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Abstract. 
 

Einstein, Planck and Boltzmann revealed with their most famous equations (𝐸 = 𝑚. 𝑐2 , 𝐸 = ℎ. 𝜐 and 𝑆 =  𝑘𝐵. 𝑙𝑛 (𝑤) respectively) 

universal natural constants c, h and kB. These constants are conversion factors between dimensions. This manuscript starts with 

reviewing the physical consequences thereof. This revealed major overlap in the units of measurement as found in the SI system, 

which blurs physical facts. The un-blurring demanded a more basic set of units of measurement. To avoid confusion in 

terminology, this new set was named Crenel Physics as opposed to Metric Physics (based on the SI system).  The Crenel Physics 

model is step by step developed, thereby continuously showing the consistencies between both. Within Crenel Physics, relatively 

complex issues suddenly appear much simpler. This helped to further enhance insight into the fundaments of physics.  

Gravity was found to be related to entropy. 

The ‘entropy atom’ is introduced as the object with lowest required entropy value for continuous observability. It has an entropy of 

2 bits, which –as will be shown- equals dimensionless ln(4). The gravitational constant G between entropy atoms was calculated (!) 

and found to equal: 𝐺 =
ℎ

𝑘𝐵
× 𝑙𝑛 (4). Here, the term ln(4) represents the entropy of ‘entropy atoms’ in Boltzmann constants (not in 

bit). This equation delivers a value of G that is approximately 0.3% below its literature value. The difference is conceptually 

explained, and –at least directionally- this is in line with an ‘improved cold atom’ measurement by Rosi et.al., published in 2014, 

see https://en.wikipedia.org/wiki/Gravitational_constant.  

Photons (or more in general: any object that meets Planck’s equation = ℎ. 𝜐 ) are found to have an entropy value of 1. 

Consequently they cannot be observed as such. We can only recapture their past existence when they hit a sensor. Consistently with 

above equation, the gravitational constant –when it comes to photons- is equal to: 𝐺 =
ℎ

𝑘𝐵
× 𝑙𝑛 (1) ≡ 0. Thus, photons are not in 

the least impacted by gravity. Instead, they sharply follow the gridlines in space-time, without change of internal properties. These 

gridlines are further apart when approaching a mass, and thus –while approaching a mass- distances stretch and clocks will start 

ticking slower, so that on these clocks it only appears that the photon’s frequency goes up. In the past such frequency increase was 

falsely presumed to be caused by an energy gain while descending in a gravitational field. Likewise and consistently, gravitational 

lensing is not caused by a sideways gravitational acceleration of photons: in fact, photons sharply follow the regional curving of 

spatial gridlines near masses. 

An intriguing prospect is the hypothesis of the existence of objects with an entropy value of 1 bit. It is reasoned that such objects 

might exist, but –in such case- cannot be continuously observed in any way. Yet they would be subject to (or cause) gravity, 

because in this case the gravitational constant is calculated as:  𝐺 =
ℎ

𝑘𝐵
× 𝑙𝑛 (2), which is half the value as found between entropy 

atoms (of which observable matter is composed). 1 bit objects thus are a plausible candidate for representing ‘black matter’. 

This manuscript duplicates and enhances previous publications by the author. The reason thereof is pragmatic: it can be read as is, 

without references.  

 

 

  

https://en.wikipedia.org/wiki/Gravitational_constant


Crenel Physics      © Hans van Kessel             hans.vankessel@upbound.com 

 

 

Table of contents: 

1. Consolidating Units of Measurement. ........................................................................................................... 1 

2. Boltzmann. ................................................................................................................................................... 4 

3. Observability: the entropy atom. .................................................................................................................. 7 

4. Conversion factors and G. ............................................................................................................................. 9 

5. Various options for G. ................................................................................................................................. 10 

6. Consequences of normalizing c.................................................................................................................... 13 

7. Streamlined UoM. ...................................................................................................................................... 14 

8. Verification and discussion. ......................................................................................................................... 15 



Crenel Physics      © Hans van Kessel             hans.vankessel@upbound.com 

Page | 1 

 

 Consolidating Units of 1.

Measurement. 

Physics describes nature in terms of Units of Measurement, for 

which we will use symbol ‘UoM’. Thereby the Metric S.I. 

system is used. It presumes the meter, second, kilogram and 

Joule as ‘base’. These are however not ‘base’. This 

presumption blurs the fundamentals of physics. To illustrate 

this, consider Einstein’s equation 𝐸 = 𝑚. 𝑐2. It can be rewritten 

as: 𝑐2 =  𝐸
𝑚⁄ .  

Per this equation: 1 𝑐2 = 1
𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑜𝑀

𝑀𝑎𝑠𝑠 𝑈𝑜𝑀
= 1 

𝐽

𝑘𝑔
.  

The light velocity 𝑐 (in vacuum) then equals 1 √
𝐽

𝑘𝑔⁄ . 

However, in the S.I. system c is not expressed in √
𝐽

𝑘𝑔⁄ , but in 

m/s: c = 299.792.458 𝑚 𝑠⁄ . 

Therefore:  1 √
𝐽

𝑘𝑔⁄ ≡ 299.792.458 𝑚
𝑠⁄ .  

This illustrates overlap between UoM in the S.I. system. Per his 

above equation, Einstein un-blurred one of these overlaps.  

In the following we will produce a consolidated system of 

UoM, eliminating all overlap. It is based on Einstein and 

Planck. In chapter 2 we will embed Boltzmann. To avoid 

confusion we refer to our consolidated system as Crenel 

Physics as opposed to ‘Metric Physics’. 

Because ‘c’ is a universal natural constant, the equation 

𝐸 = 𝑚. 𝑐2 describes a universal (thus non-relativistic) 

conversion between mass and energy. This is a decisive 

argument for both properties to share a common basis. That 

shared basis is associated with content. All physical objects 

have content, which can be expressed in the mass UoM as well 

as in the energy UoM. Therefore we can do with one (and no 

more than one) measure for content. Within the Crenel Physics 

model we will name it ‘Package’ (symbol ‘P’).  

By expressing both E and m in ‘P(ackages)’ we implicitly 

normalized the conversion factor 𝑐2 in 𝐸 = 𝑚. 𝑐2 to unity (the 

dimensionless 1). And therefore ‘c’ is also equal to unity: 

𝒄𝑪𝑷 ≡ 𝟏       (CP1.1) 

Note: in the following the subscript ‘CP’ indicates that this is the 

Crenel Physics version of some property. The ‘CP’ in the equation 

number indicates that the equation applies to the Crenel Physics 

system. 

Any other velocity will be expressed as a fraction of light 

velocity ‘cCP’. Thus, within Crenel Physics, velocity ranges 

from 0 to 1.  

In Metric Physics velocity is expressed in m/s. In Crenel 

Physics, in order to arrive at the now required dimensionless 

measure for velocity, the UoM for distance must be equal to the 

UoM for time. That measure will be named ‘Crenel’ (symbol 

‘C’): both distance and time will be expressed in ‘Crenel’. The 

Crenel will be our measure for whereabouts in terms of space 

and time. 

Memory aid: the name Crenel is associated with crenels as found on 

top of castle walls. That shape has a pattern that can be associated 

with both ‘distance’ as well as ‘frequency’ (and thereby ‘time’). 

