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Abstract. This paper introduces the Double Conformal / Darboux Cy-
clide Geometric Algebra (DCGA), based in the G8,2 Clifford geometric
algebra. DCGA is an extension of CGA and has entities representing
points and general (quartic) Darboux cyclide surfaces in Euclidean 3D
space, including circular tori and all quadrics, and all surfaces formed by
their inversions in spheres. Dupin cyclides are quartic surfaces formed
by inversions in spheres of torus, cylinder, and cone surfaces. Parabolic
cyclides are cubic surfaces formed by inversions in spheres that are cen-
tered on points of other surfaces. All DCGA entities can be transformed
by versors, and reflected in spheres and planes.
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1. Introduction

This paper introduces an application of the Geometric Algebra G8,2 [12, 13],
named in this paper the Double Conformal / Darboux Cyclide Geometric
Algebra (DCGA) G8,2. The DCGA G8,2 contains two orthogonal subalgebras
of the Conformal Geometric Algebra (CGA) G4,1. Readers not familiar with
CGA should consult some of the following standard references: the first three
chapters of [26] by Hestenes, Rockwood and Li, give the first comprehensive
introduction to CGA. The book [20], describes the wider context of CGA re-
lated to Grassmann algebra, Clifford algebra, and Cayley algebra. The PhD
thesis [23] describes applications to pose estimation, see also [16]. And, there
are a number of self contained textbooks on the subject [4, 14, 22]. A tu-
torial introduction to Clifford algebra and CGA is given in [18]. A survey
of applications is presented in [19]. We thank the reviewers for pointing out
reference [11], which has a related approach1 limited to the representation of
quadrics in geometric algebra based on bivectors in G4,4. By using G8,2, our

1We expect that ongoing research on reformulating DCGA will potentially clarify the
relationship with the bivector representation in [11] fully.

https://doi.org/10.1007/s00006-017-0784-0


2 Robert Benjamin Easter and Eckhard Hitzer

treatment goes further by including Darboux cyclides, studying intersections
and specifying a commutator method for differentiation.

The first G4,1 CGA subalgebra, called CGA1 C1, is the geometric algebra
of the five unit vector elements ei : 1 ≤ i ≤ 5, with ei · ej = +1 for i = j, 1 ≤
i ≤ 4, ei · ej = −1 for i = j = 5, and zero otherwise. The second G4,1 CGA
subalgebra, called CGA2 C2, is defined similarly with the unit vector elements
ei : 6 ≤ i ≤ 10. The CGA1 C1 and CGA2 C2 unit pseudoscalars are

IC1 = e1e2e3e4e5, IC2 = e6e7e8e9e10. (1)

The G8,2 DCGA metric is therefore

m = diag(1, 1, 1, 1,−1, 1, 1, 1, 1,−1) = [mij ] = [ei · ej ]. (2)

The DCGA D unit pseudoscalar is ID = IC1IC2 = IC1 ∧ IC2 . For the indexing
scheme XCki , k ∈ {1, 2} indicates an element X of CGA1 or CGA2, and i is

an iterator. A Euclidean 3D vector pE1 in the G3 Algebra of Physical Space2

1 (APS1) E1 [12], subalgebra of G4,1 CGA1 C1, is formed with conventional
(x, y, z) ∼= (px, py, pz) scalar components as

pE1 = pxe1 + pye2 + pze3, pE2 = pxe6 + pye7 + pze8 (3)

and its paired copy or double pE2 in the G3 APS2 E2 subalgebra of G4,1 CGA2
C2. The G3 APS1 E1 and G3 APS2 E2 unit pseudoscalars are IE1 = e1e2e3,
and IE2 = e6e7e8, respectively. CGA1 C1 and CGA2 C2 are paired copies or
doubles. Any CGA entity, versor, or pseudoscalar ACk in CGA1 as AC1 is
paired with identical scalar components on corresponding elements in CGA2
as AC2 , and their geometric or outer product AD = AC1AC2 = AC1 ∧ AC2 , is
the corresponding doubled DCGA D entity, versor, or pseudoscalar AD. The
doubled DCGA D entities XD = AD are called the DCGA standard entities
or bi-CGA entities XD.

The paper is organized as follows. Section 2 reviews the concepts of
conformal geometric algebra (CGA), in order to introduce the necessary no-
tation for constructing double CGA (DCGA). Section 3 introduces DCGA,
shows how to describe points, form geometric entities of CGA in DCGA by
outer products of points, formulates Darboux cyclides as bivectors in DCGA,
and describes versor operations, intersections, differentiation operators, and
conic sections. We conclude in Section 4. After the references, an appendix
is added with more technical details on certain types of Darboux cyclides as
bivectors in DCGA.

2. Conformal Geometric Algebra (CGA)

We briefly review the concepts of conformal geometric algebra (CGA), in or-
der to introduce the necessary notation for constructing double CGA (DCGA).

2The algebra of physical space can be interpreted as the algebra of directions in space.
It uses measured directions from the origin to denote locations, as opposed to a sepa-

rate algebraic concept of points. We do thank the anonymous reviewer for this helpful
clarification.
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The CGA1 C1 and CGA2 C2 entities follow the ordinary G4,1 Conformal Geo-
metric Algebra.

2.1. CGA point entity

The G4,1 CGA null 1-vector point

PC = C(pE) = C4,1(pE) = pE + 1
2p2
Ee∞ + eo (4)

is derived by stereographic embedding and homogenization of the point pE
[22]. The Euclidean 3D point pE in G3 APS E is pE = pxe1 + pye2 + pze3. In
G4,1 CGA, the point at the origin eo and at infinity e∞ are (without index k
for CGA1 or CGA2)

eo = 1
2 (−e4 + e5), e∞ = e4 + e5. (5)

In this section, we omit the index k on eo and e∞ and assume these are CGA
points, not DCGA points. The elements e4 and e5 are sometimes denoted
e+
∼= e4 and e− ∼= e5 since e2

4 = +1 and e2
5 = −1.

A normalized (unit scale) point, with unit scale on the component eo,
is

P̂C = PC/(−PC · e∞) = C(pE). (6)

The projection (inverse embedding) of a point PC = C(pE) is

pE = (P̂C · IE)I−1E , (7)

where the G3 APS E unit pseudoscalar is IE = IE1 .

2.2. CGA IPNS surface entities

A CGA point TC = C(tE) = C4,1(tE) is on a CGA geometric inner product
null space (IPNS) surface SC iff TC · SC = 0 [22]. The CGA IPNS sphere

vector SC , centered at CGA point P̂C = C(pE), with radius r or through

CGA point Q̂C = C(qE), is defined as

SC = ŜC = P̂C − 1
2r

2e∞ = P̂C + (Q̂C · P̂C)e∞. (8)

Formed with normalized points P̂C and Q̂C (6), the sphere is unit scale SC =

ŜC , where Ŝ2
C = r2. The CGA IPNS plane vector ΠC , normal to unit vector

n̂E , at distance d from the origin or through 3D point pE , is defined as

ΠC = Π̂C = n̂E + de∞ = n̂E + (pE · n̂E)e∞. (9)

Formed with unit normal vector n̂E , the plane is unit scale ΠC = Π̂C , where

Π̂
2

C = 1.

The CGA IPNS 2-blade line LC , in the direction of the unit vector d̂E ,

perpendicular to unit bivector d̂∗E = d̂∗E = d̂E/IE , and through Euclidean
3D point pE , is defined as

LC = L̂C = d̂∗E − (pE · d̂∗E)e∞. (10)

Formed with unit direction vector d̂E , the line is unit scale LC = L̂C , where
L̂2
C = −1. The line LC can be factored into the intersection of two planes
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as LC = ΠC1 ∧ ΠC2 . The CGA IPNS 2-blade circle CC = SC ∧ ΠC , is the
intersection of a sphere SC and plane ΠC .

