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Abstract
Inspired by Taylor polynomials, several other approximations based on derivative-matching are pro-

posed.

Introductory note: This text was previously published on Scribd1.

1 What can be understood as Taylor-like?

The basic feature of the Taylor (Maclaurin) series is the matching of the derivatives at a given point. Thus
I define:

Taylor-like approximation of a function f in the point x0 of the order N is a function TLx0
N (x) which

fulfills
dn

dxn
TLx0

N (x)|x=x0
=

dn

dxn
f(x)|x=x0

(1)

for each 0 ≤ n ≤ N .

A set of such functions naturally builds a sequence
(
TLx0

N

)N=∞
N=0

, where one hopes for the equality f(x) =
TLx0

∞(x) at some non-zero interval around x0. In this text, my aim is to present new Taylor-like expansions.
To my knowledge there are two such expansions commonly used: Taylor polynomials and Padè approximation
(rational function).

The definition (1) is general and does not constrain much the form of the function TL. From prac-
tical point of view a sum is very convenient. This is of course because the derivative is a linear op-
erator. The derivative matching in case of a product TLN (x) =

∏N
i=0 gi(x) or a composite function

TLN (x) = g0(g1(g2(. . . gN (x)))) seems to be much harder.
Also, one wants to avoid getting N unknown variables to be obtained from N equations (after differentiat-

ing N −1 times). One rather prefers the parameters to appear progressively as higher and higher derivatives
are done, so that the derivative matching is feasible and easy (at each step only one parameter is fixed). One
wants the coefficients that have been previously settled to remain the same for the higher-order approxima-
tion and not to re-settle all of them. I will consider in this text only sums and all my approximations will
be in the form TLN (x) =

∑N
i=0 gi(x, ai), where ai are parameters.

Let me briefly summarize the classification:

• A: TL approximations in the form of a sum.

• B : TL approximations in a different form (e.g. Padè). For this category one usually needs to solve for
each TLN (x) N + 1 equations with N + 1 unknown variables.

– A1 : TL approximations in the form of a sum where coefficients come to play a role progressively
with increasing derivative order. This is suitable since the coefficients from the step N − 1 can be
reused (without change) in the step N . In the latter, one new equation and one new parameter
come into the game. In practice this often requires a single coefficient to be used for each additive
term.
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– A2 : TL approximations in the form of a sum where all coefficients play a role in all derivatives of
the function TLN (x). Like in case “B”, one needs in each step to solve repeatedly N +1 equations
with N + 1 variables, unless some smart ad hoc approach exists.

∗ A1a: Subset of A1, where explicit formulas for the nth derivative are found. Usually, unfor-
tunately, one cannot express the expansion coefficients as explicit functions of the derivative
order (finding the inverse relations is hard) but has to relay on a recursive approach to get
them. In case of multiplicative coefficients (triangular matrices) this is, however, an easy and
quick procedure.

∗ A1b: Subset of A1 where explicit formulas for nth derivative are difficult to find. This might
be related to the fact that derivatives have complicated structure. An arbitrary long expansion
can be constructed by doing the differentiation explicitly (supposing the related equations for
coefficients can be solved).

I will present examples that fall within cases A1a, A1b and A2. To compare different methods I decided to
use in this text four test functions: x2, ex, sin (x) and ln (x+ 1).

A section-closing remark: all this work is possible only because software tools2 are available. Doing
derivatives by hand would for sure prevent me from being interested in this topic. This brings an disadvantage,
the expansions presented in Sections 3.1 and 3.2 lack proofs (might be considered as hypotheses). These
proofs might be feasible using the method by induction.

