

𝑒. ln 25
+ ln log 25 

 

∅𝑃 = 8.9711 ≈ 𝟗 

Correct approximation 

100: 

 

∅𝑃 =
𝜋. 100

𝑒. ln 100
+ ln log 100 

 

∅𝑃 = 25.78945 ≈ 𝟐𝟔 

The correct ∅𝑃 is 25. The result is 

approximately 26 since N=100 is closer 

to the 26th prime number 101 than it is 

to the 25th prime number 97.  

520: 

 

∅𝑃 =
𝜋. 520

𝑒. ln 520
+ ln log 520 

 

∅𝑃 = 97.096806581 ≈ 𝟗𝟕 

Correct approximation 

1000: 

∅𝑃 =
𝜋. 1000

𝑒. ln 1000
+ ln log 1000 

 

∅𝑃 = 168.4073 ≈ 𝟏𝟔𝟖 

Correct approximation 

2000: 

∅𝑃 =
𝜋. 2000

𝑒. ln 2000
+ ln log 2000 

 

∅𝑃 = 305.29690023 ≈ 𝟑𝟎𝟓 

The correct count is 303. Although 

N=2000 is just close to the 304th prime 

number, it is evident that the equation 

is now drifting from the natural prime 

number trend, and hence it needs 

adjustments from that point.  

 

The Number of Prime Numbers at N≥ 𝟐𝟎𝟎𝟎 

Continued use of the already discussed leading equation will lead to large 

errors due to higher result when  𝑁 ≥ 2000. There is a significant exponential 

transition between N=1000 and N=10000. One has to make tables of exponentials 

and their derivatives to realize the exponential or the derivative that is responsible 

for the transition. Once the right exponential is identified, it has to be appropriated 

properly to render good results. So, the leading equation has to be adjusted to 

become as follows: 



∅𝑷 ≈( 𝝅.𝒏

𝒆.𝐥𝐧𝒏
+ 𝐥𝐧 𝐥𝐨𝐠𝒏)(𝚿𝝍) 

Where Ψ = 0.9950940298…. 

𝜓= 𝑓(ln𝑁, 𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛 𝑁, 𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔 𝑁) 

Specifically, 𝜓 = 𝛼 ± 𝛽  

𝛼 Is calculated as: 

𝛼 = {
{1 − (|𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛 3| − |𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛 𝑁|)} × ln𝑁                𝑖𝑓 𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛 𝑁 < 0

{1 − |𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛 𝑁|} × ln𝑁                                                𝑖𝑓 𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛 𝑁 > 0
 

𝛽 Is calculated as:  

𝛽 = 

{
 
 

 
 
(𝑅𝑒𝑠𝑑.ln 𝑁)2×𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔 𝑁 

(𝑙𝑜𝑔𝑙𝑜𝑔 𝑁 ×𝑙𝑛𝑙𝑛𝑙𝑛 𝑁)2
                                     𝑖𝑓 𝑏𝑜𝑡ℎ 𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛 𝑁 𝑎𝑛𝑑 𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔 𝑁 > 0

(𝑅𝑒𝑠𝑑.ln𝑁−1)×|𝑙𝑜𝑔𝑙𝑜𝑔 𝑁|×|𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔 𝑁|

{1+|𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔 𝑁|}
                𝑖𝑓 𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛 𝑁 > 0 𝑤ℎ𝑖𝑙𝑒 𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔 𝑁 < 0

(𝑅𝑒𝑠𝑑.ln𝑁−2)×|𝑙𝑜𝑔𝑙𝑜𝑔 𝑁|×|𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔 𝑁|

{2+|𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔 𝑁|}
                  𝑖𝑓 𝑏𝑜𝑡ℎ 𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛 𝑁 𝑎𝑛𝑑 𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔𝑁 < 0

  

𝑅𝑒𝑠𝑑. ln𝑁 Is the magnitude of ln𝑁 that remains after taking away 𝛼 from the total 

value of ln𝑁. 

Thus, 𝑅𝑒𝑠𝑑. ln𝑁 can simply be determined as: 

ln𝑁 −  𝛼 = 𝑅𝑒𝑠𝑑. ln𝑁 

Previously, we have written that 𝜓 = 𝛼 ± 𝛽.After the above definitions, we are 

now allowed to state in definite terms what 𝜓 has to be. 

𝜓 = {
𝛼 + 𝛽                      𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓, ln 𝑙𝑜𝑔𝑙𝑜𝑔 𝑁 < 0
𝛼 − 𝛽                     𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓, 𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔 𝑁 > 0

 

Appropriation for Large Numbers 

Since ln log n is usually a small quantity, even in N≤ 1000, it contniously 

becomes insignificant as numbers being analyzed increase in size. In this regard, 

the equation 

∅𝑃 ≈
𝜋.𝑛

𝑒.ln 𝑛
+ ln log 𝑛 can become:  



∅𝑃 ≈
𝜋.𝑛

𝑒.ln 𝑛
+ 𝜊(ln log 𝑛) as N goes to infinity. It is in this regard that we will 

consider the segment 
𝜋.𝑛

𝑒.ln 𝑛
 only. Thus, the appropriated equation for larger numbers 

is:  

∅𝑷 ≈( 𝝅.𝒏

𝒆.𝐥𝐧𝒏
)(𝚿𝝍). 

Selection of the Constant 𝚿 = 𝟎. 𝟗𝟗𝟓𝟎𝟗𝟒𝟎𝟐𝟗𝟖………. 

From the formulation of  𝜓, it is indeed visible that it will depend on 𝛼 only 

when ln 𝑙𝑜𝑔𝑙𝑜𝑔 𝑁 = 0. But  ln 𝑙𝑜𝑔𝑙𝑜𝑔 𝑁 = 0 occurs at N=1010. At N=1010, the 

calculated ∅𝑃=501, 925, 988.97, whilst the physically counted ∅𝑃 =

455,052,511. Since the calculated value is higher than the physically counted one, 

there is need to reduce it, by 
455,052,511

501,925,988.97
= 0.906612769611335, to become 

approximately equivalent to the correct figure.  So, Ψ𝜓 at 1010 is 

0.906612769611335.  We can now get Ψ by simply finding the inverse of Ψ𝜓 =

0.906612769611335.  Thus, 

Ψ1/𝜓 = 0.9066127696113351/𝜓 

However, since 𝜓 = 𝛼 we have to find 𝛼. 

𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛 𝑁 > 0 So, 𝛼 = {1 − |𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛 1010|} × ln 1010 

= 19.93472535 

The original 𝚿 can then be retrieved as: 0.9066127696113351/19.93472535 =

𝟎. 𝟗𝟗𝟓𝟎𝟗𝟒𝟎𝟐𝟗𝟖𝟐𝟔𝟔𝟎𝟐𝟑𝟗𝟐𝟐𝟕𝟕𝟕𝟓𝟗𝟒𝟔𝟓𝟖𝟑𝟓𝟐𝟑. 

Table 3: Selected Examples 

At Magnitude N= 

 

Workings Commentary 

3500: 

 

∅𝑷 ≈(
𝜋.3,500

𝑒.ln  3,500
+

𝑙𝑛𝑙𝑜𝑔 3500)(Ψ𝜓).  

 

(497. 95018171) 

*(

For convenience one has to begin with finding 

components of  𝜓. 

 𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛 𝑁 < 0, so 

𝛼 = {1 − (|𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛 3| − |𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛 3500|)} × ln 3500 

= 2.8457956991. 

 

𝑏𝑜𝑡ℎ 𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛 𝑁 𝑎𝑛𝑑 𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔𝑁 < 0,  

Correct 

approximation

. 

Consider that 

N=3,500 is 

still not really 

a large 



0.99509402983.6240811608

) 

∅𝑃 =488.48  ≈ 489 

thus, 

𝛽 =  
(𝑅𝑒𝑠𝑑. ln  3500 − 2) × |𝑙𝑜𝑔𝑙𝑜𝑔 3500| × |𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔 3500|

{2 + |𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔 3500|}
=  0.7782854617                   

ln 𝑙𝑜𝑔𝑙𝑜𝑔 𝑁 < 0, hence 

𝜓 = 2.8457956991 + 0.7782854617 
= 3.6240811608                 

One can then calculate 
𝜋.3,500

𝑒.ln  3,500
= 495.68490648 

number and 

hence 𝑙𝑛𝑙𝑜𝑔 𝑁 

is still 

significant. 

𝟏𝟎𝟒 

∅𝑷 ≈(
𝜋.104

𝑒.ln104
)(Ψ𝜓).  

 

 
(1254.8150265)*

 0.99509402983.895913872 
∅𝑃 = 1231.001292 

≈ 𝟏𝟐𝟑𝟏 

Finding components of  𝜓. 

 𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛 𝑁 < 0, so  

𝛼 = {1 − (|𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛 3| − |𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛 10,000|)} × ln 

10,000 = 3.4360844988. 

 

𝑏𝑜𝑡ℎ 𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛 104 𝑎𝑛𝑑 𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔 104 < 0,  
thus, 

𝛽 =  
(𝑅𝑒𝑠𝑑. ln104−2) × |𝑙𝑜𝑔𝑙𝑜𝑔104| × |𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔|

{2 + |𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔104 |}
=  0.7782854617                   

ln 𝑙𝑜𝑔𝑙𝑜𝑔 𝑁 < 0, hence  

𝜓 = 2.8457956991 + 0.4598293732 
= 3.895913872               

One can then calculate 
𝜋.10,000

𝑒.ln  10,000
= 1254.8150265 

 The correct 

∅𝑃 is 1229. 

The result is 

1231 because 

N=10000 is 

nearer to twin 

primes 10007 

and 10009, 

than it is to the 

1229th prime, 

9973 

𝟏𝟎𝟔: 

 

∅𝑷 ≈(
𝜋.106

𝑒.ln106
)(Ψ𝜓).  

 

(83654.3351)*

 0.995094029813.06047599 
∅𝑃 = 78449.982419 

≈78, 450 

Finding components of  𝜓. 
 𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛106  > 0, so  

𝛼 = {1 − |𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛106 |} × ln 106 

                = 13.02741003 

𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛106  > 0 𝑤ℎ𝑖𝑙𝑒 𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔 106 < 0 

thus,  

𝛽 =  
(1 − 𝑅𝑒𝑠𝑑. ln106) × |𝑙𝑜𝑔𝑙𝑜𝑔106| × |𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔106|

{1 + |𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔106 |}
=  0.0330659599                 

ln 𝑙𝑜𝑔𝑙𝑜𝑔 𝑁 < 0, hence 

𝜓 = 13.02741003 + 0.0330659599
= 13.06047599              

One can then calculate 
𝜋.106

𝑒.ln106  
= 83654.3351 

 

Results due to 

average 

approximation 

The correct 

  ∅𝑃 is 78,498.  

𝟏𝟎𝟏𝟎: 

∅𝑷 ≈(
𝜋.1010

𝑒.ln1010
)(Ψ𝜓).  

 

Finding components of  𝜓. 
 𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛1010  > 0, so  

𝛼 = {1 − |𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛1010 |} × ln 1010 

Correct 

approximation

. The correct 

∅𝑃 is 



(501, 925, 

988.97)*
 0.995094029819.93472535 
 

∅𝑃 =455052510.76  

≈ 𝟒𝟓𝟓, 𝟎𝟓𝟐, 𝟓𝟏𝟏 

 

 

                = 19.93472535 

𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛1010  > 0 𝑤ℎ𝑖𝑙𝑒 𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔 1010 = 0 

thus,   

𝛽 =  
(1 − 𝑅𝑒𝑠𝑑. ln1010) × |𝑙𝑜𝑔𝑙𝑜𝑔1010| × |𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔1010|

{1 + |𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔1010 |}
=  0.0                 

ln 𝑙𝑜𝑔𝑙𝑜𝑔 𝑁 < 0, hence  

𝜓 = 19.93472535 + 0 =  19.93472535             

One can then calculate 
𝜋.1010

𝑒.ln1010  
= 501, 925, 988.97 

455,052,511 

𝟏𝟎𝟏𝟏: 

 

∅𝑷 ≈(
𝜋.1011

𝑒.ln1011
)(Ψ𝜓).  