Let’s explore the UoM of some other physical properties. In 

Metric Physics acceleration ‘𝑎’ is expressed in m/s
2
. Therefore, 

in Crenel Physics acceleration is expressed in C/C
2
 which can 

be simplified to C
-1

. Based on Newton’s law 𝐹 = 𝑚. 𝑎, in 

Metric Physics force F is measured in kg.m/s
2 
(note the overlap 

with the ‘N(ewton)’, the typically used measure). In Crenel 

Physics the force in kg.m/s
2
 converts to P.C/C

2
 = P/C. From the 

gravitational equation 𝐹 = 𝐺.
𝑀1.𝑀2

𝑑2  we find the value of the G 

being equal to: 𝐺 =  
𝐹.𝑑2

𝑀1.𝑀2
. In this equation we substitute the 

associated Crenel Physics UoM: 

𝐺 =  
𝑃

𝐶
.𝐶2

𝑃.𝑃
=  𝐶

𝑃⁄ . Thus: 

𝑮𝑪𝑷 ≡ 𝟏 
𝑪

𝑷
                   (CP1.2) 

In Planck’s equation 𝐸 = ℎ. 𝜐 energy ‘E’ is expressed in 

Packages and frequency ′𝜐′ is expressed in Crenel
-1

 (the Crenel 

Physics counterpart of seconds
-1

). This gives the Crenel 

Physics version of Planck’s constant ‘h’: 

𝒉𝑪𝑷 ≡ 𝟏 𝑪. 𝑷     (CP1.3) 

With three natural constants cCP, GCP and hCP defined, we now 

have the following three equations: 

For light velocity c: 

1 (dimensionless) = c (m.s
-1

)     (1.4) 

For Planck’s constant h: 

1 P.C = ℎ (N.m.s)     (1.5) 

For the gravitational constant G: 

1 C.P
-1

 = G (Nm
2
kg

-2
)                 (1.6) 
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The left sides in the above equations express the natural 

constants (cCP, hCP and GCP respectively) in Crenel Physics 

UoM whereas the right sides express these in Metric Physics 

UoM. From these three equations we can extract P and C, and 

express these in Metric UoM as follows: 

In equation (1.5) the symbol ‘s’ in the UoM can be replaced by 

c meters because 1 second corresponds to c meters. This results 

in: 

1.P.C = ℎ.c (N.m
2
)                (1.7) 

Based on Einstein’s E=m.c
2
, 1 kg corresponds to c

2
 Joules or c

2
 

(N.m). In equation (1.6) the kg
-2

 in the UoM can therefore be 

replaced by c
-4

 (N
-2

.m
-2

): 

1 C.P
-1

 = G.c
-4

 (N.m
2
.N

-2
m

-2
) = G.c

-4
 (N

-1
)   (1.8) 

Dividing equation (1.7) by equation (1.8) gives: 

𝑃2 =  
ℎ. 𝑐5 

𝐺
 (𝑁2. 𝑚2) =  

ℎ. 𝑐5 

𝐺
 (𝐽𝑜𝑢𝑙𝑒2) 

Or: 

𝟏 𝑷𝒂𝒄𝒌𝒂𝒈𝒆 =  √𝒉.𝒄𝟓

𝑮
 (𝑱𝒐𝒖𝒍𝒆𝒔)   (1.9) 

   =4.9033x10
9
 J 

Because 1 Joule equals c
-2

 kg: 

𝟏 𝑷𝒂𝒄𝒌𝒂𝒈𝒆 =  √
𝒉.𝒄

𝑮
  (𝒌𝒊𝒍𝒐𝒈𝒓𝒂𝒎𝒎𝒆𝒔)  (1.10) 

   =5.4557x10
-8

 kg 

Based on 𝐸 =  ℎ. 𝜐, equation (1.9) can be converted to 

frequency (in seconds
-1

): 

1 𝑃𝑎𝑐𝑘𝑎𝑔𝑒 =  √
ℎ. 𝑐5

𝐺
 × 

1

ℎ
 (𝑠−1) =  √

𝑐5

ℎ. 𝐺
 (𝑠−1 ) 

or: 

𝟏 𝑷𝒂𝒄𝒌𝒂𝒈𝒆 =  √ 𝒄𝟓

𝒉.𝑮
 (𝑯𝒆𝒓𝒕𝒛)     (1.11) 

=7.4001x10
42

 Hz 

Multiplying equation (1.7) with equation (1.8) gives: 

𝐶2 =
ℎ. 𝐺

𝑐3
 (𝑚𝑒𝑡𝑒𝑟2) 

Or: 

𝟏 𝑪𝒓𝒆𝒏𝒆𝒍 =  √
𝒉.𝑮

𝒄𝟑  (𝒎𝒆𝒕𝒆𝒓)   (1.12) 

   =4.0512x10
-35

m 

And, because one meter corresponds to c
-1

 seconds: 

𝟏 𝑪𝒓𝒆𝒏𝒆𝒍 =  √
𝒉.𝑮

𝒄𝟓  (𝒔𝒆𝒄𝒐𝒏𝒅𝒔)   (1.13) 

   =1.3513x10
-43

s 

Equations (1.9) through (1.13) show resemblance with the 

well-known Planck’s natural UoM, albeit that the above 

equations hold Planck’s constant ‘h’, whereas Planck’s UoM 

hold the reduced Planck constant ‘h/2.’ (symbol ‘ℏ’ ). Had for 

Planck’s equation E = ℎ. 𝜐 the alternate version E = ℏ𝜔 been 

used in the above, this would have led to full consistency with 

Planck’s units of measurement.  

Crenel Physics is frequency based, whereas Planck’s UoM are based 

on angular frequency.  

The above demonstrates how a consolidated system of UoM –

based on Crenel and Package only- nevertheless delivered a set 

of measures for mass, energy, frequency, time and distance, 

based on universal natural constants only. And moreover: these 

are consistent with the historically known Planck UoM. 

With c normalized to dimensionless 1, in Crenel Physics we 

can simplify the found measures: 

𝟏 𝑷 =  √
𝒉𝒄𝒑

𝑮𝒄𝒑
              in 𝑒𝑛𝑒𝑟𝑔𝑦 𝑈𝑜𝑀  (CP1.14) 

𝟏 𝑷 =  √
𝒉𝒄𝒑

𝑮𝒄𝒑
              in 𝑚𝑎𝑠𝑠 𝑈𝑜𝑀    (CP1.15) 

𝟏 𝑷 =  √
𝟏

𝒉𝒄𝒑.𝑮𝒄𝒑
        in 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑈𝑜𝑀   (CP1.16) 

𝟏 𝑪 =  √𝒉𝒄𝒑. 𝑮𝒄𝒑      in 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑈𝑜𝑀   (CP1.17) 

𝟏 𝑪 =  √𝒉𝒄𝒑. 𝑮𝒄𝒑      in 𝑡𝑖𝑚𝑒 𝑈𝑜𝑀   (CP1.18) 

Note that –as indicated- these equations are valid in the Crenel 

Physics system of UoM (or for that matter: in any other system 

of UoM in which light velocity ‘c’ has been normalized to a 

dimensionless 1). 

Equation (CP1.16) universally converts Packages to frequency 

units, thus to Crenel
-1

. Consequently, there is a universal 

relationship between both. To see the implication of this 

equation, we first review the mathematical procedure to 
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convert content (per (CP1.14) or (CP1.15) ) to whereabouts 

(per (CP1.17) or (CP1.18) ). 

That conversion procedure consists of two steps:  

1. INVERT (the conversion factor)…. this gives √
𝐺𝑐𝑝

ℎ𝑐𝑝
 

2. MULTIPLY the result with Planck’s constant ‘hcp’. This 

gives √ℎ𝑐𝑝 . 𝐺𝑐𝑝, which matches (CP1.17) and (CP1.18). 

Applying this procedure to the Package gives: 

 (CP1.19) 

The exact same conversion procedure can be used to re-convert 

whereabouts back to content:  

1. INVERT (the conversion factor)…. this gives √
1

ℎ𝑐𝑝𝐺𝑐𝑝
 

2. MULTIPLY the result with Planck’s constant ‘h’…. this 

gives √
ℎ𝑐𝑝

𝐺𝑐𝑝
, which matches (CP1.14) and (CP1.15). 

Applying this procedure to the Crenel gives: 

(CP1.20) 

Note that the shaded areas in equations (CP1.19) and (CP1.20) 

are copies of equation (CP1.3) in which Planck’s constant was 

defined: 𝒉𝑪𝑷 ≡ 𝟏 𝑪. 𝑷.  

The equality between conversion and re-conversion procedure 

is remarkable because the failsafe mathematical approach to re-

convert to the original is to undo each conversion step in 

reverse order. But in this case the above given conversion 

procedure works both ways. Thus, applying the conversion 

procedure twice results in the original result. This is regardless 

whether one starts with the Package or with the Crenel. 

Applying the conversion procedure twice therefore has the 

same impact as multiplication by a dimensionless 1. Because 

the procedure is universal, this reflects symmetry in nature at 

the very base level. 

Also, we now have a deepest view on the conservation 

principle. This becomes obvious if we write equation (3.1) in 

reverse order:  

𝑪. 𝑷 ≡ 𝒉𝑪𝑷     (CP1.21) 

The above equation shows how an increase of content can be 

compensated by a decrease of whereabouts.  

This exchangeability will be further addressed later. 

=  C 
Step 1 Step 2

=  P 
Step 1 Step 2
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 Boltzmann. 2.

