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Abstract

A spin angular momentum state with a polarization orientation in any ar-
bitrary direction can be constructed as a spinor in the SU(2)-spin space as
χ = a| ↑> +b| ↓>. However the corresponding isospinor in the SU(2)-isospin
space, ψ = a|p > +b|n > is discarded on empirical grounds. Still, we do not
have any sound theoretcal understanding of this phenomenon. Here we provide
a consistent explanation of this effect.
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We know that a spin angular momentum state with a polarization orientation
in any arbitrary direction can be constructed as a spinor in SU(2)-spin space as
χ = a| ↑> +b| ↓>. However, the same does not hold for the SU(2)-isospin space.
The corresponding isospinor ψ = a|p > +b|n > turns out to be unphysical.
This is an empirical fact. However one does not have any sound theoretical
understanding of this phenomenon. Here we provide a consistent solution of
this problem.

The quark model group structure is SU(6)FS⊗SU(3)C ⊃ SU(3)F⊗SU(2)S⊗
SU(3)C . Here in SU(3)F the quark charges are given as Q = T3 + Y

2 where Y =

B + S. As S=0 for proton and neutron Qp = 1
2 +

1
3

2 = 2
3 and Qn = − 1

2 +
1
3

2 = − 1
3 .

These are completely independent of colour. The only way that colour comes
into the above picture is by ensuring a colour antisymmetric wave function in
the above semi-simple group of SU(3)C . Also note that here the baryon number
of 1/3 comes from within as the second diagonal generator λ8 of SU(3)F . So
the baryon number is internally generated in SU(3)F

In contrast, for the first generation of quarks and leptons, in the Standard
Model (SM) with group structure SU(3)C ⊗ SU(2)L ⊗ U(1)YW

, the electric
charges are defined either as Q = TW3 + YW [1] or as Q = TW3 + YW

2 [2]. The
hypercharges are put in by hand to provide proper charges for all the matter
particles. Again there is no colour present in the electric charge in the SM.
However the baryon number 1/3 is colour dependent as arising externally from
the group SU(3)C . This is the standard unquantized charge (i.e. arbitrarily put
in by hand) which is most commonly used in the SM at presnt[1,2]. The same
charges are also used in studies of QCD for arbitrary number of colours [3].

To distinguish the fact that the same group structure and the same matter
structure as the above SM has proper charge quantization built into it, we refer
to this new structure as the Quantized Charge Standard Model (QCSM). This
distinction, as we see below, shall be found to be necessary to avoid undue
confusion and also as the QCSM is actually providig physics well ouside the
purview of the SM.

In QCSM, it has been shown convingly [4,5], that for the group SU(N)C ⊗
SU(2)L ⊗ U(1)YW

with NC = 3, the first generation quarks have proper quan-
tized charges,

Q(u) =
1

2
(1 +

1

Nc
), Q(d) =

1

2
(−1 +

1

Nc
) (1)

Most significant fact in QCSM is that in spite of the fact that photon does
not recognize colour, the electric charge itself has colour sitting inside it! This
crucial difference, as to colour in the charges, is the most significant differece
with respect the above SM charges. It has been shown [4,5] that this colour
dependence is essential to study QCD for arbitrary number of colours. Thus
the SM charges fail [3], whereas the QCSM charges succeed [4]. Thus the QCSM
is actually an extension of the SM, going beyond its confines and providing new
physics beyond the reach of the SM.

However first we are interested in noting the basic differences in how quark
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charges are represented in the flavour SU(3)F model and the QCSM. The
charges of quarks are completely different as to their intrinsic structure in these
two models. One model does not know of any colour (in the charges) while
the other one is well-coloured! Also baryon number in the flavour model arises
internally from the simple group stucture itself, while in the QCSM it arises due
to the colour structure of the semi-simple group for this model.

Given these irreconciliable differences, how can these two models describe
the same entities consistently? Let us study this problem now.

Note that the SU(3)F model successfully describes the baryons as an octet.
The nucleon forms the lowest mass isospin doublet. These then provide the
proper representation of nucleon as what constitutes the nucleus. Including the
isospin in the Generaized Pauli Exclusion Principle along with analysis within
the Brueckner-Hartree-Fock view, leads to the successful Independent Particle
Model (IPM) of the nucleus.