 

4562963536.1*

0.995094029821.220913458      
      

 
∅𝑃 ≈4110,755, 884.4 
 
 
 
 
 

Finding components of  𝜓. 
 𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛1011  > 0, so  

𝛼 = {1 − |𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛1011 |} × ln 1011 

                = 21.598926373 

𝐵𝑜𝑡ℎ 𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛 𝑁 𝑎𝑛𝑑 𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔 𝑁 > 0 

therefore,   

𝛽 =
(𝑅𝑒𝑠𝑑. ln1011)2 × 𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔1011 

(𝑙𝑜𝑔𝑙𝑜𝑔1011  × 𝑙𝑛𝑙𝑛𝑙𝑛 1011)2
     

=    0.3780129153      

ln 𝑙𝑜𝑔𝑙𝑜𝑔 𝑁 > 0, now 

𝜓 = 21.598926373 −  0.3780129153 = 21.220913458       

One can then calculate 
𝜋.1011

𝑒.ln1011  
 = 4562963536.1 

 

 

Barely 

predictive. 

The physical 

count is 

4,118,054,813 

𝟏𝟎𝟏𝟗: 

∅𝑷 ≈(
𝜋.1019

𝑒.ln1019
)(Ψ𝜓).  

 

∅𝑃 

≈231,546,466,577,

122,376. 

 

 

 

 

 

Finding components of  𝜓. 
 𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛1019  > 0, so  

𝛼 = {1 − |𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛1019 |} × ln 1019 

                = 34.338662 

𝐵𝑜𝑡ℎ 𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛 𝑁 𝑎𝑛𝑑 𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔 𝑁 > 0 

thus,   

𝛽 =
(𝑅𝑒𝑠𝑑. ln1019)2 × 𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔1019 

(𝑙𝑜𝑔𝑙𝑜𝑔1019  × 𝑙𝑛𝑙𝑛𝑙𝑛 1019)2
 =     7.5356766899             

ln 𝑙𝑜𝑔𝑙𝑜𝑔 𝑁 > 0, hence, 
𝜓 = 34.338662−    7.5356766899                      =   26.802985310        

One can then calculate 
𝜋.1019

𝑒.ln1019  
 = 264171584525719288. 

 The correct 

figure is: 

234,057,667,2

76,344,607. 

 

We can say 

this is just a 

bare 

approximation 

𝟏𝟎𝟐𝟓: 
 

∅𝑷 ≈(
𝜋.1025

𝑒.ln1025
)(Ψ𝜓).  

 

Finding components of  𝜓. 
 𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛1025  > 0, so  

𝛼 = {1 − |𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛1025 |} × ln 1025 

                = 

The correct 

figure is: 

176,846,309,3

99,143,769,41

1,680. 



∅𝑃 

≈176,723,008,631,

601,940,568,114. 

 
 
 
 

 

𝐵𝑜𝑡ℎ 𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑛 𝑁 𝑎𝑛𝑑 𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔 𝑁 > 0 

therefore,   

𝛽 =
(𝑅𝑒𝑠𝑑. ln1025)2 × 𝑙𝑛𝑙𝑜𝑔𝑙𝑜𝑔1025 

(𝑙𝑜𝑔𝑙𝑜𝑔1025  × 𝑙𝑛𝑙𝑛𝑙𝑛 1025)2
 =     17.48868748564596             

ln 𝑙𝑜𝑔𝑙𝑜𝑔 𝑁 > 0, now  

𝜓 = 43.429571 −   17.48868748564596                      =  25.9408831        

One can then calculate 
𝜋.1025

𝑒.ln1025  
 = 200770404239027481258881. 

So, this is also 

a bare 

approximation

, but at least it 

gives a blue-

print.  

Section Remark: 

We have finished our demonstrative survey on the number of primes at a 

given magnitude along the formulated general path of prime numbers. We have 

seen that the leading equation is only reliable when 𝑁 < 2000. The number of 

primes continue to increase in diminishing rates every step one makes along the 

path described by the equation. One has to find right exponentials in appropriate 

forms to keep one on the same course with natural trends of prime numbers. From 

the selected examples, it is evident that the equation’s power continue to reduce. 

Reasons for this scenario can be the fact that we are using rational numbers that 

reduce clarities of calculations, as many and larger figures are plugged into the 

equation. Perhaps, secondly we have not used right and well appropriated 

exponentials to guarantee clear answers. Given that this was a statistical venture, 

we could only be sure of approximate figures. 

 

 

 

C. ON THE LOCATION OF NTH PRIME NUMBER 𝓛𝒑𝒕𝒉 

This section involves formulation of a prime locating equation and its local 

adjustors. The leading equation for prime location has to involve appropriation of 

some elements of the prime counting equation, since each of the two equations can 

be inverse of the other at some elementary levels.  

Therefore, invariable components of the prime counting function can be reversed. 

For simplicity, I will represent ∅𝑃 with t. Moreover, from gap analysis, we saw 

that two exponentials, log t and ln t, can explain existence of maximal gaps 

between consecutive prime numbers. However, although prime numbers increase 



exponentially with regards to the two exponentials in their sequence, this increase 

is based on additive exponentiation (log 𝑡 + ln 𝑡). The first equation can now be 

presented as: 

𝓛~
𝒕 × 𝒆 × (𝐥𝐧 𝒕 + 𝐥𝐨𝐠 𝒕)

𝝅
 

The next step has to involve appropriation of error term. We understand that 

all prime numbers, except 2 and 3 can be put in modules to become simply as 6 ±

1. This allows us to say that a prime number after 2 and 3 is just [6 + error term]. 

But as from the prime counting function, we saw that the error term in prime 

number is 𝑙𝑛𝑙𝑜𝑔 𝑁; it can be 𝑙𝑛𝑙𝑜𝑔 𝑡 for the current case. Normalization of the 

variable part will make prime location error presentation to appear like:  6 +
𝑙𝑛𝑙𝑜𝑔 𝑡

𝜋
. 