2.3. CGA OPNS surface entities

A CGA point TC = C(tE) = C4,1(tE) is on a CGA geometric outer product

null space (OPNS) surface S∗C = S∗CC = SCI
−1
C iff TC ∧S∗C = 0 [22], where the

G4,1 CGA C unit pseudoscalar is IC = IC1 (1). The CGA point null-vector
PC = C(pE) (4) has the square P2

C = 0 = PC · PC + PC ∧ PC and is both a
IPNS and OPNS point vector entity. The wedge of up to five points forms
the various CGA OPNS entities.

The CGA OPNS 2-blade flat point P∗C is the wedge of one finite CGA
point and point e∞ : P∗C = PC ∧ e∞. The CGA OPNS 2-blade point pair
PP ∗C is the wedge of two finite CGA points PP ∗C = PC− ∧ PC+ . The point
pair decomposition [4] gives the two normalized points (6) as

P̂C± =

(
PP ∗C ±

√
(PP ∗C)

2

)
(−e∞ · PP ∗C)−1. (11)

The CGA OPNS 3-blade line L∗C is the wedge of two CGA points PCi
on the line and the point e∞

L∗C = PC1 ∧PC2 ∧ e∞ = LC/IC (12)

and is the CGA dual of the CGA IPNS 2-blade line LC . The CGA OPNS
3-blade circle C∗C is the wedge of three CGA points PCi on the circle

C∗C = PC1 ∧PC2 ∧PC3 = CC/IC (13)

and is the CGA dual of the CGA IPNS 2-blade circle CC .
The CGA OPNS 4-blade plane Π∗C is the wedge of three non-collinear

CGA points PCi on the plane and the point e∞

Π∗C = PC1 ∧PC2 ∧PC3 ∧ e∞ = ΠC/IC (14)

and is the CGA dual of CGA IPNS plane vector ΠC . The CGA OPNS 4-
blade sphere S∗C is the wedge of four non-coplanar CGA points PCi on the
sphere

S∗C = PC1 ∧PC2 ∧PC3 ∧PC4 = SC/IC (15)

and is the CGA dual of the CGA IPNS sphere vector SC .

2.4. CGA versor operations

The translator TC , rotor RC , and dilator DC are called even versors VC . Their
operation on a CGA entity XC has the form X′C = VCXCV

−1
C , called a versor

“sandwich” operation. This section gives the translated forms of the rotor
TCRCT

−1
C and dilator TCDCT

−1
C .

The CGA 2-versor translator TC , for translation by a three-dimensional
Euclidean vector dE = dxe1 + dye2 + dze3, is defined as

TC = e
1
2e∞dE = 1 + 1

2e∞dE . (16)

The translator can also be defined by reflections in two parallel planes as

T 2
C = Π̂C2Π̂C1 = Π̂C2 · Π̂C1 + Π̂C2 ∧ Π̂C1 , (17)
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which translates by twice the vector displacement dE = (d2− d1)n̂E between
the planes.

The CGA 2-versor rotor RCk for rotation by right-hand rule by θ radians
around the unit vector axis n̂Ek through the origin is

RCk = e
1
2 θn̂

∗
Ek = cos(θ/2) + sin(θ/2)n̂∗Ek , (18)

where the G3 APS Ek dual of the unit vector n̂Ek is

n̂∗Ek = n̂EkI−1Ek , (19)

which is the unit bivector that generates rotation around axis n̂Ek .
The general CGA 2-versor translated-rotor RC , for rotation around the

normed line L̂C (10), which does not need to pass through the origin, by θ
radians, is similarly defined as

RC = e
1
2 θL̂C = cos(θ/2) + sin(θ/2)L̂C . (20)

The rotation is by right-hand rule around the normed line direction d̂E by
θ radians. The rotor can also be defined by reflections in two general non-
parallel planes Π̂Ci as

R2
C = Π̂C2Π̂C1 = Π̂C2 · Π̂C1 + Π̂C2 ∧ Π̂C1 , (21)

where L̂C appears as the intersection line of the planes and θ is the angle be-
tween the planes. The successive reflections in two non-parallel planes rotate
by twice the angle θ subtended between the planes.

The CGA 2-versor translated-dilator DC , by factor d > 0 centered on
P̂C = C(pE), is defined as

DC = e
ln d
2 P̂C∧e∞ = cosh ln d

2 + sinh( ln d
2 )P̂∗C , (22)

where P̂∗C = P̂C ∧ e∞ is a unit scale CGA OPNS 2-blade flat point . The
dilator DC can be factored into the product of two concentric CGA IPNS
sphere vector entities SCi centered on P̂C as DC = SC2SC1 , which dilates by
factor d = r22/r

2
1, with radius r1 of SC1 and radius r2 of SC2 . An alternative

form of the dilator, derived from inversions in two concentric spheres (60) as
in [22], is

DC = 1
2 (d+ 1) + 1

2 (d− 1)P̂∗C , (23)

which also allows d = 0 on certain finite closed-surface entities that dilate by
d = 0 into the point PC .

Any versor V operates on any even grade3 entity X using the versor
“sandwich” operation

X′ = VXV −1. (24)

The even parity CGA 2-versors VCk have unimodular exponential forms eA

such that their reverse V ∼Ck equals their inverse V −1Ck . Note that for even
parity CGA versors, equation (24) also holds for odd grade multivectors X.

3Note that for the case of the doubling (1:1 pairing) procedure of DCGA, and for the

exclusive use of bivectors as explained in Section 3.3 for Darboux cyclides, the entity X in
DCGA is of even grade. An exception is explained in Section 3.8.
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In general, when an odd parity versor is applied to an odd grade multivector
X, a sign change has to be taken into account, like in the simple case of
reflecting a vector at a plane or sphere.

A k-versor V [13] can be factored into a product of k vectors as V =
Πk
i=1ai. The versor operation may be most computationally efficient as the

succession of vector reflections X′ = a1(· · · (akXak) · · · )a1, which is an appli-
cation of the Cartan-Dieudonné theorem on orthogonal transformations.
The vectors ai are typically the CGA IPNS plane vector ΠC or sphere SC . In
general, the associativity of the geometric products in versor transformations
can greatly affect the computational efficiency of the operation.

3. Double Conformal Geometric Algebra (DCGA)

G8,2 DCGA extends G4,1 CGA with new DCGA IPNS bivector entities for
quartic Darboux cyclides Ω (including quartic Dupin cyclides Φ and tori O,
cubic parabolic cyclides Ψ, and general quadric surfaces Q) as linear combi-
nations Ω =

∑
αsTs of the DCGA extraction elements Ts (Table 1). Doubled

(paired) CGA versors (DCGA versors) can be applied to all DCGA entities,
for details see Section 3.4. The new DCGA IPNS bivector entities can be
intersected (by wedge product) with doubled CGA IPNS entities (DCGA
IPNS entities), but the new DCGA IPNS bivector entities cannot be inter-
sected with each other by means of a meet operator as in CGA [15], since they
are generally not represented by blades, compare (39) and its explanation in
Section 3.3.