Next what does this new picture of the nucleon, as viewed within the QCSM
analysis, leads to? What information it hides which can help us understand the
hadrons better and which may lead to an understanding of the difference be-
tween the SU(2)-spin and the SU(2)-isopsin group reperesemtations as pointed
out in the title of the paper.

When a theory is strongly coupled, there is often a complete shift in the
relevant degrees of freedom; e.g. at short distances strong nuclear force is de-
scribed by quarks and gluons, while at larger distances the proper degrees of
freedom are the hadrons. Imagine a theory is weakly coupled (so perturbation
theory works) when we are above a certain energy scale λ. Below this scale let
the theory be strongly coupled so that one cannot do perturbation anymore.

weakly coupled theory > λ > strongly coupled theory (2)

Note that we have an advantage if the weakly coupled theory has an anoma-
lous symmetry. ’t Hooft showed [6] that regardless of the strength of the inter-
action, anomaly must be present on both sides of λ.

This allows us to identify the fermion sector of our effective field theory.
Canonically, at present the structure of the nucleus at low energies is nucleonic
degrees of freedom only; but deep inside, these are made up of quarks which
show up at higher energies. However, here we show, that there exists a basic
and consistent structure wherein nucleons do appear as fundamental entities.
This is indeed made possible due to the ’t Hooft anomaly matching condition.

’t Hooft anomaly matching condition [6] points out that chirality ensures that
the fermions are massless. So composites of fundamental entities in the chiral
limit may match each other through the ’t Hooft anomaly matching condition.
This is possible if the sum of the anomaly coefficients A(r) for the composite
fermions (below λ) is equal to that of fundamental fermions (above λ)∑

r

NrA(r) =
∑
r

nrA(r) (3)
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(nr are number of chiral fermions in representation r and Nr are number of
massless composite fermions in representation r)

The first generation is unique as the coloured massless u-, d- quarks form an
isospin doublet in the SM. Then the only colourless composite spin-half fermions
that we can create in the ground state, are proton (uud) and neutron (udd). Now
(p,n) do form a massless, chiral, isospin-doublet. Thus the ’t Hooft matching
condition is indeed satisfied. (However the same logic fails for 3 flavours (u,d,s)
to octet baryons (p, n,Σ+,−,0,Λ0,Ξ−,0) ).

This leads to a new structure. Due to the above reason, the first generation of
quark-lepton goes over to a new and unique single generation of massless chiral
nucleon-lepton. Its epresentation in the QCSM group SU(N)C ⊗ SU(2)L ⊗
U(1)YW

is as follows:

NL =

(
p
n

)
L

, (1, 2, YN ) ; pR, (1, 1, Yp) ; nR, (1, 1, Yn) (4)

lL =

(
νe
e

)
L

, (1, 2, Yl) ; eR, (1, 1, Ye) (5)

Now let the QCSM symmetry be spontaneously broken (SSB) to SU(NC)⊗
U(1)em by an Englert-Brout-Higgs (EBH) field - SU(2)L group doublet in an-
other phase transition. There are five unknown hypercharges plus the above
unknown Yφ of the EBH doublet (similar to the case in ref. [4]) Let us define
the electric charge operator as

Q = T3 + b Y (6)

In QCSM we have three massless generators W1,W2,W3 of SU(2)L and X
of U(1)Y . SSB by EBH mechanism provides mass to the W± and Z0 gauge
particles while ensuring zero mass for photons. Let T3 = − 1

2 of the EBH
field develop a nonzero vacuum expectation value < φ >0. One of the four
generators (W1W2W3, X) is thereby left unbroken, (meaning that we ensure a
massless photon as a generator of the U(1)em group), we demand:

Q < φ >0= 0 (7)

This fixes the unknown b and we obtain,

Q = T3 + (
1

2Yφ
)Y (8)

Anomalies play a very significant role in quantum field theories [1,2] As we
require the SM to be renormalisable, we have to ensure that all the anomalies
vanish. Thus we have three anomalies [4.5] listed as A, B and C as below

Anomaly A : TrY [SU(NC)]2 = 0 ; 2YN = Yp + Yn (9)

Anomaly B : TrY [SU(2)L]2 = 0 ; giving YN = −Yl (10)
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Anomaly C : Tr[Y 3] = 0; 2Y 3
N − Y 3

p − Y 3
n + 2Y 3

l − Y 3
e = 0 (11)

We need more constraints on the hypercharges. The Yukawa mass terms
provide these:

Yp = YN + Yφ, Yn = YN − Yφ, Ye = Yl − Yφ (12)

→ Yl = −Yφ (13)

Finally, we get quantized electric charges for this unique nucleon-lepton sin-
gle generation as,

Q(p) = 1, Q(n) = 0; Q(νe) = 0, Q(e) = −1 (14)

The three anomalies, SSB through EBH mechanism, and Yukawa masses,
gives consistent charge quantization. Most important to see that these nucleons
are taken as fundamental particles and not as composites of quarks. The ’t
Hooft anomaly matching had made these nucleons massless and point-like chiral
fermions as fundamental particles.