The results for this small equation are also variable and hence have to be 

normalized. This leads to the new equation: 

6 +
𝑙𝑛𝑙𝑜𝑔 𝑡
𝜋

𝜋
 

As already seen, it is easier to predict results in small numbers than it is for larger 

numbers. This indicates that the magnitude of the error term increases as prime 

numbers become larger. Increment in prime numbers is relatively modest and we 

can just say that they are brought by common logs of t. The common logs can be 

accelerated at other modest rates, so that resulting rates are equal to 𝑙𝑜𝑔𝑙𝑜𝑔 𝑡. But 

𝑙𝑜𝑔𝑙𝑜𝑔 𝑡 is variable and hence it needs to be normalized.  Normalization will lead 

to:   

log log 𝑡

𝜋
 

To determine the likely error term at every nth prime number, we simply find the 

product v of the two equations:  

𝑣 = ( 

𝑙𝑛𝑙𝑜𝑔 𝑡
𝜋 + 6

𝜋2
) (𝑙𝑜𝑔𝑙𝑜𝑔 𝑡) 

  
Therefore, the whole leading equation can be presented as: 



𝓛 ≈
𝒕 × 𝒆 × (𝐥𝐧 𝒕 + 𝐥𝐨𝐠 𝒕)

(𝝅 + 𝒗)
 

The Process of Locating a Prime Number 

At this point, it is important to note that due to unpredictable nature of prime 

numbers, they cannot be easily “handpicked”.  What we can do in the current 

analysis is to find the bounds in which a given prime number can be found. 

There are two options here. For relatively small primes, one can make use of 

maximal gaps. In this regard, we use ceilings of gaps to determine the location of  

𝑃𝑡ℎ prime number. For relatively large prime numbers, the constant Ψ =

0.9950940298 can be used. The constant Ψ is used to adjust drifting results to 

conform to the desired trend.  For operational purpose, let large numbers begin 

after 𝑷𝒕𝒉=1,500.   

For relatively small primes, a prime is located between ℒ and (ℒ − 𝒈(𝑷𝓛 𝑪𝒆𝒊𝒍𝒊𝒏𝒈) 

Where 𝒈(𝑷𝓛 𝑪𝒆𝒊𝒍𝒊𝒏𝒈), is the ceiling gap after the calculated ℒ, since it reveals a clue 

on the expected gap at the local point of ℒ .   

The location of a large prime number is between ℒ and Ψℒ. 

Locating a Prime Number, 𝑷𝒕𝒉 ≥ 𝟑𝟔𝟕 

Locating small prime numbers to 167th prime number does not need any 

alterations on the leading equation, and it can be used the way it is.  Therefore the 

equation ℒ ≈
𝑡×𝑒×(ln 𝑡+log 𝑡)

(𝜋+𝑣)
 will be used.  

Table 4: Selected Examples  

Location of  

 

Workings Commentary 

9th prime: 

ℒ ≈
9 × 𝑒 × (ln 9 + log 9)

(𝜋 + 𝑣)
 

≈
9 × 𝑒 × (ln 9 + log 9)

(3.1313183886)
 

 

≈
77.099181433

3.1313183886
 

For convenience begin with finding 

v. 

𝑣 = ( 

𝑙𝑛𝑙𝑜𝑔 9
𝜋 + 6

𝜋2
)(𝑙𝑜𝑔𝑙𝑜𝑔 9) 

= −0.010274265 

Calculate 9 × 𝑒 × (ln 9 + log 9) 
= 77.099181433 

 

The 9th prime is 

23. The bounds 

are true.  



 
≈ 24.622 

But 𝓛𝒑𝒕𝒉 is between ℒ 𝑎𝑛𝑑 {ℒ −

 𝑔(𝑃 ℒ 𝐶𝑒𝑖𝑙𝑖𝑛𝑔}   
So 9th prime is between 

24.622 and 17.95 

Calculate  𝑔(𝑃 ℒ 𝐶𝑒𝑖𝑙𝑖𝑛𝑔 
(log 24.622 × ln 24.622 − 1) +
ln 24.622=6.6762  

Get {ℒ −  𝑔(𝑃 ℒ 𝐶𝑒𝑖𝑙𝑖𝑛𝑔)}   
=17.95 

25th Prime:  

ℒ ≈
25 × 𝑒 × (ln 25 + log 25)

(𝜋 + 𝑣)
 

≈
25 × 𝑒 × (ln 25 + log 25)

(3.2316109719)
 

 

≈
313.74516465

3.2316109719
 

 
≈ 97.08630382 

But 𝓛𝒑𝒕𝒉 is between ℒ 𝑎𝑛𝑑 {ℒ −
 𝑔(𝑃 ℒ 𝐶𝑒𝑖𝑙𝑖𝑛𝑔)}   

So 9th prime is between 

97.1 and 84.43 

Find v. 

𝑣 = ( 

𝑙𝑛𝑙𝑜𝑔 25
𝜋

+ 6

𝜋2
)(𝑙𝑜𝑔𝑙𝑜𝑔 25) 

= 0.0900183183 

Calculate 25 × 𝑒 × (ln 25 + log 25) 
=313.74516465 

 

Calculate  𝑔(𝑃 ℒ 𝐶𝑒𝑖𝑙𝑖𝑛𝑔 
(log 97.1 × ln 97.1 − 1) + ln 97.1= 12.67 

Get {ℒ −  𝑔(𝑃ℒ 𝐶𝑒𝑖𝑙𝑖𝑛𝑔)}   
=84.43 

The 25th prime is 

97. The bounds 

are true.   

168th Prime: 

  

ℒ ≈
168 × 𝑒 × (ln 168 + log 168)

(𝜋 + 𝑣)
 

≈
168 × 𝑒 × (ln 168 + log 168)

(3.3617426121)
 

 

≈
3356.2025209

3.3617426121
 

 
≈ 998.352 

But 𝓛𝒑𝒕𝒉 is between ℒ 𝑎𝑛𝑑 {ℒ −
 𝑔(𝑃 ℒ 𝐶𝑒𝑖𝑙𝑖𝑛𝑔)}   

So 168th prime is between 

998.25 and 971.78 

 

Find v. 