Boltzmann’s equation… 

𝑆 =  𝑘𝐵. 𝑙𝑛 (𝑤)               (2.1) 

…specifies the entropy ‘S’ of a body.  

‘w’ equals the number of statuses in which an object can reside. 

‘kB’ is Boltzmann’s universal natural constant.  

As the number of potential statuses w of a body rises, its 

entropy value will be higher, and the body appears more 

complex in its structure. Therefore, entropy and complexity are 

terms that go hand in hand. 

In equation (2.1) the term ln(w) is dimensionless. Therefore 

entropy S and Boltzmann’s constant kB have the same UoM. In 

Metric Physics kB can be expressed in various UoM, varying 

from macroscopic (such as J/K and Hz/K) to microscopic (such 

as bit and nat). The here relevant UoM for kB are: 

kB(J/K)=1.3806488 x 10
-23 

J/K 

kB(Hz/K)=2.0836618 x 10
10 

Hz/K 

kB(bit)=1.442695             bit 

kB(nat)=1         nat(
*
)     

(*): The nat is typically not shown as UoM because it is equal to 

dimensionless 1 (= unity). We will however continue to use the term 

nat to indicate that we refer to this particular version of kB. 

Nat and bit are mathematical, just like π. Therefore 

Boltzmann’s constant kB is not only universal: its numerical 

value is also shared between Metric Physics, Crenel Physics 

and any other system of UoM. This makes Boltzmann’s 

constant unique in the arena of universal natural constants. 

The number of statuses w is a discrete number. The concept of 

angular frequency is not consistent with this approach because 

the latter is associated with a (sinus shaped) wave. A wave 

shape isn’t consistent with the above Boltzmann’s equation, 

whereas its discrete frequency is: the frequency value tells us 

how often is flip-flopped between two discrete statuses, even 

though we don’t know (or better: don’t need to know because 

it’s irrelevant here) what these two statuses exactly stand for. 

Likewise, when we suggest that e.g. a photon can be represented by 

a sinus shaped wave, we don’t know what is waving…  

It is our objective to embed Boltzmann’s theory into the Crenel 

Physics model. Because Boltzmann’s universal natural constant 

is based on discrete statuses, we have a decisive argument for 

basing Crenel Physics on frequency, rather than on angular 

frequency. 

To avoid confusion between the four listed versions of kB, from 

here onwards any of these will be identified including their 

UoM. Thus we have kB(J/K), kB(Hz/K), kB(bit) and kB(Nat). 

In all cases the same underlying physical fact is addressed. 

Therefore: 1≡ kB(nat) ≡ kB(bit) ≡ kB(Hz/K) ≡ kB(J/K). With kB being 

dimensionless, the UoM Hz/K and J/K in which kB can be 

expressed also must be dimensionless. Furthermore, there must 

be unambiguous universal relationships between the listed 

numerical values of all versions of kB, or more specifically: 

between their respective UoM. Let’s explore these 

relationships. 

We start with the version of Boltzmann’s constant whereby 

kB(nat)=1. If we take a bit, recognizing that by its definition a bit 

can be in two different statuses, a series of n bit differentiates 

between 2
n
 different statuses. Equation (2.1) then becomes 

S(nat)=kB(nat).ln(2
n
)=kB(nat).n.ln(2). Taking into account that 

kB(nat)=1 we can simplify this to: S(nat)=n.ln(2).  The term ln(2) 

in this equation is in recognition of w being equal to 2 when it 

comes to bit.  

If we express kB in bit, the factor ln(2) is embedded in the value 

of kB(bit). The above equation S(nat)=kB(nat).n.ln(2) then simplifies 

to 𝑆(𝑏𝑖𝑡) = 𝑘𝐵(𝑏𝑖𝑡). 𝑛. This explains why kB(nat)  can be converted 

to kB(bit) by applying the conversion factor 1/ln(2). This 

conversion factor indeed equals the above listed value:  

kB(bit) = 1.442695041… bit, with as much accuracy as your 

calculator (or mathematical calculation algorithm) provides.  

To explore the relationship between these two microscopic 

measures for entropy (nat and bit) at the one side, and their 

macroscopic counterparts (J/K and Hz/K) at the other, we first 

introduce a UoM for temperature. In general one UoM for 

temperature is defined as follows: 

1 𝑈𝑜𝑀 𝑓𝑜𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 =  
𝑈𝑜𝑀 𝑓𝑜𝑟 𝐸𝑛𝑒𝑟𝑔𝑦

𝑘𝐵 
      (2.2) 

To ensure dimensional integrity in the above equation, for kB 

the energy version of Boltzmann’s constant must be used, thus 

in Metric Physics kB(J/K). In Metric Physics Energy is expressed 

in Joules, and equation (2.2) then results in the Kelvin (symbol 

K) as UoM for temperature. Equation (2.2) is nothing but a 

circular reference between the UoM for energy, temperature 

and Boltzmann’s constant kB. In general: for any dimension of 

content there is an associated and unique version of 
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Boltzmann’s constant. Thereby all versions will (or better: 

must) lead to one and the same measure for temperature. 

For example we found frequency to be a measure for content. 

Therefore, we can alternatively define the UoM for temperature 

as: 

1 𝑈𝑜𝑀 𝑓𝑜𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 =  
𝑈𝑜𝑀 𝑓𝑜𝑟 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑘𝐵 
 (2.2a) 

In such case, to ensure dimensional integrity, in Metric Physics 

the Hz/K version kB(Hz/K) is to be used.  

Both scenarios must –as said- lead to the same measure for 

temperature (the Kelvin). This demands a universal relationship 

between the UoM for energy (J) and the UoM for frequency 

(Hz). That relationship is given by Planck’s equation E=h.υ . 

This explains why the conversion factor between kB(J/K) and 

kB(Hz/K) is given by Planck’s constant ‘h’, and is consistent with 

h being expressed in J/Hz or J.s. 

The other way around is also valid: to any version of 

Boltzmann’s constant we can associate a measure for content, 

which then all must lead to the same measure for temperature. 

We do not know how many versions of Boltzmann’s constant 

could be provided by nature, but –given the above- it certainly 

would help if we knew them all. 

For completeness we add the Metric Physics based equations 

for temperature based on the above listed bit and nat versions 

of kB, thereby ensuring dimensional integrity. 

For kB= 1 bit: 

1 𝐾 =  
𝑏𝑖𝑡∗𝐾

𝑘𝐵(𝑏𝑖𝑡) 
     (2.2b) 

And for kB= 1 nat: 

1 𝐾 =  
𝑛𝑎𝑡∗𝐾

𝑘𝐵(𝑛𝑎𝑡)
     (2.2c) 

The added value of equations (2.2b) and (2.2c) is that the terms 

‘bit*K’ and the ‘nat*K’ within these equations are additional 

UoM for content. We will address these two measures later in 

more detail. 

In Crenel Physics the Package is the UoM for energy. 

Therefore equation (2.2) translates to: 

10 𝑇𝐶𝑃 =  
𝑃𝑎𝑐𝑘𝑎𝑔𝑒

𝑘𝐵 
                        (CP2.3) 

By substituting equation (1.9) –the conversion from Package 

towards the Metric Physics ‘Energy’ UoM - into above 

equation and by using the Metric Physics J/K version kB(J/K), we 

find the conversion factor from the UoM of TCP towards 

Kelvin: 

𝟏𝟎𝐓𝑪𝑷 =  √
𝒉.𝒄𝟓

𝑮.(𝒌
𝑩(𝑱

𝑲⁄ )
)𝟐  Kelvin     (2.4) 

=3.5515x10
32

 K 

This conversion factor is similar to the ‘Planck temperature’, 

albeit that –again, and for explained reason- equation (2.4) 

holds Planck’s constant h instead of the ‘reduced’ version of 

this constant ℏ. 

To convert kB(nat) towards kB(Hz/K) one divides: 

 the Crenel Physics conversion factor from Package 

towards Hz  

(per equation (1.11) equal to 7.4001x10
42

 Hz)  

by:  

 the conversion factor from T towards Kelvin  

(per equation (2.4) equal to 3.5515x10
32

 K).  