3.1. DCGA point entity

The DCGA null 2-blade standard point entity PD = D(pE) is the embedding
of a vector pE1 = pxe1+pye2+pze3, and its paired copy pE2 = pxe6+pye7+
pze8, as

PD = C1(pE1)C2(pE2) = C1(pE1)∧ C2(pE2) = PC1PC2 = PC1∧PC2 . (25)

This is a DCGA standard entity and is a (doubled) paired form of the CGA
point

PCk = Ck(pEk) = pEk + (1/2)p2
Eke∞k + eok, (26)

where the CGA1 C1 and CGA2 C2 points are given by setting k = 1 and
k = 2, respectively. The CGA1 and CGA2 points at the origin eok and at
infinity4 e∞k, with corresponding index k = 1, 2, are

eo1 = 1
2 (e5 − e4), e∞1 = e4 + e5,

eo2 = 1
2 (e10 − e9), e∞2 = e9 + e10. (27)

The DCGA points at the origin and infinity (both without index) are defined
as

eo = eo1eo2 = eo1 ∧ eo2, e∞ = e∞1e∞2 = e∞1 ∧ e∞2. (28)

4We basically follow the standard definitions in CGA, see (5) and e.g. the Wikipedia entry

on CGA, opened 25th Feb. 2017. Our intention is to make the introduction to DCGA as
easy as possible, based on standard CGA.
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As in CGA, these DCGA points also have the inner product e∞ · eo = −1.
All DCGA points are null 2-blades, P2

D = 0. The squared-squared distance
d4 between two DCGA points PD1 and PD2 is

d4 = −4PD1
·PD2

. (29)

The projection of a DCGA point PD = D(pE) to the embedded G3 APS1
vector pE1 is

pE1 = D−1(pE) =
((PD · e∞2) · IE1)I−1E1

−(PD · e∞2) · e∞1
= (P̂C1 · IE1)I−1E1 . (30)

The DCGA null 2-blade test point TD = D(t), testing for position on sur-
faces, is according to (25) the embedding of the symbolic Euclidean 3D test
point vector tE1 = xe1 + ye2 + ze3, as

TD = D(tE) = C1(tE1)C2(tE2) = C1(tE1) ∧ C2(tE2). (31)

Expanding TD = D(t) = C1(tE1) ∧ C2(tE2) shows the 25 scalar compo-
nents, of which 15 are unique,

TD = (tE1 + 1
2t2e∞1 + eo1)(tE2 + 1

2t2e∞2 + eo2) (32)

= tE1tE2 + 1
2tE1t

2e∞2 − 1
2tE2t

2e∞1 + tE1eo2 − tE2eo1

+ 1
2t2(e∞1eo2 − e∞2eo1) + 1

4t4e∞1e∞2 + eo1eo2

= x(e1eo2 − e6eo1) + y(e2eo2 − e7eo1) + z(e3eo2 − e8eo1)

+ x2e16 + y2e27 + z2e38

+ xy(e17 + e26) + xz(e18 + e36) + yz(e28 + e37)

+ 1
2xt2(e1e∞2 − e6e∞1) + 1

2yt
2(e2e∞2 − e7e∞1)

+ 1
2zt

2(e3e∞2 − e8e∞1)

+ 1
2t2(e∞1eo2 − e∞2eo1) + 1

4t4e∞1e∞2 + eo1eo2

= x
2 (t2 − 1)e19+ x

2 (t2+1)e1,10+ x
2 (t2 − 1)e46

+ x
2 (t2+1)e56+ y

2 (t2 − 1)e29+ y
2 (t2+1)e2,10

+ y
2 (t2 − 1)e47+ y

2 (t2+1)e57+ z
2 (t2 − 1)e39

+ z
2 (t2+1)e3,10+ z

2 (t2 − 1)e48+ z
2 (t2+1)e58

+xye17+xye26+yze28+yze37+xze18

+xze36+x2e16+y2e27+z2e38+ 1
4 (t4 − 1)e4,10

+ 1
4 (t4 − 1)e59+ 1

4 (t4 − 2t2+1)e49+ 1
4 (t4+2t2+1)e5,10,

where

t = tE1 ,= xe1 + ye2 + ze3, tE2 = xe6 + ye7 + ze8, (33)

t2 = x2 + y2 + z2, t4 = x4 + y4 + z4 + 2x2y2 + 2y2z2 + 2z2x2.

The vector t and its DCGA point embedding TD = D(t) is a test point
for position on surfaces. The 15 DCGA extraction operators (or elements)
Ts (Table 1) are defined as inner product operators to extract the 15 unique
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Tx= 1
2 (e1e∞2+e∞1e6) Ty = 1

2 (e2e∞2+e∞1e7) Tz = 1
2 (e3e∞2+e∞1e8)

Tx2 =e6e1 Ty2 =e7e2 Tz2 =e8e3

Txy = 1
2 (e7e1+e6e2) Tyz = 1

2 (e7e3+e8e2) Tzx= 1
2 (e8e1+e6e3)

Txt2E =e1eo2+eo1e6 Tyt2E =e2eo2+eo1e7 Tzt2E =e3eo2+eo1e8

T1 =−e∞ Tt2E =eo2e∞1+e∞2eo1 Tt4E =−4eo
Table 1. The DCGA bivector extraction operators Ts.

T x=Txt2E T y =Tyt2E T z =Tzt2E
T x

2

= −Tx2 T y
2

= −Ty2 T z
2

= −Tz2
T xy =−2Txy T yz =−2Tyz T zx=−2Tzx
T xt

2
E =Tx T yt

2
E =Ty T zt

2
E =Tz

T 1 = −14 Tt4E T t2E = −12 Tt2E T t4E = −14 T1
Table 2. Reciprocals of DCGA bivector extraction opera-
tors Ts.

scalar components s (which also act as indices of Ts) from any DCGA point
TD as s = TD · Ts = Ts ·TD.

Two properties of the extraction operators Ts are

e∞ · Ts =

{
0 : Ts 6= Tt4E
4 : Ts = Tt4E

, eo · Ts =

{
0 : Ts 6= T1
1 : Ts = T1

. (34)

3.2. DCGA OPNS surface entities formed by outer products of DCGA points

Up to five paired DCGA points PD (25) can be wedged to form DCGA
geometric outer product null space (OPNS) surface entities that have the
same forms as the CGA OPNS surface entities. The DCGA OPNS 8-blade
sphere S∗D is defined as the wedge of four non-coplanar paired DCGA points
PDi

on the sphere as

S∗D = PD1
∧PD2

∧PD3
∧PD4

= S/ID. (35)

The DCGA OPNS 8-blade plane Π∗D is defined as the wedge of three
non-collinear DCGA points PDi on the plane and the DCGA point at infinity
e∞ as

Π∗D = PD1
∧PD2

∧PD3
∧ e∞ = Π/ID. (36)

The DCGA OPNS 6-blade line L∗D is defined as the wedge of two
DCGA points PDi on the line and the DCGA point at infinity e∞ as

L∗D = PD1 ∧PD2 ∧ e∞ = L/ID. (37)

The DCGA OPNS 6-blade circle C∗D is defined as the wedge of three
DCGA points PDi on the circle as

C∗D = PD1
∧PD2

∧PD3
= C/ID. (38)

The DCGA OPNS 8-vector Darboux cyclide Ω∗D is the DCGA dual of
the DCGA IPNS bivector Darboux cyclide Ω of (39), i.e. Ω∗D = ΩI−1D .
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3.3. DCGA IPNS surface entities

A Darboux cyclide (52) is the most general implicit surface F (x, y, z) = 0,
that can be formed as a general linear combination of the 15 extracted scalars
s, constituting a quartic polynomial, see [21]. A general Darboux cyclide can
be identified with the inner product null space (IPNS) [22] of the bivector
Darboux cyclide entity Ω (52)(39) in DCGA, which is a linear combination
of the 15 bivector extraction elements Ts

Ω =
∑
s

αsTs, (39)

where the αs = T s ·Ω are 15 real scalar coefficients or components, with the
reciprocal bivector operators5 T s listed in Table 2, T s · Tr = δs,r, δr,s the
usual Kronecker symbol with δs,s = 1, δs,r = 0 for s 6= r.

Equation (39) represents an arbitrary linear combination of the 25 mixed
bivectors possible in DCGA, where bivectors are constructed with one vector
factor from {e1, e2, e3, eo1, e∞1} and one vector factor from {e6, e7, e8, eo2, e∞2}.
Ten bivector pair combinations in Table 1 seem to reduce this arbitrary free-
dom of linear combination, but one can define more freely e.g. for the x
extraction operator T ′x = αe1e∞2 +βe∞1e6, α, β ∈ R, which gives T ′x ·TD =
(α + β)x. Thus no new term in the variables x, y, z is generated, and the
factor (α+ β) is just part of the arbitrary constant αx ∈ R in (39).

