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ABSTRACT 

Distributions play a very important role in many applications. Inspired by the newly developed 

warping transformation of distributions, an indirect nonparametric distribution to distribution 

regression method is proposed in this article for predicting correlated one-dimensional continuous 

probability density functions.  
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1. Introduction 

In this article, the correlation between two distribution classes means their density functions will 

change simultaneously to some extent (see Fig. 1). The correlation between two distribution 

classes is distinct from the correlation between two random variables. Two correlated distribution 

classes do not guarantee random variables respectively follow these two distribution classes are 

also correlated. For instance, suppose probability density functions tg  and tf  are correlated, 

consider two time-varying random variables ~t tX g  and ~t tY f , if the joint distribution of 

 ,t tX Y  can be factorized as      ,
t tX Y t t t t t tp x y g x f y , then tX  and tY  are 

independent with each other. Similarly, two correlated random variables also do not guarantee the 

distributions they follow are also correlated.  

 

 
 

Fig.1  Graphical representation of two correlated distribution classes 

 

Inspired by the seminal work done by Dasgupta et al. [1], an indirect nonparametric distribution to 

distribution regression method is proposed in this article for two correlated one-dimensional 

continuous distribution classes. Other related work includes the conventional distribution to 

distribution regression [2] and distribution to real-value or vector-value regression [3-7], etc. 

2. Introduction to the warping transformation of distributions 

The warping transformation of a distribution is a map that used to transform a distribution to 

another by deforming the original probability density function with a warping function [1, 8]. The 

newly reported article by Dasgupta et al. [1] has given a very detailed discussion of this 

transformation.  

All distributions in this study are assumed to be continuous with strictly positive support on 

 0,1 , distributions with general finite supports can be easily tackled by the scale transformation 

introduced in [1]. Given a probability density function  g x  with strictly positive support on 

 0,1 , the warping transformation of  g x  by a warping function  x  defined on 0,1 is  

        , 0,1warpg x g x x x    (1) 
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where    
d

x x
dx

  .  

3. The related work: conditional density estimation using warping functions 

The related work is the estimation of the conditional density function given the observation of a 

correlated random variable. Follow the description in [1], let X  be a d-dimensional random 

variable, such as  ~ U 0,1
d

X , and Y be another random variable that correlated with X .  

 

 
Fig. 2  Observed samples of two correlated random variables X  and Y with estimated mean 

function  m̂ x E Y X x     

 

Suppose we have observed n  pairs realizations of X  and Y , i.e.   
1

,
n

i i i
X Y


. Let 

0y X x
f



be the conditional density function of Y  given  0X x , one of the tasks in [1] is to obtain a 

warped estimate for 
0y X x

f


, i.e. 
00

,
ˆ

w xy X x
f f


 , from the initial density function 

  2

0
ˆ ˆ,pf y m x  , where  m̂ x  is the estimated mean function of Y  obtained by local 

linear regression (see Fig. 2), 
2̂ is the estimated variance of the residuals   

1
ˆ

n

i i i
Y m X


 . The 

initial density function pf  can be any parametric family with simple estimation procedure. 

Suppose  0 x  is the warping function from   2

0
ˆ ˆ,pf y m x   to 

0,w xf , i.e. 

        
0

2

, 0 0 0 0
ˆ,w x pf y X x f y m x y    

 
(2) 

The optimal estimate for 0  in [1] is obtained by the following weighted likelihood method 
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n

p i i i x i

i
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(3) 

where   2ˆ ˆ,p if m x   is the initial density function for iY X x , 
0 ,x iW  is the local 

weight at iX , calculated by  

 

 0

0 2

,

01 2

0, 1
=

0, 1

i

x i n

jj

N X x h
W

N X x h




  
(4) 

where  0,1N   is the standard normal probability density function, h  is the bandwidth 

parameter, 
2
 is the 2-norm. 

This warping transformation-based approach for conditional distribution estimation in [1] can be 

regarded as real-value to distribution regression (if X  is an univariate random variable) or 

vector-value to distribution regression (if X  is a multivariate random variable). It can predict the 

dynamic change of the density function of Y  only when random variables X  and Y  are 

correlated with each other. 
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4. Extend to distribution to distribution regression 

In this section, the warping transformation-based method is extended to distribution to distribution 

regression. For convenience, let gπ and fπ  respectively be two correlated one-dimensional 

continuous distribution classes with strictly positive support on  0,1 . Suppose we have obtained 

n  pairs of probability density functions respectively from gπ and fπ , i.e.  
1

,
n

i i i
g f


, given a 

new density function 0g  from gπ , the task in this section is to develop a nonparametric 

regression model to predict the corresponding density function 0f  from fπ , i.e. use 

  01
,

n

i i i
g f g


  to predict 0f . For this purpose, a nonparametric distribution to warping 

function regression is first used to predict the warping function 
0 , i.e. the mapping relationship 

from 
0g  to 

0f , then use the predicted warping function to transform 
0g  to obtain a prediction 

for 
0f , i.e. 
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(5a) 

      0 0 0 0
ˆ ˆ ˆf x g x x    (5b) 

where, ˆ
k  is the estimated warping function from kg  to kf , i.e.       ˆ ˆ

k k k kf x g x x   ,

 K   is the kernel function, h  is the bandwidth for the kernel regression，  0 , kg g  is a 

metric (such as the 1L  distance:      0 0, =k kg g g g d    ) used to measure the 

similarity between 0g  and kg ,  0f̂ x  is the prediction of  0f x . Note, a convex 

combination of warping functions is also a warping function [8], thus the regression result in Eq. 

(5a) being a warping function is guaranteed.  

This distribution prediction approach can be regarded as an indirect nonparametric distribution to 

distribution regression. Unlike the conventional distribution to distribution regression proposed by 

Oliva et al. [2], the proposed regression model in Eq. (5) can reflect the shape mapping 

relationship between input and output distributions, thus it has more potential in extrapolating 

prediction.  

5. Conclusions 

An indirect nonparametric distribution to distribution regression method is proposed in this article, 

which can reflect the shape mapping relationship between input and output distributions. The 

correlation between two distribution classes is distinct from the correlation between two random 

variables. The real-value (or vector-value) to distribution regression and the distribution to 

distribution regression have different application scopes, the former is suited to correlated random 

variables, while the latter is suited to correlated distributions. 
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