The result indeed equals the listed macroscopic value for 

kB(Hz/K):  

1(𝑛𝑎𝑡) ≡
√ 𝑐5

ℎ. 𝐺

√
ℎ. 𝑐5

𝐺. (𝑘
𝐵(𝐽

𝐾⁄ )
)2

 

=
7.4001x1042 𝐻𝑧

3.5515x1032 𝐾
= 2.08366 × 1010 = 𝑘𝐵(𝐻𝑧 𝐾⁄ ) 

(2.5) 

The J/K version kB(J/K) can be found likewise, or in a shortcut 

alternatively by multiplying the above Hz/K value by ‘h’, based 

on Planck’s equation: E=h.υ. 

The above indeed shows the anticipated universal relationships 

between afore listed microscopic entropy UoM and 

macroscopic entropy UoM. ‘Universal’ because the 

relationships are based on universal natural constants only. 

Based on these four UoM-options for kB and thereby for 

entropy S, in Metric Physics we have an equal number of 

Boltzmann based routes towards content:  

𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝐽)               =  𝑇(𝐾)  × 𝑆 (
𝐽

𝐾⁄ )            (2.6a) 

𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝐻𝑧)           =  𝑇(𝐾) × 𝑆(𝐻𝑧
𝐾⁄ )  (2.6b) 
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𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝑏𝑖𝑡. 𝐾)      =  𝑇(𝐾)  × 𝑆(𝑏𝑖𝑡)  (2.6c) 

𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝑛𝑎𝑡. 𝐾)     =  𝑇(𝐾)  × 𝑆(𝑛𝑎𝑡)  (2.6d) 

Thereby, the value of temperature T(K) is not to be confused 

with the macroscopic temperature of an ensemble of 

elementary particles. In above equations the temperature of an 

elementary particle such as e.g. a photon is at hand. A photon 

does not equalize its temperature when it is crossing a gas filled 

room: temperature is an embedded property of a photon.  

The temperature T(K) in equations (2.6a,b,c,d) can be 

universally converted to Hz by reviewing the earlier found 

respective universal UoM for temperature, per equation (2.4): 

10 𝑇 =  √
ℎ.𝑐5

𝐺.(𝑘
𝐵(𝐽

𝐾⁄ )
)2  (𝐾𝑒𝑙𝑣𝑖𝑛)   (2.7) 

… and the found universal UoM from Package to Hz, per 

equation (1.11): 

1 𝑃𝑎𝑐𝑘𝑎𝑔𝑒 =  √
𝑐5

ℎ.𝐺
 (𝐻𝑒𝑟𝑡𝑧)   (2.8) 

Equations (2.7) and (2.8) show that if one multiplies the UoM 

for temperature with a universal constant equal to…  
𝑘

𝐵(𝐽
𝐾⁄ )

ℎ
      (2.9) 

… the outcome is Hz.  

Using this conversion factor we can universally assign a 

temperature to an object based on its frequency: 

𝑘
𝐵(𝐽

𝐾⁄ )

ℎ
× 𝑇 = 𝜐 or 𝑇 =

ℎ

𝑘
𝐵(𝐽

𝐾⁄ )

× 𝜐  (2.10) 

Equation (2.10) gives us a method to determine an objects 

absolute (embedded) temperature T(K) by measuring its 

frequency. This T(K) can then be used in equations (2.6a,b,c,d). 

That’s relevant, because we cannot measure such embedded 

temperature by using some ‘thermometer’. 

Using the conversion factor given by equation (2.9) we can 

‘reverse engineer’ equation (2.6d) from its UoM in nat.K 

towards nat.Hz: 

𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝑛𝑎𝑡. 𝐻𝑧) =
𝑘

𝐵(𝐽
𝐾⁄ )

ℎ
×  𝑇(𝐾)  × 𝑆(𝑛𝑎𝑡) (2.11) 

Because the nat is equal to unity (= dimensionless 1), equation 

(2.11) can be written as: 

𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝐻𝑧) =
𝑘

𝐵(𝐽
𝐾⁄ )

ℎ
×  𝑇(𝐾)  × 𝑆(𝑛𝑎𝑡)  (2.12) 

If we apply equation (2.12) we can substitute for T(K) the value 

of T given by equation (2.10) and we thus find: 

𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝐻𝑧) = 𝜐 × 𝑆(𝑛𝑎𝑡)   (2.13) 

Content(Hz) can –in turn- be converted to Content(J) by 

multiplying it with Planck’s constant. Thus equation (2.14) 

converts to: 

𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝐽) = ℎ × 𝜐 × 𝑆(𝑛𝑎𝑡)   (2.14) 

When we compare equation (2.14) to Planck’s equation 

𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝐽) ≡ 𝐸 = ℎ × 𝜐 which is applicable to e.g. photons, 

we conclude that the entropy S of a photon (or of any other 

entity that is covered by Planck’s equation) must equal 1nat:  

𝑆𝑃ℎ𝑜𝑡𝑜𝑛  = 1 (𝑛𝑎𝑡)    (2.15) 

As will be discussed later, this is an important finding, 

consistent with a photon’s properties.  

Equation (2.14) is a generalization of Planck’s equation, 

applicable to objects of higher entropy values. 
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 Observability: the entropy 3.

atom. 

Physics is verified by the observable. For observing an object 

the minimum requirements are that…  

1. …at least some minimum amount of information 

originating from the object… 

2. …is transmitted towards some sensor… 

3. …at which it changes the sensor’s status.  

Without any of these there can be no sensing, and thus be no 

observation. 

This leaves two further options: 

1. The object itself never changes status. 

Should this be the case, at one point in history our 

sensor might have picked up the object’s status signal, 

changed its internal status accordingly (reflecting the 

‘sensing’) and thereafter all further sensing stops. 

There would be no way to reconfirm that the source 

exists. 

2. The object changes status at some interval.  

In order to observe an object repeatedly (that is: over an 

extended period of time) the second option must apply.  

Finally we require that our repeatedly status changing object 

can exist as such in an otherwise empty space. The 

conservation principle demands that any change is 

compensated. A compensation for any status change therefore 

must take place internally, since there is nothing else around. 

To facilitate that, it must have an entropy value of at least two 

bits. Thus, if one bit flips, the other can flop to compensate. We 

will name such two-bit object an Entropy Atom, for which we 

will use symbol EA.  

An entropy atom (EA) is the simplest repeatedly 

observable object. It has an entropy value of 2 bits. 

Thereby ‘atom’ reflects that anything of lower entropy cannot 

possibly be observed during some extended period of time 

(even though existing).  

A photon does not meet all above requirements: we found that 

its entropy value is only 1 nat. We can however reconcile its 

past existence when it physically shares place and time with 

some sensor (read: physically hits it, thereby changing the 

status of our sensor and thereby disappearing from the 

scenery).  

The above opens the door to other potential objects that might 

exist, but in no way could be observed remotely because their 

entropy is less than 2 bits or because they do not change status. 

‘Black matter’ is a candidate. It might be composed of particles 

with an entropy value of 1 bit. In such hypothetical case we 

could nevertheless reconcile its existence, as we do for 

photons. ‘Black matter’ is something one –so far- never could 

observe, but that reveals its existence in that it induces a 

gravitational force. Such hypothesis would also explain why 

‘gravitational fields’ travel at light velocity: even non-

observable objects cannot travel faster that light.  

Because at microscopic scale we can only observe EA’s and 

nothing of lower entropy value, and because we base our 

physics on the observable only, we must recalibrate our 

microscopic equations for content accordingly: observable 

entities come in EA’s, not in units of 1 nat. 

The need for such recalibration becomes obvious when we 

evaluate Planck’s equation 𝐸 = ℎ. 𝜐. The photon’s entropy 

value was found to equal 1 nat. And the numerical value of  ℎ 

is based on that. 

Being restricted to the observable we must use the enhanced 

version of Planck’s equation (2.14): 

𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝐽) = ℎ × 𝜐 × 𝑆(𝑛𝑎𝑡)   (3.1) 

The EA’s entropy value of 2-bit is equal to: 

2 bit = 2.ln(2) nat = ln(4) nat = ln(4). 