2 Remarks about possible recipes for constructing Taylor-like series

2.1 Building approximations with vanishing function

Let g be a function obeying g (x0) = 0, with x0 being the point of expansion. Then one can build a series
TLN (x) =

∑N
i=0 ai [g(x)]

i. For such a series it is likely that coefficients appear progressively one-by-one after
each derivative. At each step a linear equation with one unknown variable is obtained and is easily solved.
Its value then remains for higher derivatives a constant, without change. This fact is easily to prove: in a
term ai [g(x)]

i the constant ai remains as multiplicative factor in all successive derivatives. The expression
[g(x)]i transforms as follows:

[g(x)]i
d
dx→ ig′(x) [g(x)]i−1

d2

dx2→ ig′′(x) [g(x)]i−1 + i (i− 1)
[
g′(x)

]2
[g(x)]i−2

d3

dx3→ ig′′′(x) [g(x)]i−1 + 3i (i− 1) g′′(x)g′(x) [g(x)]i−2 + i (i− 1) (i− 2)
[
g′(x)

]3
[g(x)]i−3

From the rule on product differentiation it follows, that the lowest power in g that any term of the form
P
(
g′, g′′, ..., g(N)

)
gi can reach after a single differentiation is gi−1 (P is polynomial). So the expression

[g(x)]i can become non-zero only after i differentiations (supposing the derivatives of g behaving well, i.e.
being finite). Thus, after i differentiations one ends up with a finite expression multiplied by the constant
ai. Taking into account other terms of a lower degree together with their constants a0 · · · ai−1, one sets ai
such as to provide the desired value for the derivative in question. I give later some examples that follow
this principle. Since this approach is very general, many different TL series can be derived in this way.

2.2 Building approximations with xi as a function argument

This seems to be even more efficient way of constructing TL series. The approximation takes the form

TLN (x) =

N∑
i=0

aig(x
i)

2I would like to thank (wx)Maxima creators.
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and is done around x0 = 0. When differentiating a term from the sum one arrives to

g(xi)
d
dx→ ixi−1g′(xi)

d2

dx2→ i(i− 1)xi−2g′(xi) + i2x2i−2g′′(xi)

d3

dx3→ i(i− 1)(i− 2)xi−3g′(xi) + 3i2(i− 1)x2i−3g′′(xi) + i3x3i−3g′′′(xi)

Thanks to the chain rule, each derivative and each term contains power of x which is multiplied by
the appropriate derivative of the function g. Since the power can be lowered at maximum by 1 at each
higher derivative, the differentiated term g(xi) can become non-zero only after i derivatives, or later. This
guarantees that the coefficients appear progressively. The approximation is more “efficient” than the one from
the previous section, because the powers of x appear any time g undergoes a differentiation making vanish
the given term for x0 = 0. And this is true for many terms. The number of terms entering the derivative
matching is usually quite smaller than in the previous case and therefore the derivative matching much
quicker. In spite that, in cases I studied (most common function), I did not observe the series coefficients to
be over-constrained by the derivatives, i.e. the series not flexible enough to match the derivatives. I give an
example of this type of series later.

2.3 Building approximations with repetitively integrable function

Imagine a function g which can be repeatedly integrated within elementary functions. One can then construct
a TL series by integration. Each term represents a higher integration and is set to zero at x0 by choosing
an appropriate integration constant. This hides a danger: there are high chances that within each term a
polynomial resulting from the constant integration is built.

Let g be non-zero at x0 (so that a0g (x0) matches the value of the function one wants to approximate).
Then one has:

TL0(x) = a0g (x) .

Next I define the primitive function of g, noted gI1, that fulfills

gI1 (x0) = 0.

The series becomes
TL1(x) = a0g (x) + a1gI1 (x)

The constant a1 is chosen in the way the expression, after one derivative, matches the derivative of the
approximated function. The next step is analogical. I note gI2 the primitive function of gI1 that vanishes at
x = x0. One arrives to

TL2(x) = a0g (x) + a1gI1 (x) + a2gI2 (x) .

Obviously the value of the expression is given by a0, the derivative by a0 and a1 and the second derivative
by a0, a1 and a2. The generalization is straightforward:

TLN (x) =

i=N∑
i=0

aigIi (x) .

Although the approach works well from the theoretical point of view, I failed to find an example without
pile-upping polynomials. With polynomials one easily adjusts “any derivatives anywhere” and so I have to
admit this approach might lack elegance.