Note furthermore, that only five of the 15 extraction operators in Table
1 are blades, the rest are non-simple bivectors, i.e. not blades. Therefore,
their linear combinations (39), (40), etc., are not blades. In order to describe
quadrics in DCGA, we fundamentally need to go beyond the limitations of
representing objects only by blades. While thus, the expression of Darboux
cyclides in DCGA begins with a coordinate based transcription, the resulting
representation of surfaces by means of bivectors is computationally very ver-
satile. It allows the free intersection of Darboux cyclides (including quadrics)
with points, point pairs, lines, planes and spheres. It allows the use of versors
for geometric operations of reflections, inversions, motor operators (transla-
tions and rotations), and scaling. Though it may be said, that the approach
does not extend the elegance of representing objects merely as outer products
of points of CGA to Darboux cyclides (though all entities and operations of
CGA are fully embedded and operational in DCGA, thus nothing has to be
unlearned), in its power of multivector representation of higher order geo-
metric surfaces, DCGA goes far beyond CGA.

Darboux cyclides Ω include quartic Dupin cyclides Φ ⊂ Ω, cubic par-
abolic cyclides Ψ ⊂ Ω, and general quadrics Q ⊂ Ψ in Euclidean 3D space
[24][5].

All DCGA IPNS bivector surface entities that include a term Tt4E =
−4eo do not have e∞ as a surface point and are finite closed-surface entities.

5Note, that instead of the conventional term reciprocal [3, 17], also the term pseudoinverse

is used [6, 22]. Furthermore the notation T+
s has also been used [6] for our T s.
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However, all cubic parabolic cyclides Ψ (57) and quadrics Q are formed
without Tt4E and include the surface point e∞.

As an example, centered at the origin and aligned with the coordinate
axis, a DCGA IPNS bivector ellipsoid entity E ∈ Q ⊂ Ω (see also (70)) can
be formed as

E = Tx2/a2 + Ty2/b
2 + Tz2/c

2 − T1. (40)

A DCGA point PD is on the ellipsoid E iff PD · E = 0, or iff PD ∧ E∗D =
PD ∧ (EI−1D ) = 0. This DCGA IPNS bivector ellipsoid entity includes the
surface point e∞ as a singular outlier surface point, while otherwise E is a
finite closed-surface entity. The inversion Ω = SES∼ of the ellipsoid entity E
in a DCGA standard sphere S (48) creates a Darboux cyclide surface entity
Ω (52)(39) that is finite and closed, but that has the sphere center point
PC = Se∞S∼ as a singular outlier surface point, or handle point .

Note, that (40) represents a bivector, that cannot be rewritten as a
blade6:

E = 1
a2 e61 + 1

b2 e72 + 1
c2 e83 + e∞1e∞2. (41)

This clearly shows, in view of the diagonal DCGA metric (2), that a mere
multiplicative construction of E (and other Darboux cyclides represented in
DCGA) by means of outer products of points is currently not in view. This
counter example further shows, that in general the Darboux cyclides (39) are
not simple blades (outer products of vectors). Yet, for some Darboux cyclides
there are special parameter choices in (39), which produce blades, but in our
experience special parameter choices always seem to only produce entities
already described in (single) CGA. For an example see (46).

The DCGA IPNS bivector surface entities are constructed as various
linear combinations of the inner product DCGA extraction elements Ts (Table
1) and are various forms of the DCGA IPNS bivector Darboux cyclide surface
entity Ω (52)(39). The DCGA entities are generally not blades and generally
cannot be formed as the wedge of DCGA points.

A DCGA entity has two forms, where the first is its dual IPNS form
XD = X∗DID, and the second is its undual outer product null space (OPNS)
[22] form X∗D = XI−1D = X/ID. Division is right-side multiplication of an
inverse element. The pseudoscalars are the dualization/undualization opera-
tors such that for CGA1, CGA2, and DCGA IPNS entities XC1 , XC2 , and
XD, respectively, their OPNS entities are

X∗C1 =X∗C
1

=XC1I
−1
C1,X

∗
C2 =X∗C

2

=XC2I
−1
C2,X

∗
D=X∗D=XDI−1D . (42)

Any DCGA surface entity can be rotated, dilated, and translated using
the DCGA versors. The reflection and inversion of any DCGA surface entity
in any standard DCGA IPNS plane ΠD = ΠC1ΠC2 or sphere SD = SC1SC2
can equally be used. All DCGA IPNS entities can be intersected (61) with
the DCGA IPNS standard entities XD = AD (1).

6For a general reference to the question of determination of blade character, see [10]. We

also note the opinion of Hestenes and Sobczyk in [13], page 30, that geometric algebra
enables a direct characterization of blades, without the need for Plücker coordinates.
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In the following Subsections, in order to give representative examples
for the IPNS bivector representation of surfaces in DCGA, we successively
discuss the bivector representations of toroids, ellipsoids, spheres, elliptic
paraboloids, ellipses, Darboux cyclides, Dupin cyclides, and parabolic cy-
clides. This will sufficiently clarify the pattern of bivector surface represen-
tations, for the interested reader we therefore give details of the remaining
following bivector surface representations in Appendix A: ellipsoid in general
location, line, plane, circle, elliptic cylinder, elliptic cone, hyperbolic parabo-
loid, hyperboloid of one sheet, hyperboloid of two sheets, parabolic cylinder,
hyperbolic cylinder, parallel planes pair, non-parallel planes pair, parabola,
hyperbola, and horned Dupin cyclide.

3.3.1. DCGA IPNS toroid. The implicit quartic equation for a circular toroid
(torus) at the origin and around the z-axis is

t4 + 2t2(R2 − r2) + (R2 − r2)2 − 4R2(x2 + y2) = 0, (43)

where t = xe1 + ye2 + ze3 is a test point, R is the major radius of a circle
around the origin in the xy-plane, and r is the minor radius. The equation is
true if the test point t is on the torus.

The DCGA IPNS bivector toroid surface entity O is defined in terms
of Ts (Table 1) as

O = Tt4 + 2(R2 − r2)Tt2 + (R2 − r2)2T1 − 4R2(Tx2 + Ty2). (44)

A test DCGA point TD = D(t) is on the toroid surface represented by O
iff TD ·O = 0. Using symbolic mathematics software, such as the Geometric
Algebra Module [2] for Sympy [25] by Alan Bromborsky, the inner product
TD ·O generates the scalar implicit surface function F (x, y, z) of the toroid
when t is a symbolic (x, y, z) vector. The DCGA dual of O is

O∗D = O/ID = OI−1D . (45)

The DCGA OPNS 8-vector toroid surface entity is O∗D, where point TD is a
surface point iff TD ∧O∗D = 0. All DCGA versors are applicable to O and it
can be intersected with DCGA standard entities. With the extraction term
Tt4 = −4eo, the toroid O is manifestly a closed-surface that does not include
e∞.

We note, that the bivector Tx2 +Ty2 in (44) is due to Table 1 manifestly
not a blade, and further comparison of (44) and Table 1, clearly shows that
in general for major radius R 6= 0 the toroid of (44) is not a blade. Only
by setting the major radius in (44) to R = 0, do we obtain a bi-CGA IPNS
2-blade sphere (48) centered at the origin with radius r,

OR=0 = Tt4 − 2r2Tt2 + r4T1

= −4eo1eo2 − 2r2(eo2e∞1 + e∞2eo1)− r4e∞1e∞2

= −4(eo1 − 1
2r

2e∞1) ∧ (eo2 − 1
2r

2e∞2) = −4S. (46)
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3.3.2. DCGA IPNS ellipsoid. The ellipsoid at the origin, with principal axis
aligned with the coordinate directions e1, e2, e3 is given by its DCGA bivec-
tor expression in (40). For details of the ellipsoid in general location, see
Appendix A.1.

A DCGA 2-blade point TD = D(t) is tested against the DCGA bivector
ellipsoid E by TD · E < 0 (inside), TD · E = 0 (on ellipsoid), TD · E > 0
(outside). These results indicate (similarly Section 3.3.4), that this may lead
in DCGA to the definition of an oriented distance of points from an ellipsoid,
similar to how the inner product between point and sphere in CGA can be
interpreted as tangential distance between point and sphere [4]. But in the
framework of DCGA, this currently remains a matter of further investigation,
which may be of certain interest in fields like distance geometry [1].