Thus, the content of observable EA’s per Planck’s enhanced 

equation (3.1) equals: 

𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝐽) = ℎ × 𝜐 × ln (4) (for EA’s) (3.2) 

One might falsely argue that the conservation principle 

demands that if within an entropy atom one bit flips the other 

must flop simultaneously to compensate, and that therefore the 

entropy atom can only be in one of two possible statuses 

represented by ‘10’ or ‘01’. However, if both bits are spatially 

separated, time will elapse between one bit flipping, and the 

arrival of that information to arrive at the other bit so that it 

will flop to compensate. During that elapsing time the 

intermediate statuses ‘00’ or ‘11’ of the entropy atom therefore 

will occur and can be observed from a remote position, so that 

indeed the entropy atom can be found in four different statuses.  
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Equations (2.6d) and (2.6e) as repeated below gave alternate 

Boltzmann based routes to find content: 

𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝑏𝑖𝑡. 𝐾)      =  𝑇(𝐾)  × 𝑆(𝑏𝑖𝑡)  (3.3) 

𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝑛𝑎𝑡. 𝐾)     =  𝑇(𝐾)  × 𝑆(𝑛𝑎𝑡)  (3.4) 

Substituting for S(bit) the respective entropy values for an EA 

gives: 

𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝑏𝑖𝑡. 𝐾)      =  𝑇(𝐾)  × 2(𝑏𝑖𝑡)  (3.5) 

𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝑛𝑎𝑡. 𝐾)     =  𝑇(𝐾)  × ln (4)  (3.6) 

Because the nat equals dimensionless 1, we can simplify 

equation (3.6): 

𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝐾)     =  𝑇(𝐾)  × ln (4) (for EA’s) (3.7) 

In this equation we can substitute the UoM for temperature per 

equation (2.7). Thus, the content UoM for observable objects, 

expressed in Packages equals: 

1 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 𝑈𝑜𝑀 =  √
ℎ.𝑐5

𝐺.(𝑘
𝐵(𝐽

𝐾⁄ )
)2  × ln(4)      (3.8) 

Where the earlier found dimensions of the Package were 

energy, mass and frequency (see equations (CP1.14), (CP1.15) 

and (CP1.16)), equation (3.8) delivers an additional Boltzmann 

based content dimension. It can be described as a bit flow rate 

with a bandwidth of 2 bits (the entropy of an EA) at some 

frequency υ, or as an Information Flow for which we will use 

symbol IF. 

The Crenel Physics version of equation (3.8) is: 

1 𝑃 =  √
ℎ𝐶𝑃

𝐺𝐶𝑃
 ×

ln (4)

𝑘
𝐵(

𝑒𝑛𝑒𝑟𝑔𝑦
𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)

         (IF Units)    (CP3.9) 

In this new IF dimension we thus can continue the usage of 

Planck’s constant h as is, rather than correcting it for the higher 

entropy value objects. The factor 
ln (4)

𝑘𝐵
 in equation (CP3.9) does 

correct for Planck’s constant h, which is based on 1 nat objects, 

whereas the observable demands entropy atoms. 

In equation (CP3.9) we kept using the energy/temperature 

version of kB, as indicated. Although in Crenel Physics there 

would be no numerical difference between using the alternates 

mass/temperature or frequency/temperature versions of kB 

(based on the content alternates mass or frequency for energy), 

this would not be so in alternative systems of UoM such as the 

Metric system. To support this broader context we have to 

show the applicable version of kB here. It will be argued later, 

why equation (CP3.9) must hold in any system of UoM. 
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 Conversion factors and G. 4.

We identified 4 different dimensions for content:  

1. Energy  

2. Mass 

3. Frequency for 1 ‘nat’ objects 

4. Information Flow (for observable objects, EA’s) 

Equations (1.9), (1.10) and (1.11) deliver the conversion factors 

relative to the Package of the first three of the above.  

Equation (3.9) delivers the conversion factor for Information 

Flow, based on the observable entropy atom.  

The four factors allow us to find the mutual conversions 

between the four listed dimensions of the Package, applicable 

to the observable world. E.g. to convert from the UoM for Hz 

(equal to √
𝑐5

ℎ.𝐺
 per equation (1.11)) towards the UoM for IF 

(equal to 

 √
ℎ.𝑐5

𝐺.(𝑘
𝐵(𝐽

𝐾⁄ )
)2  × ln(4) per equation (3.8)) one must multiply 

with: 
ln(4).ℎ

𝑘
𝐵(𝐽

𝐾⁄ )

. The following figure shows all: 

 

Figure 4.1: overview of conversion factors between various 

content dimensions, based on entropy atoms. 

Gravitational constant G does not appear in figure (4.1). Yet G 

does impact the length of the yardsticks in any of the four listed 

content dimensions: see equations (1.9), (1.10), (1.11) and 

(3.8). In all four of these, G appears as a factor: √1
𝐺⁄ .  

In the two whereabouts yardsticks (time and distance) the 

reciprocal thereof appears: √𝐺, see equations (1.12) and (1.13).  

Thus, gravitational constant G plays no role in any mutual 

conversion factor in neither the content arena, nor in the 

whereabouts arena. Therefore, the found factor √1
𝐺⁄  in all 

content yardsticks in combination with the found reciprocal 

thereof (√𝐺) in all whereabouts yardsticks is consistent with 

the earlier finding that Crenel and Package are reciprocal to 

each other: 

𝑃. 𝐶 ≡ ℎ𝐶𝑃     (4.1) 

Such reciprocal relationship between content and whereabouts 

must be valid, otherwise the above listed consistent 

dependencies on G within all these yardsticks cannot hold. 

Note that equation (4.1) is a re-write of equation (CP1.3), in 

which Planck’s constant was defined per Crenel Physics. 

This finding has consequences for our observations. Let’s 

therefore –for a moment- presume that the gravitational 

constant isn’t really a constant, but that it –for some reason- 

may differ in its value.  

To evaluate the anticipated impact we review gravitational 

orbiting. 

The gravitational force Fg is: 

 𝐹𝑔 = 𝐺.
𝑀1.𝑀2

𝑑2      (4.2) 

The yardsticks for M1, M2 and d all depend on G, as described. 

Substituting these dependencies, the gravitational force Fg is 

found proportional to: 

𝐺.
√1

𝐺⁄ ×√1
𝐺⁄

(√𝐺)
2 =  

1

𝐺
     (4.3) 

The centripetal force equals… 

𝐹𝑐 =
𝑚.𝑣2

𝑟
     (4.4) 

…and is proportional to: 

√1
𝐺⁄ ×(

√𝐺

√𝐺
)

2

√𝐺
=  

1

𝐺
      (4.5) 

J kg Hz IF

J

J -> J J -> kg J -> Hz J -> BR

kg

kg -> J kg -> kg kg -> Hz kg -> BR

Hz

Hz -> J Hz -> kg Hz -> Hz Hz -> BR

IF

BR -> J BR -> kg BR -> Hz IT -> BR

𝟏

𝟏

𝒄𝟐

𝒉

𝟏

𝟏
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Because gravitational force and centripetal force are both found 

proportional to 1 𝐺⁄ , a hypothetical variation of G would have 

no impact on the stability of gravitational orbits. 

We can also evaluate how the observed orbiting angular 

frequency ω depends on G. For that we enhance equation (4.4): 

𝐹𝑐 =
𝑚.𝑣2

𝑟
 = 𝑚. 𝜔2. 𝑟    (4.6) 

The term 
𝑚.𝑣2

𝑟
 in the above is proportional to 

1

𝐺
 (see equation 

(4.5). The term 𝑚. 𝜔2. 𝑟 is proportional to: 

√1
𝐺⁄  . 𝜔2. √𝐺  ≡  𝜔2    (4.7) 

Thus, 𝜔2 is found proportional to 
1

𝐺
 and thereby ω is found 

proportional to: √1
𝐺⁄ . This is of equal dependency as the 

whereabouts dimensions. Should the value of G increase, from 

an ‘objective’ viewpoint the orbiting angular frequency ω 

would therefore be found to decrease proportional to the factor 

√1
𝐺⁄  , but the length of a time UoM would decrease by exactly 

the same factor. For this reason, on our local clock the number 

of time UoM to complete one orbit would not change. 

In conclusion: where we observe stable gravitational orbits, this 

–as such- is no proof that the gravitational constant G indeed is 

a constant. 

Based on the reciprocal relationship between whereabouts and 

content per equation (4.1), content is the consequence of a 

compression of whereabouts. They are like interconnected 

tanks. To compensate for the whereabouts compression 

associated with content, we can envision some sort of ‘under-

pressure’ region in the whereabouts structure. It curves the 

local whereabouts gridlines, in some way compatible to 

‘isobaric lines’ as seen on a weather map around a depression, 

which lines are directing winds (apart from major disturbances 

caused by the rotation of the earth). The content then resides at 

the exact centre of that depression. Thereby, a whereabouts 

‘under pressure’ region not only equally impact all spatial 

dimensions within the whereabouts arena, but also and likewise 

the time dimension.  