𝑣 = ( 

𝑙𝑛𝑙𝑜𝑔 168
𝜋 + 6

𝜋2
) (𝑙𝑜𝑔𝑙𝑜𝑔 168) 

= 0.2201499585 

Calculate 168 × 𝑒 × (ln 168 + log 168) 
=3356.2025209 

 

Calculate  𝑔(𝑃 ℒ 𝐶𝑒𝑖𝑙𝑖𝑛𝑔 
(log 998.352 × ln 998.352 − 1) +
ln 998.352= 26.62 

Get {ℒ −  𝑔(𝑃ℒ 𝐶𝑒𝑖𝑙𝑖𝑛𝑔)}   
=971.780 

The 168th prime is 

997. The bounds 

are true. 

367th Prime: 

 

ℒ =
367 × 𝑒 × (ln 367 + log 367)

(𝜋 + 𝑣)
 

≈
367 × 𝑒 × (ln 367 + log 367)

(3.4026780556)
 

Find v. 

𝑣 = ( 

𝑙𝑛𝑙𝑜𝑔 367
𝜋 + 6

𝜋2
) (𝑙𝑜𝑔𝑙𝑜𝑔 367) 

= 0.2610854020 

Calculate 367 × 𝑒 × (ln 367 + log 367) 
=8449.7797268 

The 367th prime is 

2477. The bounds 

are true. 

 

 

 



 

≈
8449.7797268

3.4026780556
 

 
≈ 2483.2733479 

But 𝓛𝒑𝒕𝒉 is between ℒ 𝑎𝑛𝑑 {ℒ −
 𝑔(𝑃 ℒ 𝐶𝑒𝑖𝑙𝑖𝑛𝑔)}   
So 367th prime is between 

2483.27 and 2449.94 

 

 

 

Calculate  𝑔(𝑃 ℒ 𝐶𝑒𝑖𝑙𝑖𝑛𝑔 
(log 2483.2733479 × ln 2483.2733479 −
1) + ln 2483.2733479= 33.4 

Get {ℒ −  𝑔(𝑃ℒ 𝐶𝑒𝑖𝑙𝑖𝑛𝑔)}   
=2449.94 

 

 

 

 

 

 

 

 

 

368th Prime:  

 

ℒ =
368 × 𝑒 × (ln 368 + log 368)

(𝜋 + 𝑣)
 

≈
368 × 𝑒 × (ln 368 + log 368)

(3.4028118406)
 

 

≈
8476.7077731

3.4028118406
 

 
≈ 2491.0891845 

But 𝓛𝒑𝒕𝒉 is between ℒ 𝑎𝑛𝑑 {ℒ −
 𝑔(𝑃 ℒ 𝐶𝑒𝑖𝑙𝑖𝑛𝑔)}   

So 367th prime is between 

2491.1 and 2457.72 

 

 

Find v. 

𝑣 = ( 

𝑙𝑛𝑙𝑜𝑔 368
𝜋

+ 6

𝜋2
) (𝑙𝑜𝑔𝑙𝑜𝑔 368) 

= 0.261219187 

Calculate 368 × 𝑒 × (ln 368 + log 368) 
=8476.7077731 

 

Calculate  𝑔(𝑃 ℒ 𝐶𝑒𝑖𝑙𝑖𝑛𝑔 
(log 2491.0891845 × ln 2491.0891845 −
1) + ln 2491.0891845= 33.4 

Get {ℒ −  𝑔(𝑃ℒ 𝐶𝑒𝑖𝑙𝑖𝑛𝑔)}   
=2449.94 

The 368th prime is 

2503. The bounds 

are not true. 

 

Locating a Prime Number, 𝑷𝒕𝒉 > 𝟑𝟔𝟕 

From previous workings, we can see that the leading equation starts to fail 

predicting the location of nth prime at 𝑷𝒕𝒉 = 𝟑𝟔𝟖. The leading equation thus has to 

be adjusted to conform to new exponential changes between 𝑷𝒕𝒉 = 𝟑𝟔𝟕 and 𝑷𝒕𝒉 =

𝟑𝟔𝟖.  Careful look at results for  𝑷𝒕𝒉 = 𝟑𝟔𝟖 indicates that the variable part 𝒗 

could be becoming higher than expected to result in 𝓛  that is smaller than the 

expected one. It is therefore necessary that some adjustments are made on the 

variable part 𝒗. 

 



Getting the optimum variable part 𝒗 

 It is notable that the leading equation drifts below the expected trend 

between 𝑷𝒕𝒉 = 𝟑𝟔𝟕 and 𝑷𝒕𝒉 = 𝟑𝟔𝟖.  So, we can presumably say that an 

optimum 𝒗  is found between their 𝒗s. This allows us to get their average as an 

optimum 𝒗 where the drift just occurs.  

 
0.2610854020+0.261219187

2
= 0.2611522945. 

So the optimum 𝒗∗ = 0.2611522945. 

Therefore, for 𝑷𝒕𝒉 > 367, appropriations will have to start by subtracting the 

optimum 𝒗∗ from the  𝑷𝒕𝒉 𝒗 to form 𝑸. 𝑷𝒕𝒉 𝒗 is the likely error term 𝒗 at every nth 

prime number > 367. 

 The equation we are looking for is: 

𝑽 = {

𝑸𝟐

𝑳
+ 𝒗∗                              𝑖𝑓 𝑙𝑛𝑙𝑛𝑙𝑛𝑙𝑛 𝑡 𝑜𝑟 𝑙𝑜𝑔𝑙𝑛𝑙𝑛𝑙𝑛 𝑡 < 𝟎

𝑸𝟐. 𝑳 + 𝒗∗                      𝑖𝑓 𝑙𝑛𝑙𝑛𝑙𝑛𝑙𝑛 𝑡 𝑜𝑟 𝑙𝑜𝑔𝑙𝑛𝑙𝑛𝑙𝑛 𝑡 > 𝟎

  

   

𝑸 = 𝑷𝒕𝒉 𝒗 − 𝒗
∗ 

L is calculated as: 

𝑳 = {𝟏 − (𝒍𝒏𝒍𝒏𝒍𝒏𝒍𝒏 𝒕 − 𝒍𝒐𝒈𝒍𝒏𝒍𝒏𝒍𝒏 𝒕)𝟐}𝒎 

And m is calculated as: 