3.3.3. DCGA IPNS sphere. The standard DCGA IPNS bivector sphere S
will be defined as a bi-CGA sphere (48), not the DCGA IPNS ellipsoid E
with equal semi-diameters r = rx = ry = rz. The DCGA IPNS ellipsoid E
with r = rx = ry = rz can be reformulated into the DCGA IPNS bivector
ellipsoid-based sphere entity Θ as

Θ = −2(pxTx+pyTy+pzTz)+Tx2 +Ty2 +Tz2 +(p2x+p2y+p2z − r2)T1. (47)

For r = 0, the sphere Θ degenerates into a DCGA non-null bivector point
entity. In the limit r → 0 does E approach a point Θ with r = 0. The presence
of Tx2+Ty2+Tz2 , shows again (compare (41)), that independent of the value of
r, the ellipsoid-based sphere representation (47) is manifestly never a blade.

The DCGA IPNS 2-blade standard sphere surface entity S, also being
called a bi-CGA IPNS 2-blade sphere, is defined as

S = SC1 ∧ SC2 = SC1SC2 = (PC1 − 1
2r

2e∞1)(PC2 − 1
2r

2e∞2). (48)

The CGA1 IPNS sphere SC1 and the CGA2 IPNS sphere SC2 , both represent-
ing the same sphere with radius r at center position PD = D(p), are wedged
to form the DCGA IPNS sphere S. The sphere bivector of equation (48) rep-
resents the DCGA dual of the OPNS 8-blade sphere of (35). If r = 0, then
the sphere is degenerated into a DCGA null 2-blade point PD = PC1PC2 (25)
that would represent the center position of the sphere. This form of sphere
can be intersected with any DCGA IPNS entity. A sphere that is formed
using the DCGA IPNS ellipsoid can only be intersected with bi-CGA IPNS
standard entities.

A DCGA 2-blade point TD = D(t) is tested against a DCGA IPNS
2-blade standard sphere S by projecting both back to CGA1, followed by
computing their inner product, which gives the squared tangent distance,
and its sign tells whether the point is inside the sphere (− sign), or outside
(+ sign), respectively.

3.3.4. DCGA IPNS elliptic paraboloid. The elliptic paraboloid has a cone-
like shape that opens up or down. The implicit quadric equation of a z-axis
aligned elliptic paraboloid is

(x− px)2/r2x + (y − py)2/r2y − (z − pz)/rz = 0. (49)
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The DCGA IPNS bivector z-axis aligned elliptic paraboloid surface entity
V||z is defined as

V||z = −2pxTx

r2x
+
−2pyTy

r2y
+ −Tz

rz
+

Tx2

r2x
+

Ty2

r2y
+
(
p2x
r2x

+
p2y
r2y

+ pz
rz

)
T1. (50)

A DCGA 2-blade point TD = D(t) is tested against the DCGA bivector
paraboloid V by TD ·V < 0 (inside), TD ·V = 0 (on paraboloid), TD ·V > 0
(outside). The presence of the term Tx2/r2x + Ty2/r

2
y in (50) shows similar to

(41), that the elliptic paraboloid (50) is manifestly not a blade.

3.3.5. DCGA IPNS ellipse. The DCGA IPNS quadvector xy-plane ellipse
1D surface entity ε||xy is defined as

ε||xy = Πz=0 ∧H||z (51)

where the DCGA IPNS 2-blade standard plane Πz=0 is for plane z = 0, and
the DCGA IPNS bivector elliptic cylinder H||z is as previously defined and
directly represents an ellipse in the xy-plane. The invariant test e∞ ·ε||xy = 0
seems to indicate that the ellipse reaches to infinity, but it actually indicates
the handle point, already explained in the ellipsoid example of Section 3.3.

Note, that because the factor H||z also contains the linear combination
Tx2/r2x +Ty2/r

2
y, and because the xy-plane bivector Πz=0 = e3e8, the ellipse

ε||xy is again manifestly not a blade.

3.3.6. DCGA IPNS Darboux cyclide. The implicit quartic equation for a
Darboux cyclide [21] surface is

At4 +Bt2 + Cxt2 +Dyt2 + Ezt2 + Fx2 +Gy2 +Hz2 (52)

+ Ixy + Jyz +Kzx+ Lx+My +Nz +O = 0

where t = xe1 + ye2 + ze3 is a test point and the A . . . O are 15 real scalar
coefficients. The point t is on the Darboux cyclide surface if the equation is
fulfilled.

The DCGA IPNS bivector Darboux cyclide surface entity Ω is defined
as

Ω =ATt4 +BTt2 +CTxt2 +DTyt2 +ETzt2 +FTx2 +GTy2 +HTz2

+ITxy+JTyz+KTzx+LTx+MTy+NTz+OT1. (53)

Based on the several counter examples, which we have seen so far in this
paper, we note that in general Darboux cyclides Ω are not blades.

3.3.7. DCGA IPNS Dupin cyclide. The implicit quartic equation for a Dupin
cyclide surface is

(t2 + (b2 − µ2))2 − 4(ax− cµ)2 − 4b2y2 = 0 (54)

where t = xe1 + ye2 + ze3 is a surface test point. This gives

t4+2t2(b2−µ2)+(b2−µ2)2−4(a2x2−2acµx+c2µ2)−4b2y2 =0. (55)

The DCGA IPNS bivector Dupin cyclide surface Φ is defined as

Φ=Tt4 +2Tt2(b2−µ2)−4a2Tx2−4b2Ty2 +8acµTx+((b2−µ2)2−4c2µ2)T1.
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The scalar parameters of the surface are a, b, c, µ, with b always squared. The
Dupin cyclide can be described as a surface that envelops a family of spheres
defined by two initial spheres S1 and S2 of minor radii r1 and r2, respectively,
centered on a circle of major radius R around the origin in the xy-plane. To
gain a more intuitive expression of the Dupin cyclide equation, we can define
the parameters as

a = R, µ = (1/2)(r1 + r2), c = (1/2)(r1 − r2), b2 = a2 − c2. (56)

When r = r1 = r2, the Dupin cyclide Φ is exactly the same entity as the
toroid O(R, r). The center point of S1 is D(−Re1). The center of S2 is
D(Re1). The center of the ring or spindle hole in Φ is D(ce1). The bounding
sphere of radius µ + R, that encloses Φ, is centered at D(−ce1). The entity
Φ can be a ring cyclide (r1 + r2) < 2R, spindle cyclide (r1 + r2) > 2R, horn
cyclide (r1+r2) = 2R, ring torus (r1 = r2) < R, spindle torus (r1 = r2) > R,
or horn torus (r1 = r2) = R. All DCGA versors can be applied to Φ.

Comparing Table 1 with the above expression Φ for the Dupin cyclide,
we see that the presence of−4a2Tx2−4b2Ty2 with general coefficients means,
that Φ is not a blade. The same conclusion follows from the presence of
8acµTx.

3.3.8. DCGA IPNS parabolic cyclide. The DCGA IPNS bivector parabolic
cyclide cubic surface entity Ψ can be defined as

Ψ = BTt2 + CTxt2 +DTyt2 + ETzt2 + FTx2 +GTy2 +HTz2 +

ITxy + JTyz +KTzx + LTx +MTy +NTz +OT1. (57)

All DCGA versor operations can be applied to Ψ, and it can be intersected
with the DCGA IPNS standard entities. Without a term in Tt4 = −4eo, the
parabolic cyclide Ψ has surface point e∞ and is generally an open-surface
entity. The DCGA IPNS bivector ellipsoid E is a degenerate parabolic cyclide
entity Ψ that becomes a closed-surface entity with a singular outlier surface
point at e∞, which actually indicates the handle point, already explained
in the ellipsoid example of Section 3.3. An instance of the parabolic cyclide
Ψ can be produced as the inversion Ψ = SΩS∼ of a DCGA IPNS bivector
Darboux cyclide Ω in a DCGA IPNS bivector standard sphere S that is
centered on a surface point of Ω.

Since the ellipsoid E is a special case of a parabolic cyclide Ψ, it follows
that parabolic cyclides are in general not blades.

