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Single atom cavity quantum electrodynamics grants access to nonclassical photon statistics, while
electromagnetically induced transparency exhibits a dark state of long coherence time. The com-
bination of the two produces a new light field via four-wave mixing that shows long-lived quantum
statistics. We observe the new field in the emission from the cavity as a beat with the probe light
that together with the control beam and the cavity vacuum is driving the four-wave mixing process.
Moreover, the control field allows us to tune the new light field from antibunching to bunching,
demonstrating our all-optical control over the photon-pair emission.

Nonlinear optics requires media in which the dielectric
polarization responds nonlinearly to the electric field of
the light. In conventional media, this occurs for very high
intensities. To bring nonlinear optics to the quantum
domain of single photons, giant nonlinearities like those
provided by atomic ensembles in Rydberg states [1–5]
or single atoms in optical resonators [6–8] are manda-
tory. Indeed, such systems can produce quantum fields
[9–11], in particular those containing single photons [12–
14]. However, these achievements have so far exploited
only a small subset of the arsenal provided by nonlinear
optics. Incorporating higher-order effects like four-wave
mixing to generate and control more complex quantum
light fields would broaden the application potential of
quantum nonlinear optics towards a fully coherent ma-
nipulation of both the intensity and the frequency of
quantum light fields.

Here we report on a cavity quantum electrodynamics
(QED) experiment where a single atom strongly coupled
to a high-finesse optical resonator emits a new quantum
field by four-wave mixing. Phase matching is not re-
quired as the atom constitutes a medium with vanishing
length. The new field is resonantly emitted into the cav-
ity vacuum, and is induced by shining probe and con-
trol beams onto the cavity and the atom, respectively.
The control field guarantees electromagnetically induced
transparency (EIT) for cavity light [15–17]. The probe
field addresses a normal mode of the system and thus
experiences photon blockade [9], a genuine quantum-
mechanical effect. The coherent interplay between all
light fields produces a long-lived atomic superposition
state that leads to an equally long-lived non-classical fea-
ture in the light emitted from the cavity. The quantum
character of this effect can be optically controlled with
the control beam. Our system with its unique combi-
nation of cavity QED and cavity EIT could be a novel
building block of a network of atom-cavity systems with
the aim of controlling the predicted phase transition of
light into an ordered Mott-insulator-like state of photons
[18–20].

The principle of our experiment works as follows. We
consider a single Λ-type three-level atom with equal po-
larization decay rate γ/2 from the excited state |e〉 to the

two ground states |g1〉 and |g2〉. The atom is held inside
a cavity with a field decay rate κ and is exposed to a con-
trol laser field coming from the side as depicted in Fig.
1 (a). The cavity is strongly coupled to the atomic tran-
sition |g1〉 → |e〉 with a coupling strength g0 > (κ, γ). A
control laser field at frequency ωcon drives the |g2〉 → |e〉
transition resonantly with a Rabi frequency Ωcon. To-
gether, the vacuum field of the cavity and the control
laser establish a cavity EIT configuration.

Figure 1(b) shows the new eigenstates of the system,
consisting of a ladder of triplets with ladder steps n rep-
resenting the number of excitations in the system. A de-
tailed theoretical treatment of the considered system can
be found in [21]. With the ground state |Ψ0

0〉 = |g1, 0〉,
all other eigenstates with n ≥ 1 can be written as

|Ψ±n 〉 ∝ |g1, n〉 ±
gn,eff√
ng0
|e, n− 1〉+

Ωcon√
ng0
|g2, n− 1〉 (1)

|Ψ0
n〉 ∝ |g1, n〉 −

√
ng0

Ωcon
|g2, n− 1〉, (2)

where gn,eff =
√
ng2

0 + Ω2
con is the effective atom-

cavity coupling strength. The states |Ψ±n 〉 represent su-
perposition states in which one excitation is shared be-
tween the atom and the cavity, similar to the dressed
states of a two-level atom strongly coupled to a cavity,
but with an admixture of the second ground state |g2〉.
Note that the splitting of the |Ψ±n 〉 states scales with
twice the effective atom-cavity coupling gn,eff. There-
fore, the control field Rabi frequency Ωcon can be used
as a control knob to tune gn,eff and consequently the
spectral positions of the |Ψ±n 〉 eigenstates. The third
series of eigenstates |Ψ0