The nice feature of this approach comes from the fact, that one does not need to differentiate each term
when doing derivative matching. Its enough to N times differentiate the first one, by construction the others
follow it in next steps. The matrix of the linear problem looks like (N + 1 = 4)

f
f ′

f ′′

f ′′′

 =


d0 0 0 0
d1 d0 0 0
d2 d1 d0 0
d3 d2 d1 d0




a0
a1
a2
a3


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with the obvious notation di =
di

dxi g(x)|x=x0
.

The solution can be written using an analogical matrix
a0
a1
a2
a3

 =


w0 0 0 0
w1 w0 0 0
w2 w1 w0 0
w3 w2 w1 w0




f
f ′

f ′′

f ′′′

.

The functions wi = wi (d0, . . . , di) are universal and can be determined once and for all. The first 6
functions stand

w0 =
1

d0
, w1 = −d1

d20
, w2 = −d0d2 − d21

d30
, w3 = −d20d3 − 2d0d1d2 + d31

d40
,

w4 = −d30d4 − 2d20d1d3 − d20d
2
2 + 3d0d

2
1d2 − d41

d50
,

w5 = −d40d5 − 2d30d1d4 + (3d20d
2
1 − 2d30d2)d3 + 3d20d1d

2
2 − 4d0d

3
1d2 + d51

d60
.

The matrix actually falls into the category named “(triangular) Toeplitz matrix” and an appropriate algorithm
can be used to invert it (see [1]).

3 Examples of Taylor-like series

The only examples that fit the definition A1a from Section 1 I was able to find are (single) function-weighted
polynomials, not following any of the recipes from Section 2. I present them in the two first subsections. Next,
in Sections 3.3 and 3.4, I give two examples of the type A1b which follow the instructions from Sections 2.1
and 2.2. The fifth example falls into the category A2. Here the matrix of the linear problem is not triangular
but is easy to build. The last example demonstrates the integral approach from Section 2.3.

3.1 Example one

TLN (x) =

N∑
i=0

aix
i exp (x)

The derivatives at x0 = 0 are

derivative order derivative value
0 a0
1 a0 + a1
2 a0 + 2a1 + 2a2
3 a0 + 3a1 + 6a2 + 6a3
4 a0 + 4a1 + 12a2 + 24a3 + 24a4
5 a0 + 5a1 + 20a2 + 60a3 + 120a4 + 120a5
6 a0 + 6a1 + 30a2 + 120a3 + 360a4 + 720a5 + 720a6

The pattern is (N > n):

dn

dxn

[
N∑
i=0

aix
i exp (x)

]
|x=0

=

n∑
i=0

n!

(n− i)!
ai.

The recursive formula for coefficients stands

a0 = f (0),

an =
1

n!

{
f (n) −

n−1∑
i=0

n!

(n− i)!
ai

}
.

In Figure 1 I depicted the approximations of the four test functions by this series with 10 derivatives (+1
value) matched.
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(a) f (x) = x2 (b) f (x) = ex

(c) f (x) = sin (x) (d) f (x) = ln (x+ 1)

Figure 1: Approximations of four test functions with TL10(x) = exp (x)
∑10

i=0 aix
i (example one).

3.2 Example two

TLN (x) =
N∑
i=0

aix
i [sin (x) + cos (x)]

The derivatives at x0 = 0 are

derivative order derivative value
0 +a0
1 +a0 + a1
2 −a0 + 2a1 + 2a2
3 −a0 − 3a1 + 6a2 + 6a3
4 +a0 − 4a1 − 12a2 + 24a3 + 24a4
5 +a0 + 5a1 − 20a2 − 60a3 + 120a4 + 120a5
6 −a0 + 6a1 + 30a2 − 120a3 − 360a4 + 720a5 + 720a6

The pattern is (N > n):

dn

dxn

{
N∑
i=0

aix
i [sin (x) + cos (x)]

}
|x=0

=
n∑

i=0

ci
n!

(n− i)!
ai

with ci double alternating unity, for example3 ci =
√
2 sin

[
π
4 + (n− i− 1) π

2

]
. The recursive formula for the

coefficients is

a0 = f (0),

an =
1

n!