3.4. DCGA versor operations

The DCGA 4-versors VD = VC1VC2 inherit the property V −1D = V ∼D = V ∼C2V
∼
C1 .

The CGA translator TC , rotor RC , and isotropic dilator DC have corre-
sponding paired DCGA 4-versors

TD = TC1TC2 , RD = RC1RC2 , DD = DC1DC2 , (58)

where the translation vector components of TC1 are the same as for TC2 ,
the rotation bivector components are the same in RC1 and RC2 , and the
dilation center and scaling factor are the same in DC1 and DC2 . The geometric
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products of the CGA1 and CGA2 versors in (58), can be replaced in all three
cases by the outer product, due to the complete orthogonality of multivectors
in CGA1 and CGA2, e.g. TC1TC2 = TC1 ∧ TC2 , etc.

The DCGA 2-versor reflector Π is the DCGA 2-blade standard plane
Π (72). That means for k = 1, 2, the CGA IPNS plane vectors ΠCk , normal
to n̂ and through p, or at distance d from the origin,

ΠCk = n̂Ek + (pEk · n̂Ek)e∞k = n̂Ek + de∞k (59)

are the CGA 1-versor reflection operators (reflector), and lead to the corre-
sponding paired DCGA IPNS 2-blade plane entity ΠD = ΠC1ΠC2 that acts
as the proper DCGA 2-versor reflector.

The DCGA 2-versor inversor S is the DCGA 2-blade standard sphere
S (48). That means for k = 1, 2, the CGA IPNS sphere vectors SCk , centered
at point PCk and through point QCk , or with radius r,

SCk = PCk + (QCk ·PCk)e∞k = PCk − 1
2r

2e∞k (60)

are the CGA 1-versor inversion operators (inversor), and lead to the corre-
sponding DCGA IPNS sphere 2-blade entity SD = SC1SC2 that acts as the
proper DCGA 2-versor inversor.

The 4-versors T , R, D can be factored into products of Π and S entities
as successive reflections or inversions in two planes or two spheres.

By versor outermorphism [22], the DCGA versors (58) for translation
TD , rotation RD, and dilation DD can operate on any DCGA entity Υ ∈
{AD,Ω,Ω∧AD} or its DCGA dual Υ∗D = ΥI−1D . The inversion of any DCGA
entity Υ in a DCGA bivector standard sphere S = SC1SC2 is expressed by
SΥS∼. The reflection of any DCGA entity Υ in a DCGA bivector standard
plane Π = ΠC1ΠC2 , is expressed by ΠΥΠ∼. The DCGA versors (58) can
be factored into inversion and reflection operations, which in turn can be
factored into products of vectors.

3.4.1. Discussion of anisotropic dilation. No versor for anisotropic dilation
was found in G8,2 DCGA, since geometrically reflections in planes and spheres
only map spheres to spheres, and thus cannot produce ellipsoids. However,
in G4,8 Double Conformal Space-Time Algebra (DCSTA) [8], or in the sim-
ilar extension G8,4 Double Conformal “Time-Space Algebra” (DCTSA) that
differs only by some ± sign changes, an anisotropic dilation operation ap-
plicable to any bivector quadric entity Q can be formed using a 4-versor
hyperbolic rotor (boost) B operation Q′ = BQB∼ with imaginary hyperbolic
angle (rapidity) ϕ

√
−1 followed by a grade-10 pseudoscalar projection op-

eration Q′′ = (Q′ · ID)I−1D into the G2,8 Double Conformal Space Algebra
(DCSA) subalgebra, or into the very similar G8,2 DCGA subalgebra, which
has been the subject of this paper.

3.5. DCGA intersection entity

Since any DCGA IPNS standard entity XD = AD (1) can be used as reflection
or inversion operator on any other DCGA IPNS entity Υ, it can be shown, in
particular, that their DCGA IPNS intersection entity are obtained by Υ∧AD
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with even grade 4 ≤ g ≤ 10. However, the wedge of any two general DCGA
IPNS entities Υ1∧Υ2 is geometrically not yet well interpreted. In particular,
the wedge of two DCGA IPNS bivector quadrics Q1∧Q2, where we saw that
Q1 and Q2 are generally not simple blades, can not straightforwardly be
interpreted as intersection entity, in analogy to the meet product of CGA [15].
In general, it is possible to intersect by means of the outer product any DCGA
IPNS entity Υ with any DCGA IPNS standard entity AD, including the
standard sphere SD = SC1SC2 , plane ΠD = ΠC1ΠC2 , line LD = ΠD1 ∧ΠD2 ,
and circle CD = SD ∧ΠD, as the DCGA IPNS intersection entity Υ ∧ AD
(61) of even grade 4 ≤ g ≤ 10.

The DCGA IPNS k-vector intersection entity X of even grade 4 ≤ k ≤
10 is defined as

X〈4≤k≤10〉 =


2≤n≤5∧
i=1

Bi : Bi ∈ S = {S,Π}

Ω ∧
1≤n≤4∧
i=1

Bi : Ω 6∈ S,Bi ∈ S.
(61)

The argument for (61) is the following. For Ω and Bi, 1 ≤ i ≤ n ≤ 4,
all linearly independent, we have TD ·X = 0, iff separately TD ·Ω = 0, and
TD ·Bi = 0, 1 ≤ i ≤ n ≤ 4.

3.6. DCGA differential elements

The DCGA bivector differential elements are defined as

Dx = 2TxT
−1
x2 , Dy = 2TyT

−1
y2 , Dz = 2TzT

−1
z2 . (62)

With the commutator product ×, a unit magnitude linear combination of the
differential elements forms an n-direction derivative operator as

∂n =
∂

∂n
= Dn× = (nxDx + nyDy + nzDz)× . (63)

Any DCGA IPNS bivector entity Ω can be differentiated as ∂nΩ = Dn ×Ω.
For example, we have with (40)

Dx ×E = 2TxT
−1
x2 ×E = 2

Tx
a2
, (64)

and thus

(Dx ×E) ·TD = 2
Tx
a2
·TD =

∂

∂x
(E ·TD). (65)

The paper [6] offers more details on the differential operators, including
pseudo-integral operators.

3.7. DCGA conic section entities

By intersecting any DCGA IPNS bivector quadric surface Q with a DCGA
2-blade standard plane Π, a DCGA quadvector conic entity κ is formed.
The quadric surface Q can be a cone K and conic sections can be formed7.
A conic entity κ can be projected orthographically or perspectively onto a

7The topic of conics in DCGA would certainly deserve a more detailed study. Due to page
limitations of the current paper, we only indicate how conics can be studied in DCGA.
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DCGA 2-blade standard plane Π. The orthographic projection κortho of a
DCGA IPNS quadvector conic entity κ = Q ∧Πκ, obtained by application
of (61), onto a DCGA IPNS 2-blade standard plane Π is defined as

κortho = (κ ·Π)Π−1 (66)

which is the algebraic projection of κ onto Π.
The perspective projection κpersp of a DCGA IPNS quadvector conic

entity κ onto a DCGA IPNS 2-blade standard plane Π from the viewpoint
p = xe1 + ye2 + ze3 represented by a DCGA IPNS 2-blade standard sphere
S with center PD = D(p) and radius r = 1 can be defined as

κpersp = (((κ · S)S−1) · S) ∧Π = ((SκS−1) · S) ∧Π = Kp ∧Π (67)

where Kp is the DCGA bivector cone of the perspective projection with
vertex or eye point at p. The radius r of S is arbitrary, but r = 1 is a good
choice. For conics in DCGA see also [7, 9].

If one is only interested in conics in two dimensions, then the DCGA
G6,2 = Cl(6, 2) for the Euclidean plane, would be fully sufficient. The above
κ = Q ∧Πκ represents a conic generally oriented and positioned in three-
dimensional Euclidean space. And as we just saw above, the perspective pro-
jections use the formalism of CGA, since by pairing (doubling) CGA points,
lines, circles, planes and spheres in DCGA, operations of CGA with these
geometric entities also become available in DCGA.

