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Abstract – A brief draft respect to a problem found in the equations of Euler and 

Navier-Stokes, whose adequate treatment solves a centennial problem about the 
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§ 1 

 Motived by my work on Lagrangian and Eulerian descriptions in Euler[1] 

and Navier-Stokes[2] equations, where I used for velocity’s components the relation   

(1)  {

𝜕𝑢𝑖

𝜕𝑥𝑗
= 0, 𝑖 ≠ 𝑗,

𝜕𝑥𝑖 = 𝑢𝑖𝜕𝑡
  

because the construction of the non-linear terms 𝑢1
𝜕𝑢𝑖

𝜕𝑥
+ 𝑢2

𝜕𝑢𝑖

𝜕𝑦
+ 𝑢3

𝜕𝑢𝑖

𝜕𝑧
 in 

these equations was based on the 2nd law of Newton, 𝐹 = 𝑚𝑎, making (with mass 

density 𝜌 equal to 1) 

(2)  𝑎 =
𝐷𝑢

𝐷𝑡
=

𝜕𝑢

𝜕𝑡
+
𝜕𝑢

𝜕𝑥

𝑑𝑥

𝑑𝑡
+
𝜕𝑢

𝜕𝑦

𝑑𝑦

𝑑𝑡
+
𝜕𝑢

𝜕𝑧

𝑑𝑧

𝑑𝑡
, 

with  

(3)    

{
 
 

 
 
𝑑𝑥

𝑑𝑡
= 𝑢1

𝑑𝑦

𝑑𝑡
= 𝑢2

𝑑𝑧

𝑑𝑡
= 𝑢3

 

I now realize that it is possible, or better said, it is necessary for a more 

appropriate modeling of fluids in motion, the simultaneous use of both velocities, 

in the Lagrangian and Eulerian descriptions, in the same equation (Euler equations 

or Navier-Stokes equations), what we will see in § 3. 

 The equations (3), writing synthetically as 
𝑑𝑥𝑖

𝑑𝑡
= 𝑢𝑖 , with 𝑥1 ≡ 𝑥, 𝑥2 ≡ 𝑦,

𝑥3 ≡ 𝑧, show us that the velocity’s component 𝑢𝑖  is dependent only of coordinate 

𝑥𝑖 , regardless of the values of others 𝑥𝑗 , 𝑗 ≠ 𝑖, justifying the use of (1).  

 Following this idea, the original system  
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(4)    

{
 
 

 
 
𝜕𝑝

𝜕𝑥
+
𝜕𝑢1

𝜕𝑡
+ 𝑢1

𝜕𝑢1

𝜕𝑥
+ 𝑢2

𝜕𝑢1

𝜕𝑦
+ 𝑢3

𝜕𝑢1

𝜕𝑧
= 𝜈∇2𝑢1 +

1

3
𝜈∇1(∇ ∙ 𝑢) + 𝑓1

𝜕𝑝

𝜕𝑦
+
𝜕𝑢2

𝜕𝑡
+ 𝑢1

𝜕𝑢2

𝜕𝑥
+ 𝑢2

𝜕𝑢2

𝜕𝑦
+ 𝑢3

𝜕𝑢2

𝜕𝑧
= 𝜈∇2𝑢2 +

1

3
𝜈∇2(∇ ∙ 𝑢) + 𝑓2

𝜕𝑝

𝜕𝑧
+
𝜕𝑢3

𝜕𝑡
+ 𝑢1

𝜕𝑢3

𝜕𝑥
+ 𝑢2

𝜕𝑢3

𝜕𝑦
+ 𝑢3

𝜕𝑢3

𝜕𝑧
= 𝜈∇2𝑢3 +

1

3
𝜈∇3(∇ ∙ 𝑢) + 𝑓3

 

can be transformed in  

(5)  

{
 
 

 
 