Because of the interconnection between P and C per equation 

(4.1) we lost the need for the Gravitational constant as a natural 

constant: gravity is a consequence of space conversion into 

content, rather than a cause of content. In the next chapter we 

will quantify this consequence. 

 Various options for G. 5.

 

A. forEntropy atoms: 

In chapter 3 we found for observable objects (Entropy Atoms) 

the Package yardstick to equal (see equation (CP3.9)): 

1 𝑃 =  √
ℎ𝑐𝑝

𝐺𝑐𝑝
 ×

ln (4)

𝑘𝐵(
𝐽

𝐾⁄ )
 (IF UoM for EA’s) (CP5.1) 

Earlier we found both the energy and mass yardsticks per 

equations (CP1.14) and (CP.1.15) equal to:  

1 𝑃 =  √
ℎ𝑐𝑝

𝐺𝑐𝑝
  (In energy or mass UoM)  (CP5.2) 

We must demand all content yardsticks in any content 

dimension (mass, energy, and IF (for EA’s) alike) to be of equal 

length. If not, this would violate the conservation principle: a 

conversion between dimensions would then lead to a different 

content value when expressed in Packages.  

Equations (CP5.1) and (CP5.2) not being equal therefore –at 

first sight- might seem in conflict. However, this is not so if a 

universal relationship between the embedded natural constants 

hCP, GCP and kB exists. This relationship can be found by 

multiplying two content yardsticks. Because each yardstick 

must equal 1 P(ackage), a multiplication of two content 

yardsticks must equal 1 P(ackage)
2
.  

First we verify that the yardstick for energy and mass per 

equation (CP5.2) indeed equals 1 Package. This is confirmed 

by substituting the respective values for these constants: 

hCP=P.C  (per equation (CP1.3)) and GCP=C/P (per equation 

(CP1.2)): 

1 𝑃 =  √
ℎ𝑐𝑝

𝐺𝑐𝑝
=  √

𝐶.𝑃
𝐶

𝑃⁄
=  √𝑃2 = 𝑃   (CP5.3) 

Thus, multiplying the yardstick for energy with the yardstick 

for mass indeed results in 1 P(ackage)
2
. 

We now demand that the yardstick for IF of entropy atoms per 

equation (CP5.1) also equals 1 P(ackage). For that, we –

consistently- demand that when we multiply (CP2.5) with the 

yardstick for either energy or mass alike (see equation (CP5.2)) 

the outcome also equals 1 P(ackage)
2
: 
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{√
ℎ𝑐𝑝

𝐺𝑐𝑝
 ×

ln (4)

𝑘𝐵(
𝐽

𝐾⁄ )
}  × {√

ℎ𝑐𝑝

𝐺𝑐𝑝
}  ≡ 1 (𝑃𝑎𝑐𝑘𝑎𝑔𝑒2)  (CP5.4) 

This equality can be rewritten as: 

𝐺𝐶𝑃 =
ℎ𝐶𝑃

𝑘𝐵(𝐽
𝐾⁄ )

 × 𝑙𝑛 (4) (for Entropy Atoms) (CP5.5) 

For verification we substitute this value for GCP into equations 

(CP5.1): 

 √
ℎ𝑐𝑝

𝐺𝑐𝑝
 ×

ln (4)

𝑘𝐵(
𝐽

𝐾⁄ )
=  

√
ℎ𝑐𝑝

ℎ𝐶𝑃
𝑘

𝐵(𝐽
𝐾⁄ )

 ×𝑙𝑛 (4)
 ×

ln (4)

𝑘𝐵
= √

ln (4)

𝑘𝐵(
𝐽

𝐾⁄ )
 𝑃 

      (CP5.6) 

and (CP5.2): 

√
ℎ𝑐𝑝

𝐺𝑐𝑝
=  

√
ℎ𝑐𝑝

ℎ𝐶𝑃
𝑘

𝐵(𝐽
𝐾⁄ )

 ×𝑙𝑛 (4)
= √

𝑘
𝐵(𝐽

𝐾⁄ )

ln (4)
 𝑃  (CP5.7) 

The product of (CP5.6) and (CP5.7) indeed equals 1 P
2
. 

The terms ln(4) in the above equation (CP5.5) represents the 

entropy of the objects at hand (here entropy atoms), expressed 

in nat. 

We can therefore adapt equation (CP5.5) to objects with other 

entropy values.  

 

B. for 1 nat objects: 

For 1 nat objects such as photons we find: 

𝐺𝐶𝑃 =
ℎ𝐶𝑃

𝑘𝐵
 × 𝑙 𝑛(1) = 0 (for 1 nat objects)  (CP5.8) 

Consequently, 1 nat objects such as photons are not subject to 

gravity: the applicable gravitational constant equals 0. Note 

thereby that gravitational lensing -as observed in space- 

therefore is not to be associated with a sideways acceleration of 

photons due to some gravitational force. Instead, space is 

curved, and photons sharply follow these curves. 

We can further explore this by imagining an experiment in 

which we vertically shoot up a photon from the earth surface 

into space. It would be incorrect to assume that while climbing 

up, the photon loses energy because it has to climb and 

ultimately escape from the earth’s gravitational pull. Such false 

assumption would be based on the incorrect presumption that 

the earth’s gravity physically pulls at the photon. This 

envisioning is incorrect because –as we saw- photons are not 

impacted by gravitational force because their entropy is 1 nat. 

So what is really happening, and how can we explain it using 

our Crenel Physics findings?  

The explanation starts with considering the earth as content, 

thus as a ‘compression’ of whereabouts. Consequently, 

imaginary spatial gridlines around it show a compensating 

‘depression’ relative to outer space: the gridlines near earth are 

further apart from each other, relative to gridlines in deep 

space. To verify this, let’s make a yardstick in deep space, with 

an exact length of 1 meter. We confirm this length by 

measuring the time that it takes a photon to travel along it: 

1/299792458 seconds (that’s the exact definition of a meter). 

For that elapsed time measurement, we use two equal clocks. 

We now ship the yardstick and one of these clocks to the earth 

surface. Here, we will still find that our local clock measures 

1/299792458 seconds for light to travel along the full 

yardstick’s length, and that therefore our yardstick still has an 

exact length of one meter. Such consistent local observation is 

regardless where we would go, or how fast we would move. 

After arrival on the earth surface we compare both clocks. We 

will find that the clock on earth runs slower relative to the 

clock that remained in deep space. Such time dilatation has 

been experimentally confirmed many times, whereby even 

height differences of less than one meter were enough to 

measure it.  

Because on the slower earthly clock it still took 1/299792458 

seconds to travel the length of our yardstick, our faster deep 

space clock will indicate (fractionally) more time between the 

start of the travel and the ending of it. Because light velocity is 

equal to all, the only conclusion is that from the remote 

perspective the yardstick on earth appears (slightly) stretched 

out. To ensure constant light velocity for all, the percentage of 

distance stretching thereby must exactly match the percentage 

of time dilatation. That spatial stretching equally applies to the 

spatial gridlines, which –from a remote perspective- seem 

further apart near earth. It is what we referred to as a spatial 

‘depression’ around earth. 

So let’s now return to the photon that we vertically shot up 

from the earth surface. Crenel Physics says that gravitational 

force doesn’t do a thing to it: its inherent properties remain as 

they are. Then what does happen? With the slower clock at the 

earth surface we measure the initial frequency of the photon. 

Upon arrival in deep space, we measure that frequency again. 

Thereby we will find a lower number, a drop in frequency. The 

reason thereof is however not that the photon itself was 

impacted and changed properties. The found frequency drop is 

entirely the outcome of our clock now running faster than it did 
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before, while the photon remained as it was. Therefore, no 

gravitational force pulled at the photon, as it would pull e.g. a 

mass of 1 kg. 

 

 C. for 1 bit objects: 

Between 1 bit objects (hypothetically existing, but not 

observable as individual objects) the gravitational constant 

equals: 

𝐺𝐶𝑃 =
ℎ𝐶𝑃

𝑘𝐵
 × 𝑙 𝑛(2) (for 1 bit objects)  (CP5.9) 

Because ln(2)/ln(4) = 0.5, the value of the gravitational 

constant between 1 bit objects is exactly 50% of the 

gravitational constant as found between EA’s per equation 

(CP5.5). 