n〉, completing the triplets, rep-
resent the cavity EIT state, in which the atom is in a
“dark” superposition of the states |g1〉 and |g2〉 with no
population in the excited state |e〉. For our parameters,
these states are resonant with the empty cavity. Thus, a
probe laser at frequency ωprobe driving the system with
a driving strength η on resonance with the empty cav-
ity will simply be transmitted. Driving the system close
to resonance with the states |Ψ±1 〉 will induce a coherent



2

four-wave mixing process, which we will now discuss in
detail.

FIG. 1. (Color online). (a) A single Λ-type three-level atom
with two ground states |g1〉 and |g2〉 and a an excited state |e〉
is positioned at the center of an optical cavity with a decay
rate κ. A control beam, transverse to the cavity axis, drives
the |g2〉 → |e〉 transition resonantly with a Rabi frequency
Ωcon which together with the cavity vacuum (ωcav) establish
the cavity EIT condition. A probe laser at frequency ωprobe

and with a driving strength η is driving the four-wave mix-
ing process, in which two new fields at frequencies ωfree and
ωcav are emitted. (b) Energy levels of the strongly coupled
cavity EIT system shown up to the second manifold. |Ψ0

n〉
are dark states of the cavity EIT system and |Ψ±

n 〉 the cav-
ity QED like dressed eigenstates. (c)-(e) Numerical simula-
tions of the time-dependent second-order correlation function
g(2)(τ) for different control field Rabi frequencies Ωcon show-
ing the beating of the probe field with the new field emitted
into the cavity. Depending on Ωcon the photon pair correla-
tion shows antibunching or bunching. The coherence time of
the beat exceeds the coherence time expected for a two-level
atom strongly coupled to the cavity shown for comparison in
(f).

In the four-wave mixing process the atom absorbs light
from the probe and control beams and emits a field at
frequency ωcav into the cavity mode as well as one at fre-
quency ωfree into free space, compare Fig. 1(a). The role
of the cavity vacuum in this process is twofold. Firstly,
it ensures the EIT condition by coupling the states |g1〉

and |e〉, and therefore driving, together with the control
and probe beams, the coherent emission of the light field
at frequency ωfree. Secondly, it stimulates the light field
at frequency ωcav that is emitted in the four-wave mixing
process into the cavity vacuum. This new field is closely
related to the vacuum induced transparency field [22].
Energy conservation yields the following condition for the
new fields ωcav − ωcon = ωprobe − ωfree = ∆g12 , where
∆g12 is the energy difference between the two ground
states. While it is hard to detect the generated field, with
a frequency ωfree, that is emitted into modes outside the
cavity, the emission into the cavity mode facilitates the
detection of the other generated field with a frequency
ωcav. It is superposed with the probe light, leading to a
beating of the two light fields that can be detected out-
side the cavity.