1

𝑢1

𝜕𝑝

𝜕𝑡
+
𝐷𝑢1

𝐷𝑡
= 𝜈(∇2𝑢1)|𝑡 +

1

3
𝜈(∇1(∇ ∙ 𝑢))|𝑡 + 𝑓1|𝑡

1

𝑢2

𝜕𝑝

𝜕𝑡
+

𝐷𝑢2

𝐷𝑡
= 𝜈(∇2𝑢2)|𝑡  +

1

3
𝜈(∇2(∇ ∙ 𝑢))|𝑡 + 𝑓2|𝑡

1

𝑢3

𝜕𝑝

𝜕𝑡
+
𝐷𝑢3

𝐷𝑡
= 𝜈(∇2𝑢3)|𝑡 +

1

3
𝜈(∇3(∇ ∙ 𝑢))|𝑡 + 𝑓3|𝑡

 

thus (4) and (5) are equivalent systems, according validity of (2) and (3), since 

that the partial derivatives of the pressure and velocities were correctly 

transformed to the variable time, using 𝜕𝑥 = 𝑢1𝜕𝑡, 𝜕𝑦 = 𝑢2𝜕𝑡, 𝜕𝑧 = 𝑢3𝜕𝑡. The 

nabla and Laplacian operators are considered calculated in Lagrangian 

formulation, i.e., in the variable time. Likewise for the calculation of  
𝐷𝑢

𝐷𝑡
, following 

(2), and external force 𝑓, using 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡), 𝑧 = 𝑧(𝑡). The integration of the 

system (5) shows that anyone of its equations can be used for solve it, and the 

results must be equals each other. Then this is a condition to the occurrence of 

solutions.  

 We use the following transformations (omitting the use of |𝑡 , the 

calculation at time 𝑡 of the position (𝑥, 𝑦, 𝑧) of the moving particle): 

(6.1)  
𝜕𝑢𝑖

𝜕𝑥𝑗
= {

𝜕𝑢𝑖/𝜕𝑡

𝜕𝑥𝑖/𝜕𝑡
=

1

𝑢𝑖

𝜕𝑢𝑖

𝜕𝑡
, 𝑖 = 𝑗

0, 𝑖 ≠ 𝑗
 

(6.2)  ∇ ∙ 𝑢 = ∑
𝜕𝑢𝑗

𝜕𝑥𝑗
= ∑

1

𝑢𝑗

𝜕𝑢𝑗

𝜕𝑡

3
𝑗=1

3
𝑗=1  

(6.3)  ∇𝑖(∇ ∙ 𝑢) =
𝜕

𝜕𝑥𝑖
(
𝜕𝑢1

𝜕𝑥
+
𝜕𝑢2

𝜕𝑦
+
𝜕𝑢3

𝜕𝑧
) =

𝜕

𝜕𝑥𝑖

𝜕𝑢𝑖

𝜕𝑥𝑖
=

𝜕/𝜕𝑡

𝜕𝑥𝑖/𝜕𝑡

1

𝑢𝑖

𝜕𝑢𝑖

𝜕𝑡
 

                   =
1

𝑢𝑖
2 [−

1

𝑢𝑖
(
𝜕𝑢𝑖

𝜕𝑡
)
2
+
𝜕2𝑢𝑖

𝜕𝑡2
]   

and  

(7.1)  
𝜕2𝑢𝑖

𝜕𝑥𝑗
2 = {

1

𝑢𝑖
2 [−

1

𝑢𝑖
(
𝜕𝑢𝑖

𝜕𝑡
)
2
+
𝜕2𝑢𝑖

𝜕𝑡2
]

0, 𝑖 ≠ 𝑗
, 𝑖 = 𝑗 



3 
 

(7.2)  ∇2𝑢𝑖 =
𝜕2𝑢𝑖

𝜕𝑥𝑖
2 =

1

𝑢𝑖
2 [−

1

𝑢𝑖
(
𝜕𝑢𝑖

𝜕𝑡
)
2
+
𝜕2𝑢𝑖

𝜕𝑡2
]  

and thus the system (5) can be integrated, finding the pressure 𝑝.  