Now as in the quark model, we have the isospin doublet ( pn ) arising in the
flavour group SU(3)F ⊃ SU(2)F above. Now the the same isopin pair arises
independemtly in this other model due to the QCSM and conjoined with the
’tHooft anomaly matching condition. These clearly are dual description of the
same ( pn ) which make up the nucleus. How is this duality justified empirically?

Now in the IPM of the nucleus, the SU(2)-isopin symmetry arises from the
quarks in the SU(3)F model. Note that proton and neutron are indistinguish-
able particle in this model. Thus the proton-neutron pair wave function is
antisymmetric as follows:

Φ =
1

2
(p(1)n(2)− n(1)p(2)) (15)

Note that the position order (12) is fixed by definition while the p and n labels
are exchanged. This arises due to the fact that the fundamenatl representation
in the isopin group is a single entity called the nucleon N = ( pn )

Let a single nucleon be made up of three quarks of SU(2)F group as

q1(1) =

(
p(1)
n(1)

)
; q2(2) =

(
p(2)
n(2)

)
; q3(3) =

(
p(3)
n(3)

)
(16)

where we have put position labels on the nucleons. As colour sits outside in the
group SU(3)C ⊗ SU(2)F , so for a particular doublet

q1(1) =

(
pR(1)
nR(1)

)
;

(
pB(2)
nB(2)

)
;

(
pG(3)
nG(3)

)
(17)

Now when three quarks make up proton and neutron, the quark content may
be given as follows:
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N1(1) =

(
p(1′)
n(1′)

)
; p(1′) = uR(1)uB(2)dG(3); n(1′) = dR(1)dB(2)uG(3) (18)

where we have put 1′ as some common centre of the positions 1, 2, and 3 above.
As one builds proper symmetry into the flavour space, the colour antisymmetry
would ensure that proton and neutron have the same base on the position labels
(123) above.

Now the antisymmetric wave function of two nucleons N1 and N2 is

Φ =
1

2
(N1(1)N2(2)−N2(1)N1(2)) (19)

which then leads to the n-p pair antisymmetric wave function above in eqn. (15).
Note the significance of the labels 1, 2, 3, and 1′ in the above wave functions!

Now let us study the group structure relevant for the new doublet ( pn ) of
the QCSM conjoined with the anomaly matching case.

In the canonical quark model the group structure is SU(6)FS ⊗ SU(3)C ⊃
SU(3)F ⊗ SU(2)S ⊗ SU(3)C . Antisymmetry arises from the colour part and
the SU(6) part gives symmetric states for baryons. What is the meaning of
SU(6)FS ⊃ SU(3)F⊗SU(2)S? We know that SU(3)F is pretty badly broken. It
works at low non-relativistic energies. From this we work up to the bigger group
SU(6)FS by including the purely ”static” SU(2)-spin group. It is broken atleast
as badly as its flavour subgroup. However it works pretty well in resolving some
basic puzzles of the SU(3)F model (such as lack of flavour singlet repreesentation
of spin 1/2 baryons etc.).

However in the new model due to chiralty, the quark masses are exactly
zero and thus SU(2)F is an exact symmetry. As SU(3)C is an exact symmetry
anyway, thus the larger group SU(6)CF ⊃ SU(3)C ⊗ SU(2)F is a very good
symmetry. Note that this is true at relativistic energies. This though is slightly
broken due to SSB by EBH mechanism by fixing the slightly different masses
of neutron and proton by Yukawa coupling. However it still remains a good
symmetry to classify the states even at relativistic energies. Given the fact that
SU(2)S should be a good symmetry, the new group structure would be

SU(12)CFS ⊃ SU(6)CF ⊗ SU(2)S (20)

Now the three quark antisymmetric state in this bigger group, decomposed
as above [7],

CFS ⊃ ( CF , S )⊕ ( CF , S )

220CFS → (70CF , 2S)⊕ (20CF , 4S) (21)
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Clearly the doublet spin state above should be the representation which
would provide our new (p,n) doublet.