The generation of four-wave mixing can be demon-
strated by extracting the beat frequency from intensity
correlation measurements g(2)(τ) = 〈n(τ)n〉/〈n〉2 where
n is the photon number operator, which allow at the same
time to reveal the quantum character of the field. To il-
lustrate this, we show in Fig. 1(c)-(e) numerical simula-
tions of g(2)(τ) for parameters corresponding to our ideal
experimental values {g0, λ, κ}/2π = {14, 3, 2} MHz, with
a probe laser driving strength η ≈ κ and a probe-cavity
detuning ∆pc/2π = (ωprobe − ωcav)/2π = −18 MHz for
different control field Rabi frequencies Ωcon. For all val-
ues of Ωcon, a strong oscillation is visible that comes from
the superposition of the probe field with the new field
which shows a beat frequency that matches the condi-
tion ωbeat = |ωcon + ∆g12 − ωprobe| = ∆pc. Remarkably,
the coherence time of this oscillation is much longer than
any inverse decay rate of the system. For comparison,
we show in Fig. 1(f) the two-level atom cavity QED
case with the same parameters, but at ∆pc = −g0, at
resonance with the lower normal mode. In this case the
probe field experiences photon blockade, resulting in pho-
ton antibunching. Moreover, in Fig. 1(f) an oscillation
is visible, that has a frequency corresponding to the nor-
mal mode splitting 2g0 [8], and the steady state of un-
correlated photons is reached on a time scale that is en-
tirely determined by the linewidth of the normal modes
(κ+γ)/2. In contrast, for all drawn cavity EIT cases, Fig.
1(c)-(e), the beat of the probe field with the new intracav-
ity field is observable for longer timescales, which points
towards the long coherence time of the cavity EIT dark
state on which the four-wave mixing process is based on
[23, 24]. However, for growing Ωcon, the coherence time
of the beat decreases, since the linewidth of the EIT dark

state, given by Γ|Ψ0
1〉 =

κΩ2
c

Ω2
c+g20

, is growing at the same

time up to the limit set by κ.

More complex is the dependence of the value of the
equal-time photon-pair correlation g(2)(0) on the control
Rabi frequency Ωcon. By changing the effective atom-
cavity coupling gn,eff, it is changing the spectral position
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of the eigenstates. Therefore, the probe laser, that is
without control light red detuned from the lowest dressed
state, as in Fig.1(c), will be shifted into resonance with
the first manifold for intermediate values of Ωcon like
shown in Fig.1(d), experiencing photon blockade, since
it is detuned from higher lying eigenstates [9]. Increasing
the control field Rabi frequency Ωcon further will shift
the eigenstates such that the probe will be on resonance
with the second manifold, as shown in Fig.1(e). Now, two
photons can be absorbed at once, and the probe beam
will experience photon bunching [25]. As already pointed
out in [21], the simulations show that by tuning the con-
trol field Rabi frequency one can achieve a good control
over the probability of transmitting photon pairs, which
is equivalent with controlling the photon statistics of an
initially coherent probe beam.

To observe the predicted effects in the experiment, we
load optically cooled [26] single 87Rb atoms (γ/2π =
3 MHz) into a high-finesse (F = 195, 000) Fabry-Perot
cavity of length 200µm yielding a cavity field decay rate
κ/2π = 2 MHz. Strong coupling is achieved by choos-
ing as |g1〉 the state 5S1/2, F = 1 and as |e〉 the state
5P3/2, F

′ = 2 transition of the D2 line in 87Rb, for which
the maximum rate of atom-cavity coupling is g0/2π =
14.3 MHz for the (F = 1,mF = 1) → (F ′ = 2,mF = 2)
transition. As state |g2〉 we chose the state 5S1/2, F = 2.
The control field drives the atom transversely to the
cavity axis, retroreflected and in a lin ⊥ lin configura-
tion. The atom is held in a pair of crossed red-detuned
standing-wave dipole traps, one linearly polarized at 784
nm perpendicular to the cavity, and one circularly polar-
ized intra-cavity trap at 786 nm. The intra-cavity trap is
also used to stabilize the cavity to the |g1〉 to |e〉 transi-
tion with a detuning of about 16 MHz with respect to the
bare atomic states, such that the a.c. Stark shift induced
by the dipole traps is approximately compensated, re-
sulting in an atom-cavity detuning of only about 1 MHz,
depending on the respective Zeeman substate. The cou-
pled system is driven by a circularly polarized probe laser
with a driving strength η ≈ κ, putting the system in the
low driving limit.

Upon detection of the atom we start with a sequence of
alternating cool (20ms) [26] and probe intervals (200 µs)
that we repeat as long as the atom stays trapped. During
the probe intervals only the control and probe beams are
applied. To make sure that the atom is sufficiently well
coupled to the cavity, we check the coupling before and
after the probe interval [27] for about 200 µs, and include
only probe intervals in the evaluation of the data that
passed this test.