 

§ 2 

 Without passing through the Lagrangian formulation, given a velocity 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) at least two times differentiable with respect to spatial coordinates and 

one respect to time and an integrable external force 𝑓(𝑥, 𝑦, 𝑧, 𝑡), perhaps the better 

expression for the solution of the equation (4) is 

(8)  𝑝(𝑥, 𝑦, 𝑧, 𝑡) = ∫ 𝑆 ∙ 𝑑𝑙
𝐿

+ 𝜃(𝑡) = ∑ ∫ 𝑆𝑖𝑑𝑥𝑖
𝑃𝑖
𝑃𝑖
0

3
𝑖=1 + 𝜃(𝑡), 

  𝑆 = (𝑆1, 𝑆2, 𝑆3), 

  𝑆𝑖 = −(
𝜕𝑢𝑖

𝜕𝑡
+ ∑ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

3
𝑗=1 ) + 𝜈(∇2𝑢𝑖) +

1

3
𝜈(∇𝑖(∇ ∙ 𝑢)) + 𝑓𝑖 , 

supposing possible the integrations and that the vector 𝑆 = − [
𝜕𝑢

𝜕𝑡
+ (𝑢 ∙ ∇)𝑢] +

𝜈∇2𝑢 +
1

3
𝜈∇(∇ ∙ 𝑢) + 𝑓 is a gradient function, where it is necessary that 

(9)  
𝜕𝑆𝑖

𝜕𝑥𝑗
=

𝜕𝑆𝑗

𝜕𝑥𝑖
. 

This is the development of the solution of (4) for the specific path 𝐿 going parallely 

(or perpendicularly) to axes 𝑋, 𝑌 and 𝑍 from (𝑥1
0, 𝑥2

0, 𝑥3
0) ≡ (𝑥0, 𝑦0, 𝑧0) to 

(𝑥1, 𝑥2, 𝑥3) ≡ (𝑥, 𝑦, 𝑧), since that the solution (8) is valid for any piecewise smooth 

path 𝐿. We can choose 𝑃1
0 = (𝑥0, 𝑦0, 𝑧0), 𝑃2

0 = (𝑥, 𝑦0, 𝑧0),  𝑃3
0 = (𝑥, 𝑦, 𝑧0) for the 

origin points and 𝑃1 = (𝑥, 𝑦0, 𝑧0), 𝑃2 = (𝑥, 𝑦, 𝑧0),  𝑃3 = (𝑥, 𝑦, 𝑧) for the destination 

points. 𝜃(𝑡) is a generic time function, physically and mathematically reasonable, 

for example with 𝜃(0) = 0 or adjustable for some given condition. Again we have 

seen that the system of Navier-Stokes equations has no unique solution, only given 

initial conditions, supposing that there is some solution. We can choose different 

velocities that have the same initial velocity and also result, in general, in different 

pressures. 

 The remark given for the system (5), when used in (4), leads us to the 

following conclusion: the integration of the system (4), confronting with (5), 

shows that anyone of its equations can be used for solve it, and the results must be 

equals each other. Then again this is a condition to the occurrence of solutions, 

which shows to us the possibility of existence of “breakdown” solutions, as defined 

in [3]. 
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 By other side, using the first condition (1), 
𝜕𝑢𝑖

𝜕𝑥𝑗
= 0 if 𝑖 ≠ 𝑗, due to 

Lagrangian formulation, where 𝑢𝑖 =
𝑑𝑥𝑖

𝑑𝑡
, the original system (4) is simplified as 

(10)  

{
 
 

 
 
𝜕𝑝

𝜕𝑥
+
𝜕𝑢1

𝜕𝑡
+ 𝑢1

𝜕𝑢1

𝜕𝑥
=

4

3
𝜈
𝜕2𝑢1

𝜕𝑥2
+ 𝑓1

𝜕𝑝

𝜕𝑦
+
𝜕𝑢2

𝜕𝑡
+ 𝑢2

𝜕𝑢2

𝜕𝑦
=

4

3
𝜈
𝜕2𝑢2

𝜕𝑦2
+ 𝑓2

𝜕𝑝

𝜕𝑧
+

𝜕𝑢3

𝜕𝑡
+ 𝑢3

𝜕𝑢3

𝜕𝑧
=

4

3
𝜈
𝜕2𝑢3

𝜕𝑧2
+ 𝑓3

 