The colour and flavour content of the above SU(6)CF representation is

= ( ⊕ )⊕( ⊕ )⊕( ⊕ )⊕( ⊕ )

70CF = (1C , 2F )⊕ (8C , 4F )⊕ (8C , 2F )⊕ (10C , 2F ) (22)

We see from the first set on the right hand side that this state indeed has the
proper colour singlet and flavour doublet of the new anomaly matched (p,n).

Thus we see that the fundamental representation of our SU(6)CF group is,

Q =

uR
uB
uG
dR
dB
dG (23)

We can put position labels, just like in eqn. (16), and construct proton
and neutron from these. But now there are more than two states (actually six)
at each position and thus when we construct wave functions for proton and
neutron, differences shall arise. What it means is that for the proton = [ u (1)
u(2) d(3) ] including colour for the group SU(6)CF , given a state say uR(1),
then the corresponding d-quark for the corresponding neutron may exist in any
of the states dR(1) , dB(1) , dG(1). Thus for this group structure it can not
be guaranteed that both p and n exist at the same position. This is a major
difference with respect to the result in eqn. (18). And thus ( pn ) pair is not a
nucleon (i.e. existing at one specific point as in eqn.(18)).

This means that the proton and neutron of a pair are located at different
points in this new model. Therefor proton and neutron are not identical and
indistiguishable particles here. Thus a nucleus made up of these should be
treated as made up of distinguishable and different proton and neutron Fermi
seas.

What do the empirical results say? Answer: success ! phenomenologically
this model finds full support in the nucleus.

In fact, right up to the ∼ 1960′s most of the nuclear physics models treated
protons and neutrons as distinguishable fermions, for e.g. see Blatt and Weis-
skopf [8].

But as we have discussed above, the SU(2)I models is today the best and the
most successful model of the nucleus. But the earlier results [8], were equally
good too. Thus there is actually a duality of models here. Therefor a nucleus
can be described well in an SU(2)I model (where (p-n) are indistinguishable)
and in another independent picture where the pair (p-n) is treated as made up of
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distinguishable fermions. Lawson [9] has shown, in a complete section entitled
”Isospin and non-isospin methods of calculation”, that these two independent
methods yield essentially identical results in the nucleus.

The relationship between the two formalisms here is discussed at many places
[8,9,10]. These demonstrate that it is merely a formal requirement to move from
one formalism to another. So taking the Pauli Exclusion Principle for the proton
and neutron separately in a conventional manner or by requiring antisymmetry
under the exchange of two nucleons in isospin formalism, i.e. no matter whether
we had (p− p) or (p− p) or (n− p) pairs, we are able to build an antisymmetric
wave function from the conventional wave function [8,10]

Thus in our model here, the SU(2)I forlamism and the anomaly matching
(p,n) doublet, give identical results and so represent dual model structures of
the nucleus.

There is a subtle difference though. As discussed above, every conventional
wave (of distinguishable proton and neutron) function can be generalized to be
written in the proper isospin formalism. But the converse does not always hold.
Take the case of a simple isospin wave function of the single nucleon,

ψ(~r, χ, η) = φ (~r, χ)
1√
2
{ν(η) + π(η)} (24)

This function corresponds to a nucleon in the ordinary states φ(~r, χ) (nota-
tion as in [8])]. However, this nucleon has equal probability of being a proton or
a neutron at any particular time. This is the same isospinor described in the ti-
tle of this paper. This state does not correspond to any physically known states
of a proton or a neutron. Thus the isospin formalism provides us with spurious
states which do not correspond to any physical reality whatsoever. Hence the
need to use proper states in the isospin formalism, which means that we ensure
that states with a definite number of protons and neutrons only are constructed.

Thus as both these independent pictures, describe the same reality. Then
because of the existence of each other, both these model strutures should provide
the same representations. It seems that the anomaly matching (p,n) doublet
structure is more basic and thus it enforces its dictat on the SU(2)I model and
thus forbids the above isospinor.. Thus the spinors that may exist in SU(2)S
space, do not have a counterpart as isospinors of SU(2)I space. This is made
possible due to the duality of model structures of the nucleus as shown here.
This answers the questions raised in the title of the paper.
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