 

D. for 3-bit objects: 

In recognition that a 3-bit object can reside in 8 different states: 

𝐺𝐶𝑃 =
ℎ𝐶𝑃

𝑘𝐵
 × 𝑙 𝑛(8) (for 3-bit objects)  (CP5.10) 

Because ln(8)/ln(4)=1.5, the value of the gravitational constant 

between 3-bit objects is exactly 150% of the gravitational 

constant as found between EA’s. 

 

E. for Higher entropy objects: 

Between hypothetical 4-bit objects the gravitational constant is 

exactly twice the value as found between 2-bit EA’s, because 

ln(16)/ln(4)=2. Thus, we see the value of the ‘gravitational 

constant’ grow proportionally to the entropy of the objects at 

hand. The entropy value embeds -what we would use to see as 

a gravitational force caused by the gravitational constant- 

instead as a property of content, and the gravitational equation 

then can be written as: 

𝐹𝑔  =
𝐶𝑜𝑛𝑡𝑒𝑛𝑡(1)×𝐶𝑜𝑛𝑡𝑒𝑛𝑡(2)

𝑑2     (CP5.11) 

This demonstrates gravity to be an embedded consequence of 

content. Rather than being induced by mass along the mass 

dimension, it is induced by the product of temperature and 

entropy. Thereby, temperature is the embedded property of the 

elementary entropy atoms that the object is composed of, which 

is not to be confused with the macroscopic temperature of an 

ensemble thereof. The latter must likewise contribute to the 

gravitational force between objects. The content of an object 

consisting of an ensemble of n entropy atoms equals: 

𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = ∑ [𝑇𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 × ln (4)] + 𝑇𝑚𝑎𝑐𝑟𝑜𝑠𝑐𝑜𝑝𝑖𝑐 . 𝑆𝑜𝑏𝑗𝑒𝑐𝑡
𝑛
1    

      (CP5.12) 

Thereby Sobject must be expressed in nat, consistent with 

equation (2.6d). 
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 Consequences of normalizing c. 6.

The relationship between universal natural constants per 

equation (CP5.5)… 

𝐺𝐶𝑃 =
ℎ𝐶𝑃

𝑘𝐵(
𝐽

𝐾⁄ )
 × 𝑙𝑛 (4) (for Entropy Atoms) (CP6.1) 

… is of fundamental conceptual importance. It is however 

based on the Crenel Physics model of UoM. The question to 

address here is, whether this relationship holds in any other 

system of UoM, such as Metric Physics. 

In the Crenel Physics model light velocity c was normalized to 

a dimensionless 1. Consequently the differences between c, c
2
, 

c
3
 and c

5
 all vanish since any power of c equals 1 if 𝑐 ≡ 1. 

These higher powers of c appear in Einstein’s equation 

𝐸 = 𝑚. 𝑐2 as well as in the Metric Physics versions of the 

Planck units (see chapter 1). This normalization blurs physical 

realities in the Crenel Physics model. E.g. per Einstein’s 

equation the difference between mass and energy vanishes 

because c
2
=1 and thus E=m. Likewise did this blur the 

difference between time and distance. It is for this reason that 

the Crenel Physics model alone would not be likely to reveal 

such separate physical properties. However, in recognition that 

these properties do exist, these were embedded into the model 

as dimensions of Package and Crenel. Moreover: this led to 

yardsticks that are equivalents of the well-known Planck 

universal units of measurement.  

If one evaluates the discussed natural constants within the 

Metric system, there is a reason to raise eyebrows. Their 

numerical values –at their roots- are based on rather arbitrary 

defined units of measurement. E.g. the meter once was defined 

as one ten-millionth of the length of the meridian through Paris 

from pole to the equator (source: Wikipedia). Later, in 1983, 

the meter was defined as: the length of the path travelled by 

light in vacuum during a time interval of 1/299792458 of a 

second. In doing so, c was thereby fixed to 299792458 m/s. It 

would be hard to communicate this procedure to Martians (so 

to speak). Much easier would it be, to communicate for 

distance the Planck length: √
ℏ.𝐺

𝑐3   (or the alternative Crenel 

Physics version thereof: √
ℎ.𝐺

𝑐3   ). Once these Martians have 

figured out the values of their natural constants in whatever 

system of UoM they might have developed, they surely would 

come up with exactly the same length. As the Crenel Physics 

model did. 

Within the Metric system, if one defines some standard 

procedure to define e.g. the meter as described, the numerical 

value of any universal natural constant that depends on the 

meter will depend on that definition. For example: the 

numerical value of light velocity c is in m/s, and would change 

proportional to the meter
-1

. At bottom line, within the Metric 

system the numerical values of all natural constants depend on 

the definitions of UoM for a variety of different dimensions, 

and -as a glued group- are ‘floating around’.  

As said, normalizing c to a dimensionless 1 (as we did in 

Crenel Physics) indeed blurs e.g. the difference between time 

(s) and distance (m). Here, e.g. Planck’s constant h in m
2
.kg/s 

can then be equally expressed in m.kg or s.kg or s.J  etcetera 

(all these UoM would be equal because time=distance and 

energy=mass). But nevertheless, the respective universal 

natural constants c and h would still be measured in different 

UoM. The followed procedure to normalize one natural 

constant only (and no more than one), guarantees that any 

universal natural constant is still expressed in its own and 

unique UoM. Therefore, this restricted procedure cannot hide 

any universal natural constant. The fact that we could eliminate 

G therefore cannot be a consequence of the Crenel Physics 

normalization. 

We conclude that the found fundamental relationship between 

natural constants per equation (CP6.1) must hold in any system 

of UoM that holds these constants. And that includes Metric 

physics.  
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 Streamlined UoM. 7.

This chapter recaptures our approach so far, thereby illustrating 

the consistency within the Crenel Physics model, which 

embeds –apart from a consistent factor √1
2. 𝜋⁄  - Planck’s UoM.  

Based on Einstein’s 𝐸 = 𝑚. 𝑐2 we defined the Package as the 

shared UoM for the content dimensions energy and mass. The 

yardsticks thereof were expressed in universal natural 

constants, and showed resemblance with ‘Planck mass’ and 

‘Planck energy’, see equations (1.9) and (1.10) respectively 

whereby the equations hold Planck’s constant ‘h’, whereas 

Planck’s UoM hold the reduced Planck constant ‘h/2.’ 

(symbol ‘ℏ’). 

Based on Planck’s 𝐸 = ℎ. 𝜐  we defined frequency as a third 

dimension of content. The yardstick thereof showed a likewise 

resemblance with the ‘Planck frequency’, see equation (1.11). 

After introducing Boltzmann’s equation 𝑆 =  𝑘𝐵 . 𝑙𝑛 (𝑤) we 

introduced a temperature scale similar to the ‘Planck 

temperature’, see equation (2.4). This scale is relevant because 

content was found to be the result of multiplying an objects 

embedded temperature with its entropy, see equations (2.6 a/d). 

Entropy is dimensionless: it can be expressed in nat (= 

dimensionless 1). Therefore, any alternative option to express 

entropy (we addressed bit, Hz/K and J/K) also is dimensionless. 

This is due to the circular reference between the various 

options for Boltzmann’s constant kB and the definition of the 

UoM for temperature. 

We found that Planck’s equation 𝐸 = ℎ. 𝜐 is only valid for 

objects with an entropy value of 1 nat, such as photons. And 

that such low entropy objects cannot be observed while 

existing. For that, the minimum requirement is an entropy 

value of 2 bits, which defined the entropy atom. We enhanced 

Planck’s equation to: 𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝐽) = ℎ × 𝜐 × 𝑆(𝑛𝑎𝑡), see 

equation ((2.14), whereby S(nat)=1 for photons. 

All above mentioned content dimensions are universally related 

to each other via their respective UoM because these are based 

on universal natural constants only.  

To verify the relationships between the various UoM, let’s 

explore the various dimensions in which we can express the 

content of an electron. Thereby we will temporarily ignore our 

requirement that its entropy should be at least 2 bits (because 

an electron is an observable object). Thus we will –falsely- 

presume that Planck’s original equation 𝐸 = ℎ. 𝜐 applies. 