where 𝑢𝑖  is a function only of the respective 𝑥𝑖  and 𝑡, but not 𝑥𝑗  if 𝑗 ≠ 𝑖. When is 

required the incompressibility condition, ∇ ∙ 𝑢 = (
𝜕𝑢1
𝜕𝑥
+
𝜕𝑢2
𝜕𝑦
+
𝜕𝑢3
𝜕𝑧
) = 0, then the 

constant 
4

3
 in (10) should be replaced by 1. 

 If the external force has potential, 𝑓 = ∇𝑉, then the system (10) has solution 

(11)  𝑝 = ∑ ∫ [−(
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑖

𝜕𝑢𝑖

𝜕𝑥𝑖
) +

4

3
𝜈
𝜕2𝑢𝑖

𝜕𝑥𝑖
2 + 𝑓𝑖] 𝑑𝑥𝑖

𝑃𝑖
𝑃𝑖
0

3
𝑖=1 + 𝜃(𝑡) 

      = 𝑉 + ∑ ∫ [−(
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑖

𝜕𝑢𝑖

𝜕𝑥𝑖
) +

4

3
𝜈
𝜕2𝑢𝑖

𝜕𝑥𝑖
2 ] 𝑑𝑥𝑖

𝑥𝑖
𝑥𝑖
0

3
𝑖=1 + 𝜃(𝑡), 

𝑉 = ∫ 𝑓 ∙ 𝑑𝑙
𝐿

, which although similar to (8) has the solubility guaranteed by the 

special functional dependence of the components of the vector  𝑢, i.e., 𝑢𝑖 = 𝑢𝑖(𝑥𝑖, 𝑡), 

with 
𝜕𝑢𝑖

𝜕𝑥𝑗
= 0 if 𝑖 ≠ 𝑗, supposing 𝑢, its derivatives and 𝑓 integrable vectors. In this 

case the vector 𝑆 described in (8) is always a gradient function, i.e., the relation (9) 

is satisfied. Note that if 𝑓 is not an irrotational or gradient vector, i.e., if it does not 

have a potential, then the system (10), with 𝑢𝑖 = 𝑢𝑖(𝑥𝑖, 𝑡), it has no solution, the 

case of “breakdown” solution in [3]. 

 When the incompressibility condition is imposed (∇ ∙ 𝑢 = 0) we have, using 

(1), a small variety of possible solutions for velocity, of the form  

(12)  𝑢𝑖(𝑥𝑖 , 𝑡) = 𝛼𝑖(𝑡)𝑥𝑖 + 𝛽𝑖(𝑡),  

𝛼𝑖, 𝛽𝑖 ∈ 𝐶
∞([0,∞[). In this case is valid ∇2𝑢 = 0, i.e., the system of equations has a 

solution for velocity independent of  viscosity coefficient, equal to Euler equations, 

and except when 𝑢 = 0 (for some or all 𝑡 ≥ 0) we have always 

∫ |𝑢|2
ℝ3

𝑑𝑥𝑑𝑦𝑑𝑧 → ∞, the occurrence of unbounded or unlimited energy, what 

is not difficult to see.  
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§ 3 

 The system (3), for the sake of mathematical rigor, needs to be replaced by 

(13)    

{
 
 

 
 
𝑑𝑥

𝑑𝑡
= 𝑢1(𝑡)

𝑑𝑦

𝑑𝑡
= 𝑢2(𝑡)

𝑑𝑧

𝑑𝑡
= 𝑢3(𝑡)

 

emphasizing that the velocity components that appear as the time derivative of the 

coordinate (𝑥, 𝑦, 𝑧) are legitimate functions of time, i.e., can be considered as 

representative of the Lagrangian description, 𝑢𝑖(𝑡), unlike the derivatives from 𝑢𝑖  

in 
𝜕𝑢𝑖

𝜕𝑡
, 
𝜕𝑢𝑖

𝜕𝑥𝑗
, ∇ ∙ 𝑢 and ∇2𝑢𝑖 , that are in the Eulerian description, function of 

(𝑥, 𝑦, 𝑧, 𝑡).  