3.8. DCGA (bi-CGA) IPNS k-blade union entities

The wedge of any CGA1 IPNS r-blade entity Ar with any other CGA2
IPNS s-blade entity Bs forms the DCGA (bi-CGA) IPNS (k = r + s)-blade
union entity U = Ar ∧ Bs. For k = 2, examples include the toroid O with
R = 0, where each can be written as a linear combination of the extraction
elements Ts that factors into the 2-blade wedge of a CGA1 IPNS 1-blade
sphere A1 = SC11 and a CGA2 IPNS 1-blade sphere B1 = SC22 ; other IPNS
2-blade union entity examples are similar.

In general, a linear combination of the extraction elements Ts forms an
IPNS 2-vector Darboux cyclide entity Ω that cannot in general be factored
into a 2-blade except in specific cases where Ω = A1 ∧B1. The DCGA (bi-
CGA) IPNS 2r-blade standard entities are the union entities U where Ar

and Br are corresponding entities of the same grade r in CGA1 and CGA2,
respectively; the toroid O with R = 0 forms a DCGA IPNS 2-blade standard
sphere S, a union entity representing a sphere implicit surface function F 2

of multiplicity 2. For 2 < k ≤ 8, the IPNS k-blade union entity U is not a
2-blade nor expressible as a linear combination of the extraction elements Ts,
but represents the geometric union of the two geometric surfaces or curves
represented by Ar and Bs.

By outermorphism, any DCGA versor V operates correctly on any union
entity8 U as U′ = VUV ∼. The Geometric Algebra Computing software
Gaalop [14] can be used to visualize any DCGA entity, including any DCGA

8Note, that for odd k and odd versor parity, a sign change has to be taken into account.
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(bi-CGA) IPNS k-blade union entity U. DCGA computing and visualiza-
tion using Gaalop is (due to page limitations) discussed in detail, with code
samples, in the DCGA original research preprint working paper [5].

4. Conclusion

We have briefly reviewed the concepts of conformal geometric algebra (CGA),
in order to introduce the necessary notation for constructing double CGA
(DCGA). Next, we introduced DCGA, showed how to describe points, form
geometric entities of CGA in DCGA by outer products of points, formulated
Darboux cyclides as bivectors in DCGA, and described versor operations,
intersections, differentiation operators, and conic sections. We also provided
technical details on certain types of Darboux cyclides as bivectors in DCGA,
see Appendix A.

Double Conformal / Darboux Cyclide Geometric Algebra (DCGA) G8,2
is certainly interesting for further future research and for present applications.

We note, that DCGA introduces the algebraic differential operators9

Dx, Dy, Dz for entity analysis or other purposes. Some applications to dis-
tance geometry, for computing distances between points or geometric sur-
faces, may in the future also become possible using DCGA. Furthermore,
DCGA introduces a new representation of conic sections κ = Q∧Πκ as the
intersection of a quadric entity Q and a plane entity Πκ and also provides
operations for orthographic and perspective projections of the conics onto
a view plane Π, which may have computer graphics applications or other
computational geometry applications.

An extension of G8,2 DCGA, the Double Conformal “Time-Space” Al-
gebra (DCTSA) G8,4 , extends the DCGA spatial entities to entities in space-
time with a new time derivative operator Dt = Dw/c and a new versor
B for hyperbolic rotation (boost) that may support spacetime physics, the
boost of quadrics into moving quadrics at velocities with corresponding spe-
cial relativity length contractions, and the anisotropic dilation of quadrics.
The G4,8 Double Conformal Space-Time Algebra (DCSTA) [8] is another pos-
sible extension. Extension of G8,2 DCGA to a G12,3 Triple or G16,4 Quadruple
Conformal Geometric Algebra may be theoretically feasible, and may allow
for general cubic and quartic surface entities in Euclidean 3D space. DCGAs
G2p+2,2q+2 for hypersurfaces in Rp,q are also possible.

9Due page limitations, we did not elaborate further on the methods and applications of

these differential operators. But we think it is an important feature, which needs to be
made known.
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Appendix A. Detailed DCGA surface representation bivector
entities

A.1. DCGA IPNS ellipsoid in general location

The implicit quadric equation for a principal axes-aligned ellipsoid is

(x− px)2/r2x + (y − py)2/r2y + (z − pz)2/r2z − 1 = 0 (68)

where p = pxe1 + pye2 + pze3 is the position (shifted origin or center) of
the ellipsoid, and rx, ry, rz are the semi-diameters (often denoted a, b, c). Ex-
panding the squares, the equation can be written as

−2pxx
r2x

+
−2pyy
r2y

+ −2pzzr2z
+
(
x2

r2x
+ y2

r2y
+ z2

r2z

)
+
(
p2x
r2x

+
p2y
r2y

+
p2z
r2z
−1
)

= 0. (69)

The DCGA IPNS bivector ellipsoid surface entity E is defined in terms of Ts
(Table 1) as

E=−2pxTx

r2x
− 2pyTy

r2y
− 2pzTz

r2z
+
Tx2

r2x
+
Ty2

r2y
+
Tz2

r2z
+
(
p2x
r2x

+
p2y
r2y

+
p2z
r2z
−1
)
T1. (70)

An ellipsoid in general orientation is obtained by applying the rotor sandwich
operation of Section 3.4 to E.

A.2. DCGA IPNS line

The DCGA IPNS 4-blade standard line 1D surface entity L = LC1 ∧ LC2 =
LC1LC2 is defined as

L = (d̂∗E1 − (pE1 · d̂∗E1)e∞1)(d̂∗E2 − (pE2 · d̂∗E2)e∞2). (71)

This is the wedge of the line as represented in CGA1 with the same line as
represented in CGA2. It could also be called a bi-CGA IPNS line entity. The

unit vector d̂Ek is the direction of the line, and pEk is any point on the line.

The unit bivector d̂∗Ek = d̂EkI−1Ek is orthogonal to the line.

A.3. DCGA IPNS plane and line

The DCGA IPNS 2-blade standard plane surface entity Π is defined as

Π = ΠC1 ∧ΠC2 = ΠC1ΠC2 = (n̂E1 + de∞1)(n̂E2 + de∞2). (72)

This is the wedge of the plane as represented in CGA1 with the same plane
as represented in CGA2. It could also be called a bi-CGA IPNS plane entity.
The vector n̂Ek is a unit vector perpendicular (normal) to the plane, and
the scalar d is the signed distance of the plane from the origin toward n̂Ek .
The plane bivector of equation (72) represents the DCGA dual of the OPNS
8-blade plane of (36).

The DCGA IPNS line L can also be defined as the intersection of two
DCGA IPNS planes by

L = Π1 ∧Π2. (73)

The line 4-blade of equation (73) represents the DCGA dual of the OPNS
6-blade line of (37).
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A.4. DCGA IPNS circle

A circle is the intersection of a sphere and plane. We can intersect a DCGA
IPNS 2-blade standard plane Π with either a DCGA IPNS 2-blade standard
sphere S or with a spherical DCGA IPNS bivector ellipsoid E and get two
different IPNS quadvector circle entities. The first can be intersected again
with any other DCGA IPNS entity, but the second can only be intersected
again with another DCGA IPNS standard entity.

The DCGA IPNS 4-blade standard circle 1D surface entity C is defined
by

C = S ∧Π = CC1 ∧CC2 . (74)

The circle 4-blade of equation (74) represents the DCGA dual of the OPNS
6-blade circle of (38).

A.5. DCGA IPNS elliptic cylinder

An axes-aligned elliptic cylinder is the limit of an ellipsoid as one of the
semi-diameters approaches ∞. The limit eliminates the terms of the cylinder
axis from the implicit ellipsoid equation. The z-axis aligned cylinder takes
rz →∞, reducing the ellipsoid equation to

(x− px)2/r2x + (y − py)2/r2y − 1 = 0 (75)

where p = pxe1 + pye2 + pze3 is the position of the related ellipsoid, and
rx, ry, rz are semi-diameters.