We first start by demonstrating strong coupling of cav-
ity QED for a single atom by measuring transmission
through the cavity as a function of the probe field fre-
quency, with no presence of the control field and with
the atom prepared in the |g1〉 ground state. Note that
we are probing an open transition here, meaning that

FIG. 2. (Color online.) (a) Probe transmission spectra for dif-
ferent control field Rabi frequencies. Dots represent the data
while solid lines are theoretical predictions for the respective
control field Rabi frequency. (b) The effective atom-cavity
coupling g1,eff is enhanced as the control Rabi frequency Ωcon

is increased. (c) The on-off contrast of the single-atom trans-
parency window at the empty cavity resonance increases with
the control field Rabi frequency to about 80 %.

state |e〉 can decay into state |g2〉i which is not coupled
to the cavity. Therefore, a repumper (F = 2 → F ′ = 1)
is applied simultaneously to the probe to keep the atom
in the cavity-coupled state |g1〉. Then the atom can be
considered as an effective two-level system coupled to the
cavity with new energy eigenstates given by the Jaynes-
Cummings model. In the spectrum we observe a vacuum-
Rabi splitting of about 2g/2π ≈ 19 MHz along with a
significant drop in the transmission at the empty cavity
resonance (∆pc = 0) which is a hallmark of strong cou-
pling (Fig.2(a), dots for Ωcon = 0). We do not reach
the maximal coupling rate g0, since we do not prepare
the system in the Zeeman substate F = 1,mF = 1.
Instead, the atom is distributed over all mF substates
which all have different maximal coupling rates to the
cavity, g0,mF=−1,0,1/2π = {5.8, 9.2, 14.3} MHz, resulting
in a mean coupling rate that is lower than g0. The solid
line with the filled area is a fitted theory, that includes
three different Λ-schemes from all possible initialmF sub-
states weighted differently with respect to their expected
populations as well as a small residual transmission at
the empty cavity frequency which could result from the
non zero probability of the atom being in a dark state.
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Next, we turn on the control field to put the system
in EIT configuration. Figure 2(a) shows cavity trans-
mission spectra obtained for different control field Rabi
frequencies, dots are data points, solid lines with filled
area are theory predictions. We observe the presence
of a cavity EIT window at the empty cavity resonance
which grows in amplitude to almost full transmission as
the control field Rabi frequency is increased. The con-
trol field on-off contrast at the empty-cavity resonance
grows with the control field power to about 80 % (com-
pare with Fig.2(c)), which is unprecedented for a single
emitter EIT medium [15, 16, 28]. Moreover, the normal
mode splitting 2g1,eff also increases as the control field
Rabi frequency is increased. We find that the spectral
position of the normal modes, that we extract from the
fitted theory, follows a square root behavior with Ω2

con as
predicted, see Fig.2 (b). We then use this dependency
to calibrate the applied control field power to the control
field Rabi frequencies seen by the atom. With the cav-
ity EIT spectra we demonstrate our ability to optically
control the transmission of probe photons through the
atom-cavity system, which is an average observable, and
at the same time to spectrally tune the system’s reso-
nances by simply varying the control field power.

FIG. 3. (Color online). Measured two-photon correla-

tions g(2)(τ) compared to theoretical expectations in (a) at
∆pc/2π = −14 MHz and Ωcon/2π = 4 MHz, and in (b) at
∆pc/2π = −12 MHz and Ωcon/2π = 4.3 MHz. Dots are rep-
resenting experimental data with statistical error bars, solid
lines are showing theory.