𝒎

= {
𝒍𝒐𝒈 𝒕 × 𝒍𝒏 𝒕 − 𝒍𝒏 𝒕                                                                                    𝑖𝑓  𝑙𝑛𝑙𝑛𝑙𝑛𝑙𝑛 𝑡 < 0

𝒍𝒏 𝒕 − {(𝒍𝒏𝒍𝒏𝒍𝒏𝒍𝒏 𝒕 − 𝒍𝒐𝒈𝒍𝒏𝒍𝒏𝒍𝒏 𝒕)𝟐 × (𝒍𝒐𝒈 𝒕 × 𝒍𝒏 𝒕)}               𝑖𝑓  𝑙𝑛𝑙𝑛𝑙𝑛𝑙𝑛 𝑡 > 0 
 

After those definitions, we expect the final equation to be of the form: 

 

𝓛 ≈
𝒕 × 𝒆 × (𝐥𝐧 𝒕 + 𝐥𝐨𝐠 𝒕)

(𝝅 + 𝑽)
 

This is the equation needed for resolving the location of a prime number 𝑷𝒕𝒉 >

367. 



Table 5: Selected Examples 

Location of 

 

Workings Commentary 

1229th prime: 
ℒ

≈
1229 × 𝑒 × (ln122 9 + log122 9)

(𝜋 + 𝑉)
 

≈
1229 × 𝑒 × (ln 1229 + log 1229)

(3.4090929331)
 

 

≈
34087.556734

3.4090929331
 

 
≈ 𝟗𝟗𝟗𝟗. 𝟕 

But 𝓛𝒑𝒕𝒉 is between ℒ 𝑎𝑛𝑑 {ℒ −

 𝑔(𝑃 ℒ 𝐶𝑒𝑖𝑙𝑖𝑛𝑔}   
So 1229th prime is between 

9954.65 and 9999.7 

For convenience begin with 

finding 𝑃𝑡ℎ 𝑣. 

 𝑃𝑡ℎ 𝑣 = ( 

𝑙𝑛𝑙𝑜𝑔 1229

𝜋
+ 6

𝜋2
)(𝑙𝑜𝑔𝑙𝑜𝑔 1229) 

=0.3156434249 

Calculate Q 
0.3156434249 − 0.2611522945 

= 0.0544911304 

𝑄2 = 0.0029692832 

Next calculate m. 

𝑙𝑛𝑙𝑛𝑙𝑛𝑙𝑛 1229 < 0, so. 
𝑚 = log 1229 × ln 1229 − ln 1229 

𝑚 = 14.864980383 

Determine L. 
𝐿 = {1 − (𝑙𝑛𝑙𝑛𝑙𝑛𝑙𝑛 1229

− 𝑙𝑜𝑔𝑙𝑛𝑙𝑛𝑙𝑛 1229)2}14.87 

= 0.4677523369 

Get V: 

𝑉 =
0.0029692832

0.4677523369
+ 0.2611522945 

𝑉 =0.2675002795 
Calculate 1229 × 𝑒 × (ln 1229 + log 1229) 
=34087.556734 

 

Calculate  𝑔(𝑃 ℒ 𝐶𝑒𝑖𝑙𝑖𝑛𝑔 
(log𝟗𝟗𝟗𝟗. 𝟕 × ln𝟗𝟗𝟗𝟗. 𝟕 − 1) + ln 𝟗𝟗𝟗𝟗. 𝟕= 

45.051432 

Get {ℒ −  𝑔(𝑃ℒ 𝐶𝑒𝑖𝑙𝑖𝑛𝑔)}   
=9954.65 

The 1229th prime 

is 9973. The 

bounds are true.  

1 millionth prime: 

ℒ ≈
106 × 𝑒 × (𝑙𝑜𝑔106 + 𝑙𝑛106)

(𝜋 + 𝑉)
 

≈
106 × 𝑒 × (𝑙𝑛106 + 𝑙𝑜𝑔106)

(3.4705651446)
 

 

≈
53864142.271

3.4705651446
 

Finding 𝑃𝑡ℎ 𝑣. 

 𝑃𝑡ℎ 𝑣 = ( 

𝑙𝑛𝑙𝑜𝑔106 

𝜋
+ 6

𝜋2
)(𝑙𝑜𝑔𝑙𝑜𝑔 106) 

=0.5180262546 

Calculate Q 
0.5180262546 − 0.2611522945 

=0.2568739601 

The 1,000,000th 

prime is 

15,485,863. The 

bounds are true. 

 



 
≈ 𝟏𝟓, 𝟓𝟐𝟎, 𝟐𝟕𝟗. 𝟖𝟒𝟕 

But 𝓛𝒑𝒕𝒉 is between ℒ 𝑎𝑛𝑑 ℒΨ.So 

1,000,000th prime is between 

15,520,279.847 and 15,444,137.82. 

𝑄2 =0.0659842313 

Next calculate m. 

𝑙𝑛𝑙𝑛𝑙𝑛𝑙𝑛 106 < 0, so. 
𝑚 = log 106 × ln 106 − ln106 

𝑚 =69.07755279 

Determine L. 

𝐿 = {1 − (𝑙𝑛𝑙𝑛𝑙𝑛𝑙𝑛 106

− 𝑙𝑜𝑔𝑙𝑛𝑙𝑛𝑙𝑛106 )2}69.077755279 

= 0.9729289309 

Get V: 

𝑉 =
0.0659842313

0.9729289309
+ 0.2611522945 

𝑉 =0.328972491 
Calculate 106 × 𝑒 × (ln 106 + log 106) 
= 53864142.271 

 

Since this is a large number, we can just find 

ℒΨ as Ψℒ= 15,520,279.847 ×
0.9950940298 = 15,444,137.82 

37,607,912,018th prime: 

Let t=37,607,912,018 
𝑡 × 𝑒 × (ln 𝑡 + log 𝑡)

(𝜋 + 𝑉)
 

 

≈
3570422111001.1

3.567175725739139179735199𝟒𝟗𝟑𝟔𝟖𝟎𝟕
 

 
≈ 𝟏𝟎𝟎𝟎𝟗𝟏𝟎𝟎𝟕𝟏𝟓𝟖𝟑. 𝟔𝟕 

But 𝓛𝒑𝒕𝒉 is between ℒ 𝑎𝑛𝑑 ℒΨ.So 

37,607,912,018th  prime is 

between 1000910071583.67 and 

995999636599.603 

 

Finding 𝑃𝑡ℎ 𝑣. 