The DCGA IPNS bivector z-axis aligned cylinder surface entity H||z is
defined as

H||z = −2pxTx

r2x
+
−2pyTy

r2y
+

Tx2

r2x
+

Ty2

r2y
+
(
p2x
r2x

+
p2y
r2y
− 1
)
T1. (76)

The presence of the term Tx2/r2x+Ty2/r
2
y means that the elliptic cylinder

H||z, located at the origin (px = py = 0), is manifestly not a blade. The
application of a translation versor, to move the cylinder into general position,
cannot change this property.

A.6. DCGA IPNS elliptic cone

An axis-aligned elliptic cone is an axis-aligned cylinder that is linearly scaled
along the axis. The implicit quadric equation for an z-axis aligned cone is

(x− px)2/r2x + (y − py)2/r2y − (z − pz)2/r2z = 0 (77)

where p = pxe1 + pye2 + pze3 is the position of the cone apex, and rx, ry, rz
are semi-diameters. The DCGA IPNS bivector z-axis aligned elliptic cone
surface entity K||z is defined as

K||z= 2
(
pzTz

r2z
− pyTy

r2y
− pxTx

r2x

)
+
Tx2

r2x
+
Ty2

r2y
− Tz2

r2z
+
(
p2x
r2x

+
p2y
r2y
− p2z
r2z

)
T1. (78)

The presence of the term Tx2/r2x+Ty2/r
2
y−Tz2/r2z means that the elliptic

cone K||z is manifestly not a blade.
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A.7. DCGA IPNS hyperbolic paraboloid

The hyperbolic paraboloid has a saddle-like shape. Its z-axis aligned implicit
quadric equation is

x2/r2x − y2/r2y − z/rz = 0. (79)

The DCGA IPNS bivector z-axis aligned hyperbolic paraboloid surface entity
M is defined as

M = Tx2/r2x − Ty2/r2y − Tz/rz. (80)

The presence of the term Tx2/r2x − Ty2/r2y means that the hyperbolic
paraboloid M is manifestly not a blade.

A.8. DCGA IPNS hyperboloid of one sheet

The hyperboloid of one sheet has an hourglass-like shape. Its z-axis aligned
implicit equation is

x2/r2x + y2/r2y − z2/r2z − 1 = 0. (81)

The DCGA IPNS bivector z-axis aligned hyperboloid of one sheet surface
entity Σ is defined as

Σ = Tx2/r2x + Ty2/r
2
y − Tz2/r2z − T1. (82)

The presence of the term Tx2/r2x + Ty2/r
2
y − Tz2/r

2
z means that the

hyperboloid of one sheet Σ is manifestly not a blade.

A.9. DCGA IPNS hyperboloid of two sheets

The hyperboloid of two sheets has two dish-like sheets. Its z-axis aligned
implicit quadric equation is

− x2/r2x − y2/r2y + z2/r2z − 1 = 0. (83)

The DCGA IPNS bivector z-axis aligned hyperboloid of two sheets surface
entity Ξ is defined as

Ξ = −Tx2/r2x − Ty2/r2y + Tz2/r
2
z − T1. (84)

The presence of the term −Tx2/r2x − Ty2/r2y + Tz2/r
2
z means that the

hyperboloid of two sheets Ξ is manifestly not a blade.

A.10. DCGA IPNS parabolic cylinder

The implicit quadric equation for a z-axis aligned parabolic cylinder is

x2

r2x
− y

ry
= 0. (85)

The DCGA IPNS bivector z-axis aligned parabolic cylinder surface entity B||z

is defined as

B||z =
Tx2

r2x
− Ty
ry
. (86)

Inspection of the bivectors Tx2/r2x and −Ty/ry in Table 1 shows mani-

festly, that the parabolic cylinder B||z is not a blade.
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A.11. DCGA IPNS hyperbolic cylinder

The implicit quadric equation for a z-axis aligned hyperbolic cylinder is

x2

r2x
− y2/r2y − 1 = 0. (87)

The DCGA IPNS bivector z-axis aligned hyperbolic cylinder surface entity
J||z is defined as

J||z =
Tx2

r2x
−
Ty2

r2y
− T1. (88)

The presence of the term Tx2/r2x − Ty2/r2y means that the hyperbolic

cylinder J||z is manifestly not a blade.

A.12. DCGA IPNS parallel planes pair

The implicit quadric equation for a pair of parallel planes perpendicular to
the x-axis is

(x− px1)(x− px2) = 0. (89)

Each solution, x = px1 and x = px2, represents a plane. Expanding the
equation gives

x2 − (px1 + px2)x+ px1px2 = 0. (90)

The DCGA IPNS bivector parallel x-planes pair entity Π⊥x is defined as

Π⊥x = Tx2 − (px1 + px2)Tx + px1px2T1. (91)

As the construction of the parallel planes pair indicates, the bivector
Π⊥x can indeed be factorized as a blade into −(e1+p1e∞1)(e6+p2e∞2), if the
operator equivalence of p1e∞1e6 +p2e1e∞2 with 1

2 (p1 +p2)(e∞1e6 +e1e∞2),
as discussed in Section 3.3, is taken into account.

A.13. DCGA IPNS non-parallel planes pair

The implicit quadric equation for a pair of non-parallel planes that are parallel
to the z-axis is

x2

r2x
− y2

r2y
= 0. (92)

The DCGA IPNS bivector z-axis aligned non-parallel planes pair entity X||z

is defined as

X||z =
Tx2

r2x
−
Ty2

r2y
. (93)

The presence of the term Tx2/r2x − Ty2/r2y means that the non-parallel

planes pair X||z is manifestly not a blade.
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A.14. DCGA IPNS parabola

The DCGA IPNS quadvector xy-plane parabola 1D surface entity ρ||xy is
defined as

ρ||xy = Πz=0 ∧B||z (94)

where the DCGA IPNS 2-blade standard plane Πz=0 is for plane z = 0, and
the DCGA IPNS bivector parabolic cylinder B||z is as previously defined and
directly represents a parabola in the xy-plane.

Note that the wedge product of the non-blade entity B||z of Section
A.10, with the completely orthogonal blade Πz=0 = e3e8, cannot not produce
a blade. Therefore, the parabola ρ||xy is manifestly not a blade.

A.15. DCGA IPNS hyperbola

The DCGA IPNS quadvector xy-plane hyperbola 1D surface entity η||xy is
defined as

η||xy = Πz=0 ∧ J||z (95)

where the DCGA IPNS 2-blade standard plane Πz=0 is for plane z = 0, and
the DCGA IPNS bivector hyperbolic cylinder J||z is as previously defined and
directly represents a hyperbola in the xy-plane.

Note that the wedge product of the non-blade entity J||z of Section A.11,
with the completely orthogonal blade Πz=0 = e3e8, cannot not produce a
blade. Therefore, the hyperbola η||xy is manifestly not a blade.

A.16. DCGA IPNS horned Dupin cyclide

The horned Dupin cyclide is a variation of the Dupin cyclide, formed by
swapping µ and c in the implicit surface equation of the Dupin cyclide. The
parameters a, b, c, µ are defined as

a = R, µ = (1/2)(r1 + r2), c = (1/2)(r1 − r2), b2 = a2 − µ2. (96)

The DCGA IPNS bivector horned Dupin cyclide surface entity Γ is defined
as

Γ=Tt4 +2Tt2(b2−c2)−4a2Tx2−4b2Ty2 +8acµTx+((b2−c2)2−4c2µ2)T1.

The DCGA IPNS horned Dupin cyclide Γ has the same related center points
as for Φ. The entity Γ can be a horned ring cyclide (r1 + r2) < 2R, horned
spindle cyclide (r1 + r2) > 2R, horned (tangent) spheres (r1 + r2) = 2R,
horned ring torus (r1 = r2) < R, horned spindle torus (r1 = r2) > R, or
horned spheres (r1 = r2) = R. All DCGA versors can be applied to Γ, to
transform it into general positions and scale.

Note that the discussion of the non-blade character at the end of Section
3.3.7 applies in particular to the horned Dupin cyclide as well.
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