 Representing the Eulerian velocity and respective components with the 

letter E indicated as upper index, and the corresponding Lagrangian components 

with the letter L, the system (4) is rewritten as 

(14)   

{
 
 

 
 
𝜕𝑝

𝜕𝑥
+
𝜕𝑢1

𝐸

𝜕𝑡
+ 𝑢1

𝐿 𝜕𝑢1
𝐸

𝜕𝑥
+ 𝑢2

𝐿 𝜕𝑢1
𝐸

𝜕𝑦
+ 𝑢3

𝐿 𝜕𝑢1
𝐸

𝜕𝑧
= 𝜈∇2𝑢1

𝐸 +
1

3
𝜈∇1(∇ ∙ 𝑢

𝐸) + 𝑓1

𝜕𝑝

𝜕𝑦
+
𝜕𝑢2

𝐸

𝜕𝑡
+ 𝑢1

𝐿 𝜕𝑢2
𝐸

𝜕𝑥
+ 𝑢2

𝐿 𝜕𝑢2
𝐸

𝜕𝑦
+ 𝑢3

𝐿 𝜕𝑢2
𝐸

𝜕𝑧
= 𝜈∇2𝑢2

𝐸 +
1

3
𝜈∇2(∇ ∙ 𝑢

𝐸) + 𝑓2

𝜕𝑝

𝜕𝑧
+
𝜕𝑢3

𝐸

𝜕𝑡
+ 𝑢1

𝐿 𝜕𝑢3
𝐸

𝜕𝑥
+ 𝑢2

𝐿 𝜕𝑢3
𝐸

𝜕𝑦
+ 𝑢3

𝐿 𝜕𝑢3
𝐸

𝜕𝑧
= 𝜈∇2𝑢3

𝐸 +
1

3
𝜈∇3(∇ ∙ 𝑢

𝐸) + 𝑓3

 

being the pressure 𝑝 and external force 𝑓 implicitly defined in the Eulerian 

description. A more concise notation for (14) is simply, for 𝑖 = 1, 2, 3, 

(15) 
𝜕𝑝

𝜕𝑥𝑖
+
𝜕𝑢𝑖

𝜕𝑡
+ 𝛼1

𝜕𝑢𝑖

𝜕𝑥
+ 𝛼2

𝜕𝑢𝑖

𝜕𝑦
+ 𝛼3

𝜕𝑢𝑖

𝜕𝑧
= 𝜈∇2𝑢𝑖 +

1

3
𝜈∇𝑖(∇ ∙ 𝑢) + 𝑓𝑖 , 

where 𝑝, 𝑓𝑖 , 𝑢 and 𝑢𝑖  are in Eulerian description and 𝛼𝑖 = 𝛼𝑖(𝑡) in Lagrangian 

description, i.e., 𝛼𝑖 =
𝑑𝑥𝑖

𝑑𝑡
, with the radius vector 𝑟 = (𝑥1, 𝑥2, 𝑥3) = (𝑥, 𝑦, 𝑧) 

function of time and indicating a motion of a specific particle of fluid. 

 The equations (14) and (15) shows us that the nonlinear terms disappear, 

facilitating the obtaining of its solutions, transforming when ∇ ∙ 𝑢 = 0 into a linear 

and second-order partial differential equation of the parabolic type, already well-

studied[4]. If 𝜈 = 0 (Euler equations) we have equations of first order, obviously, 

which is also widely studied[5]. We realize that for each possible value of  𝛼𝑖 it is 

possible to obtain different values of 𝑢𝑖 , i.e., there is not an one-one 

correspondence between 𝛼𝑖 and 𝑢𝑖 , thus it is convenient choose more easy time 

functions for the 𝛼𝑖(𝑡), provided that compatible with the physical problem to be 

studied. 
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