 𝑃𝑡ℎ 𝑣 = ( 

𝑙𝑛𝑙𝑜𝑔𝑡 

𝜋
+ 6

𝜋2
)(𝑙𝑜𝑔𝑙𝑜𝑔 𝑡) 

=0.7006084123 

Calculate Q 
0.5180262546 − 0.2611522945 

=0.4394561178 

𝑄2 =0.1931216794 

Next calculate m… Beware, not 

like in the previous examples, 

𝒍𝒏𝒍𝒏𝒍𝒏𝒍𝒏 𝒕 > 𝟎, so, 

𝒎 = 𝒍𝒏 𝒕 − {(𝒍𝒏𝒍𝒏𝒍𝒏𝒍𝒏 𝒕 − 𝒍𝒐𝒈𝒍𝒏𝒍𝒏𝒍𝒏 𝒕)𝟐

× (𝒍𝒐𝒈 𝒕 × 𝒍𝒏 𝒕)} 
m=22.51777317 
Determine L. 
𝐿 = {1 − (𝑙𝑛𝑙𝑛𝑙𝑛𝑙𝑛 𝑡− 𝑙𝑜𝑔𝑙𝑛𝑙𝑛𝑙𝑛 𝑡 )2}22.51777317 

=0.851436142023037633508463112511

67 

Get V…….. 

Beware again, not like in the 

previous examples, 

I don’ have an 

idea about the 

exact 

37,607,912,018th 

prime. 

The bounds are 

seemingly true. 

The prime 

number is just 

slightly below 

N=1012. 

I chose this 

number for 

illustration.  



𝒍𝒏𝒍𝒏𝒍𝒏𝒍𝒏 𝒕 > 𝟎, so, 

𝑽 = 𝑸𝟐. 𝑳 + 𝒗∗ 
𝑉 = 0.1931216794 × 0.85143614202304

+ 0.2611522945 

𝑉 =0.4255830721493459412725561104 
Calculate 𝑡 × 𝑒 × (ln 𝑡 + log 𝑡) 

= 3570422111001.066591575250048097

2 
Since this is a large number, we can find ℒΨ as 

Ψℒ= 1000910071583.67 × 0.9950940298 = 

995999636599.603 

  

Section Remark: 

We have just finished a demonstrative survey of locating an nth prime 

number. Due to the unpredictable nature of prime numbers, it has not been easy to 

handpick a particular prime number. Unavailability of data has made me to survey 

on the 37,607,912,018th prime number just for illustration purpose. I really do not 

have an idea about the exact 37,607,912,018th prime to tell if it fits in the bounds 

calculated. However, the journey of finding nth prime location has seemed to be 

less bumpy compared to those of the two previous sections. 

 

 

 

 

 

 

 

 

 

 

 



PART II: WHY PRIME NUMBERS BEHAVE AS THEY DO 

D. ARGUMENT FOR THE BEHAVIOUR OF PRIME NUMBERS 

This section presents an argument for reasons why prime numbers behave 

the way they do. In so doing, we will be employing trans-algebraic number method 

to illustrate why prime numbers cannot be identified or generated by a single 

elementary identity, since each prime number is an identity in its own respect 

before it is compounded.  To illustrate how an elementary identity of a Prime 

Group, 𝑮𝒑 can be determined, we can say that there exist an identity element 𝑒 ∈

𝐺, such that 𝑔 ∗ 𝑒 = 𝑒 ∗ 𝑔 = 𝑔 , ∀ 𝑔 ∈ 𝐺. where the element 𝑔 is the group’s 

generator. Therefore, a finite cyclic group G of order m with  < 𝑔 >                                                                                                                                                                                                                                                                          

as the generator would consist of the following elements (Gallian, 2016): 

𝑒, 𝑔0, 𝑔1, 𝑔2, 𝑔3, …………… . . , 𝑔𝑚−1, where 𝑔𝑚−1  ≠ 𝑒.  

For infinite cyclic group, the group G can be defined with 𝑮 =< 𝒈 >=

{𝒈𝒏: 𝒏 ∈ 𝕫} and |𝐺| = ∞.  In the above cases, we have assumed that the identity 

element is an exact real number represented as 𝑔 ∈ ℝ.  However, there can be 

cases whereby g is a rational number represented as ƍ ∈  ℚ.  

A finite extended field can therefore be defined by extensions of the field L such 

that (Gallian, 2016): 

𝐺 = 𝐸0 ⊂ 𝐸1 ⊂ 𝐸𝑔0 ⊂ 𝐸2 = 𝐸1𝑔1 ⊂ ⋯ ⊂ 𝐿 = 𝐸𝑛  

We can subsequently take the translation (mapping) of one element onto another to 

be isomorphism. Taking 𝐸0 = 𝐺0, 𝐸1 = 𝐺1 𝑎𝑛𝑑 𝐸2 = 𝐺2 for instance, then 𝐺1 =

𝑔𝐺0 𝑎𝑛𝑑 𝐺2 = 𝑔𝐺1.  In this regard, we can note that there is a one-to-one 

correspondence among elements of the group generated by 𝑔. This definite 

generator ensures normality in the group, so that there can be a clear sequence. We 

can now say that every element in the group can just be a direct summand of the 

preceding one such that (Reis, & Rankin, 2016): 

𝐺 = 𝐺1⊕𝐺2⊕𝐺3⊕𝐺4………………… . .⊕ 𝐺𝑛      𝑤𝑖𝑡ℎ |𝐺𝑖| ≥ |𝐺𝑗| 𝑖𝑓 𝑖 < 𝑗.  

Due to the nature of prime numbers (Euclid already gave a proof of their 

infinitude), we can let the group of prime numbers to be 𝑮 =< ƍ >= {ƍ𝒏: 𝒏 ∈

𝕫} and |𝐺| = ∞.   