With the prerequisite of cavity EIT in the strong cou-
pling regime at hand, we now report measurements of the
intensity correlation function of the transmitted probe
light. In Figure 3, we show the renormalized two-photon

correlation function g̃(2)(τ) = g(2)(τ)/g
(2)
norm (dots repre-

sent experimental data, solid lines theory) for two dif-
ferent probe-cavity detunings ∆pc/2π = −14 MHz and
-12 MHz, and for similar control field Rabi frequen-

cies Ωcon/2π of 4.0 MHz and 4.3 MHz, respectively. In
both cases g̃(2)(τ) is dominated by an oscillation at the
probe-cavity detuning ∆pc, the beat frequency of the new
field and the probe light. Renormalization is necessary
since g(2)(τ) is settling at a value above one, due to the
motion of the atom in the trap and variations of the
atomic position in the cavity mode from one experimen-
tal realization to the next [9]. We therefore renormalize
g(2)(τ) to the average level of classically correlated pho-

tons g
(2)
norm = 1

τ2−τ1 ·
∫ τ2

τ1
g(2)(τ)dτ , for times between

τ1 = 400 ns and τ2 = 600 ns, for which the reduction
of correlation events due to the atomic oscillation in the
trap is still small, but the beat between the probe and
new field has mostly decayed. The solid lines show ex-
pectations from our theoretical model that includes three
lambda systems. However, we notice that the observed
oscillations have a longer coherence time than the dis-
sipation rates of the system κ and γ suggesting their
EIT origin. In fact, by performing a Fourier transfor-
mation of the date, we find for both measurements in-
deed ∆pc as central frequency with a width of δ ≈ 0.8
MHz corresponding to the decay time of 200 ns of the
observed oscillations. This is more than a factor of 3
larger than the coherence time obtained with a usual two-
level cavity QED system with similar parameters, where
the relaxation time of the correlation function would be
2/(κ+ γ) = 63 ns.

Both photon-photon correlations shown above, already
show the quantum nature of the field emitted from the
cavity, since they violate the inequalities allowed for clas-
sical correlations: |g̃(2)(τ) − 1| ≤ |g̃(2)(0) − 1| [29, 30].
However, we want to demonstrate that we are able to
also influence the probability of photon pair emissions,
which is proportional to the equal-time photon-photon
correlation g̃(2)(0). We have carried out measurements
for different control Rabi frequencies but for the same
probe frequency, which are summarized in Fig. 4. The
non-classical behavior of the transmitted field is clearly
visible for Ωcon/2π = 4.3 MHz, with g̃(2)(0) = 0.82±0.05
which is a signature of photon blockade and photon anti-
bunching as can be seen in the upper inset of Fig. 4. This
is a result of the probe laser frequency (at ∆pc/2π = −14
MHz) being near-resonant to the lower normal-mode fre-
quency thereby increasing the steady-state population in
the eigenstate |Ψ−1 〉 and thus the single photon emission
probability. Increasing the control field Rabi frequency
to Ωcon/2π = 12.3 MHz transforms the photon blockade
into a two-photon gateway [25] with g̃(2)(0) = 1.3 ± 0.1
with a higher probability of photon pair emission for
the same input field frequency. In fact, this is due to
a g1,eff/2π ≈ 15.5 MHz which would bring the probe
laser frequency closer to resonance with the second man-
ifold of the cavity EIT ladder and therefore increase the
steady-state population in the |Ψ−2 〉 explaining the be-
havior observed in the lower inset of Fig. 4.
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FIG. 4. (Color online). Optical control of photon pair emis-
sion for ∆pc/2π = −14 MHz. By changing Ωcon, we can
change the photon statistics of the light transmitted through
the cavity. For Ωcon/2π = 4.3 MHz, we measure antibunch-
ing (compare upper inset), while for Ωcon/2π = 12 MHz we
observe photon bunching (compare lower inset). The solid
red line shows the theoretical predictions for our parameters
and the inset figures show the corresponding unnormalized
second-order correlations G(2)(τ).

In conclusion, we demonstrated that by combining
single-atom cavity QED in the strong coupling regime
with single-atom cavity EIT we could generate multi-
ple non-classical photon statistics of the transmitted field
which are optically controllable. In addition, the gener-
ated new field at the empty cavity resonance frequency
confirms the potential of the considered system to achieve
high optical nonlinearities. In future experiments, we
plan to bring this optical control of photon statistics to
the single photon level [31, 32].
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