In Wikipedia we can find the mass of an electron to equal 

9.1094x10
-31

 kg. Because one mass UoM in Crenel Physics 

equals 5.4557x10
-8

 kg (see equation (1.10)), an electron 

therefore contains… 

9.1094x10 −31𝑘𝑔 

5.4557x10−8 𝑘𝑔
= 1.6697x10−23  …Packages along the mass 

dimension. 

Per Einstein’s equation 𝐸 = 𝑚. 𝑐2 we find the electron to 

contain 8.1871x10
-14 

J of energy. Because one energy UoM in 

Crenel Physics equals 4.9033x10
9
 J (see equation (1.9)), an 

electron therefore contains 1.6697x10
-23

 Packages along the 

energy dimension (= 
8.1871x14−14 𝐽 

1.6697x10−23𝐽
). That numerical value is equal 

to the 1.6697x10
-23

 Packages as found along the mass 

dimension. The equality comes forth from the aforementioned 

Einstein equation, applied between Planck mass and Planck 

energy. 

Per Planck’s equation 𝐸 = ℎ. 𝜐 the electron’s content can be 

represented by a frequency of 1.2356x10
20 

Hz. One frequency 

UoM in Crenel Physics equals 7.4001x10
42

 Hz (see equation 

(1.11)). An electron therefore again contains that same 

numerical value of 
1.2356x1020 𝐻𝑧

7.4001x1042 𝐻𝑧
=1.6697x10

-23
 Packages, this 

time along the frequency dimension. Again this is a logical 

outcome of the definitions of our UoM.  

Perhaps less obvious is the embedding of our temperature 

UoM. Per equation (2.10): 𝑇 =
ℎ

𝑘
𝐵(𝐽

𝐾⁄ )

× 𝜐 we can convert an 

electron’s frequency into temperature. This gives a value of 

5.9299x10
9
 K. Because one temperature UoM in Crenel 

Physics equals 3.5515x10
32

 K (see equation (2.4), an electron 

therefore contains 1.6697x10
-23

 Packages along the 

temperature dimension. And again this numerical value is equal 

to the value found for in the other content dimensions. 

In conclusion: we can express the content of an electron along 

the mass, energy, frequency or temperature dimension alike: in 

all cases the numerical value equals 1.6697x10
-23

 Packages. 

If instead of the lookalike Planck UoM as found in Crenel Physics, 

we use the actual Planck’s UoM, along all of these 4 content 

dimensions we would also and likewise have found an equal 

numerical value along each of the aforementioned dimensions. In 

such case this numerical value would have been 4.1853x10-23 , the 

difference is a factor √1
2𝜋⁄ . 
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The relationship between the various Package UoM therefore is 

obvious now: if we express content in Packages, for 1 nat 

objects it is irrelevant to specify what dimension of the 

Package we thereby refer to (mass, energy, frequency or 

temperature): the numerical value is the same for all these 

cases. This is so within the Crenel Physics system of UoM, but 

likewise so within any system of UoM that is based on Planck’s 

natural units of measurement. 

Based on the conservation principle this numerical equality 

must also apply to objects with an entropy value that is not 

equal to 1 nat. It was this requirement that –for entropy atoms- 

ultimately demanded a relationship between universal natural 

constants per equation (CP5.5): 

𝐺𝐶𝑃 =
ℎ𝐶𝑃

𝑘𝐵(
𝐸𝑛𝑒𝑟𝑔𝑦

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
)
 × 𝑙𝑛 (4) (for EA’s) (CP7.1) 

 

   

 Verification and discussion. 8.

In chapter 6 we concluded that equation (CP5.5) must hold in 

any system of UoM, including Metric Physics. Thus we 

generalized this equation to: 

𝐺 =
ℎ

𝑘𝐵(
𝐸𝑛𝑒𝑟𝑔𝑦

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒⁄ )
 × 𝑙𝑛 (4)  (8.1) 

Substituting the Metric Physics values for h (=6.62607x10
-34

 

J.s) and kB (=1.38065x 10
-23

 J/K), and ln(4) =1.38629 into this 

equation gives a calculated value for G between entropy atoms: 

𝐺 =  
6.62607×10−34

1.38065×10−23  ×  1.38629 =  6.6531 × 10−11 (8.2) 

The 2014 CODATA-recommended value of the gravitational 

constant is: 

6.67408(31) x 10
-11

 Nm
2
kg

-2 
(or m

3
kg

-1
s

-2
) 

Thus, equation (CP8.1) –applicable between entropy atoms- 

undershoots this literature value for G by about 0.3%.  

The explanation for the difference is found in that we based the 

gravitational constant on the interaction between entropy 

atoms, whereas even a single atom is a group or ensemble 

thereof. Consistent with equation (2.6d) we based the 

gravitational force on content calculated as: 

𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = ∑ [𝑇𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 × ln (4)]𝑛
1    (CP8.3) 

Whereas per equation (CP5.12)… 

𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = ∑[𝑇𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 × ln (4)] + 𝑇𝑚𝑎𝑐𝑟𝑜𝑠𝑐𝑜𝑝𝑖𝑐 . 𝑆𝑜𝑏𝑗𝑒𝑐𝑡

𝑛

1

 

      (CP8.4) 

…we must add a macroscopic term to reflect the extra boost in 

content that is associated with the macroscopic temperature 

property. This extra boost will then be reflected in finding a 

higher value for the gravitational constant G. 

There is an analogue macroscopic impact in Einstein’s equation, not 

covered by it. Per 𝐸 = 𝑚. 𝑐2 we can calculate how much energy we 

can withdraw from a certain mass m. The equation does however 

not include the impact of the macroscopic temperature of that mass. 

It is obvious that should that mass be hot, it –in total- can be 

converted into more energy that if it is cold. Here, the difference is 

extremely marginal because c2 is a very large number, and therefore 

the macroscopic thermal energy can be neglected in practical cases. 

When –in Crenel Physics- it comes to finding the content of an 

object (so that we can apply the gravitational equation) we need 
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a likewise correction term based on the macroscopic 

temperature and entropy of the object, as reflected in equation 

(CP8.4).  

In this case however there is no –large- factor c2 to deal with. 

Therefore relatively larger corrections might be anticipated.      

In Wikipedia…  

(see https://en.wikipedia.org/wiki/Gravitational_constant ) 

…it can be found that various actual measurements of the 

gravitational constant are not only difficult to execute, but also 

mutually exclusive. E.g. an ‘improved cold atom’ measurement 

by Rosi et al., published in 2014, is referred to. This reference 

reports G to be equal to 6.67191(99) x 10
-11

 Nm
2
kg

-2
. This is 

approximately 0.03% below the more commonly accepted 

value of 6.67408(31) x 10
-11

. The lower found value of G 

(measured at low temperature and at atomic scale) is 

directionally in line with the here presented Crenel Physics 

model in which an ‘entropy atom ensemble temperature’ 

supposedly boosts the gravitational force with an additional 

0.3%. This is about 10 times more than found by Rosi et al. 

To find potential mechanisms for such larger boost, we must 

review the structure of matter. 

Per standard model three quarks jointly compose a proton or 

neutron. Quarks are known to have a series of properties that 

distinguishes them from each other, as well as from other 

elementary particles in the standard model. Some of the known 

quark properties are: total angular momentum, baryon number, 

electric charge, isospin and charm. One entropy atom could not 

possibly have different properties relative to the other. Quarks 

therefore must be more complex than entropy atoms. 

Mathematically it therefore must take a combination of a yet 

unknown number of entropy atoms to shape quarks. Their 

related grouping -while shaping quarks- would thereby likely 

be subject to rules or patterns, as we know electrons group in 

patterns within an atom. And likewise, such grouping could 

then be the basis for the various properties.    

Within the construction of content we can distinguish several 

discrete scales of construction levels. The following figure 

shows these, including what we know now so far about the 

gravitational constant’s value and content: 

  

Figure 8.1: various scales of content. 

 

Upscale 1

• Entropy Atom

• 𝐺 =  6.6531 × 10−11 

• 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 𝑇𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 × ln 4

Upscale 2

• Quark

Upscale 3

• Atom: 
Proton/neutron/electron

• G=6.67191(99) x 10−11

• Large masses at ambient temperature

• G = 6.67408(31) × 10−11 

• 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = ∑ 𝑇𝑒𝑚𝑏. × ln (4) + 𝑇𝑚𝑎𝑐𝑟. × 𝑆𝑜𝑏𝑗𝑒𝑐𝑡
𝑛
1

https://en.wikipedia.org/wiki/Gravitational_constant