We can now specifically write the group of prime numbers as: 



 𝐺𝑝 = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29………………. Or  

𝐺𝑝 = 𝑍𝑝2 , 𝑍𝑝3 , 𝑍𝑝7 , 𝑍𝑝11 …………… . . 𝑍𝑝𝑛−1 , 𝐺𝑝𝑛 

Note that we have already discussed that for the group’s elements to be 

represented on an extended field with the same relationship, there have to be a one-

to-one correspondence initiated by the same identity e and generated by the same 

generator g.  The contrary will indicate that at least one of the element in the group 

is non-trivial; that is, it has its own identity and it cannot be defined and generated 

within the group by the group’s identity and generator respectively. Suppose we do 

an analysis on primes, we may take 2, the first prime number, as an identity. The 

next step will be analyzing how 2 is translated, by isomorphism, onto other 

numbers in the prime sequence. This will indeed help us establish if all numbers 

are being produced by the identity 2 and the same generator. This will in fact be 

indicated by gaps between the numbers; having the same identity and being 

generated by similar generator will determine regularity of gaps. From the 

maximal gap analysis, we saw that the next prime number is a function of 

preceding prime and the gap that is between them. If we let for instance sizes of 

gaps to be represented by ƍ, then there have to be regularity in the gaps after each 

prime number for us to say that elements in prime group are of the same identity e 

and are being generated by the same generator ƍ, so that 𝐺1 = ƍ𝐺0 𝑎𝑛𝑑 𝐺2 = ƍ𝐺1 

or 𝐺1 = ƍ ± 𝐺0 and 𝐺2 = ƍ ± 𝐺1(Reis, & Rankin, 2016). 

In case such a group does not include elements with predictable pattern, as 

indicated by regularity in nth element appearance and gap sizes, then at least one of 

them will be non-trivial. All of them can be non-trivial if no predictable pattern 

exist at all to show how every element translate itself onto another. In a group with 

a single identity and single generator, each element can be represented as ℛ (
𝑚

𝑛
) =

ℤ. In this relationship, ℛ is the ratio of homomorphism. The 𝑚 can be the actual 

size of ℤ in sequence. The denominator 𝑛 indicates the relative position of the 

element in the sequence, or extension. Thus, if all elements of the group are 

properly generated by the same generator throughout, we are supposed to have the 

relationship: 

 ℛ (
𝑚2

𝑛2
) = ℛ (

𝑚3

𝑛3
) = ℛ (

𝑚7

𝑛7
) = ℛ (

𝑚11

𝑛11
) = ℛ (

𝑚13

𝑛13
) = ⋯ = ℛ (

𝑚𝑛−1

𝑛𝑛−1
) =

ℛ (
𝑚𝑛

𝑛𝑛
) = 𝑒. 



𝑒 is a common identity (Reis, & Rankin, 2016).  In case the contrary exist so that 

ℛ (
𝑚2

𝑛2
) ≠ ℛ (

𝑚3

𝑛3
) ≠ ℛ (

𝑚7

𝑛7
) ≠ ℛ (

𝑚11

𝑛11
) ≠ ℛ (

𝑚13

𝑛13
) ≠ ⋯ ≠ ℛ (

𝑚𝑛−1

𝑛𝑛−1
) ≠ ℛ (

𝑚𝑛

𝑛𝑛
) ≠

𝑒, then each of the element in the group will be non-trivial. Each of them will be an 

identity in its own respect and we cannot present each of them with a single 

identity and generate each of them with a single generator. This is the case with 

prime numbers, as each of them is non-trivial. The group of prime numbers should 

therefore be presented as: 

 𝐺𝑝 =< 𝑔𝑝2 , 𝑔𝑝3 , 𝑔𝑝5 , 𝑔𝑝7 , ƍ𝑝11 ……………………𝑔𝑝𝑛−2 , 𝑔𝑝𝑛−1, 𝑔𝑝𝑛 >  

But not elementarily as: 

  𝐺 =< 𝑔 > , since  

𝐺𝑝 ≠ 𝑍𝑝2 ⊕𝑍𝑝3⨁𝑍𝑝7⨁𝑍𝑝11…………… . .⊕ 𝑍𝑝𝑛−1 ⊕𝐺𝑝𝑛 

Section Remark: 

In this way, we can now establish that it is non-triviality or identity nature of 

every prime number that makes it hard to generalize prime numbers. Only 

statistical approximation and other kinds of approximation can be used to attain 

approximate generalization of prime numbers due to their unpredictable nature.  

Concluding Remark 

We have finished analyses of all sections. From the last section, we have 

demonstrated that prime numbers, before being compounded, cannot be 

generalized with one identity or relationship since each of them is an identity in its 

own respect. This explains why there are irregular gaps between consecutive 

primes, and their appearances cannot be predicted. We have therefore opined that 

only approximations of statistical operations, among other approximation methods, 

can help us in this regard. We began with formulating models that can assist us in 

determining maximal gaps between consecutive prime numbers. We subsequently 

determined extremely bounded gaps, so that one can determine their lowest and 

highest bounds to resolve questions on locations of prime numbers.  We have also 

formulated an equation that shows a general path of prime numbers, and thus a fair 

blue-print of estimating the number of prime numbers at a given magnitude, from 

𝑁 = 3 to 𝑁 = 1025. I have also noticed that just after 𝑁 = 1010, our results are 

fairly below those of physical counts; I have already said that despite choosing 

right and well appropriated exponents, injections of many and large rational 



numbers in the equation can reduce exactitude of results. The prime locating 

function has been less bumpy, although it has not been tried on very large prime 

numbers. All workings were based on data that the researcher had at disposal, and 

therefore, these equations may be limited to scopes of data used. However, the 

demonstrations can be perceived as easier to understand and cheaper to implement. 

With beliefs that the equations can be understood easily and implemented cheaply, 

I hope to see many innovations on them very soon. We need to improve their 

precisions as soon as possible. I would like to thank Chris K. Caldwell, the owner 

of the website Prime Pages, for his   efforts of preparing prime number tables for 

novice researchers like me; the tables inspired my essay and made it doable to this 

extent. And finally, Anaxagoras described the world as a mixture of primary 

ingredients that cannot perish. Those primary ingredients that cannot perish 

without rationalism, are, just to say, prime numbers in Mathematical Logic. 
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