{
f (n) −

n−1∑
i=0

ci
n!

(n− i)!
ai

}
.

The analogy with exponential weighted example before is hardly surprising. In Figure 2 the approxima-
tions of the four test functions by this series with 10 derivatives (+1 value) matched are shown.

3I was unable to invent a more simple expression and even in this case I inspired myself by the web page
http://mathhelpforum.com/calculus/180051-infinite-series-double-alternating-signs.html.
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(a) f (x) = x2 (b) f (x) = ex

(c) f (x) = sin (x) (d) f (x) = ln (x+ 1)

Figure 2: Approximations of four test functions with TL10(x) = [sin (x) + cos (x)]
∑10

i=0 aix
i (example two).

3.3 Example three

TLN (x) =

N∑
i=0

ai

(
x√

x2 + 1

)i

I have chosen this example because the function inside the power is a “nice” well-behaved function, without
singularities, bounded and bijective.

The differentiation at x0 = 0 yields

derivative order derivative value
0 a0
1 a1
2 2a2
3 6a3 − 3a1
4 24a4 − 24a2
5 120a5 − 180a3 + 45a1
6 720a6 − 1440a4 + 720a2
7 5040a7 − 12600a5 + 9450a3 − 1575a1
8 40320a8 − 120960a6 + 120960a4 − 40320a2
9 362880a9 − 1270080a7 + 1587600a5 − 793800a3 + 99225a1
10 3628800a10 − 14515200a8 + 21772800a6 − 14515200a4 + 3628800a2

The derivatives of this function become complex and I failed to find a general pattern, although some
sub-patterns can be observed4. Without explicit i-dependent formulas, one can still make use of this ap-
proximation: the coefficients appear progressively one-by-one and different terms are obtained by actually
performing the differentiation explicitly. The result is represented by a less-than triangular matrix, the num-
ber of coefficients in each line grows less than the line number. The approximations of the four test functions
are presented in Figure 3.

Other functions suitable for the approach from Section 2.1 (or Section 2.2) might be sin (x), arctan (x),
exp (x− 1) or arsinh (x) and may others.

4First term in each line increases as factorial, the second term with the line number i is the first term× i−2
2

.
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(a) f (x) = x2 (b) f (x) = ex

(c) f (x) = sin (x) (d) f (x) = ln (x+ 1)

Figure 3: Approximations of four test functions with TL10(x) =
∑10

i=0 ai

(
x√
x2+1

)i
(example three).

3.4 Example four

TLN (x) =

N∑
i=0

ai arctan
(
xi
)

The derivatives at x0 = 0 are

derivative order derivative value
0 a0
1 a1
2 2a2
3 6a3 − 3a1
4 24a4
5 120a5 + 24a1
6 720a6 − 240a2
7 5040a7 − 720a1
8 40320a8
9 362880a9 − 120960a3 + 40320a1
10 3628800a10 + 725760a2

Number of coefficients in each line is small, the derivative matching can be done very efficiently. Like in
the previous case, I did no manage to find neither direct nor recursive i-dependent expression for derivatives.
Many other candidate functions can be used for this type of approximation. Examples of approximation
using arctan are show in Figure 4.
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(a) f (x) = x2 (b) f (x) = ex

(c) f (x) = sin (x) (d) f (x) = ln (x+ 1)

Figure 4: Approximations of four test functions with TL10(x) =
∑10

i=0 ai arctan
(
xi
)

(example four).

3.5 Example five

TLN (x) =

N∑
i=0

ai
xi

with expansion done around x0 = 1. The derivatives are can be expressed using direct n-dependent
formulas

[TLN (x)](n) =

N∑
i=0

(−1)n
(i+ n− 1)!

(i− 1)!
ai.

One however gets a full matrix that needs to be inverted. To study the goodness of this approximation,
I shifted all test function to x0 = 1 and did the matrix inversion using computer. The results are displayed
in Figure 5.

3.6 Example six

I made quite some effort to find approximations based on higher integrals, where the integration-constant
polynomial would not appear. Searching without success, I prefer not to discuss easy examples with poly-
nomials appearing, such as repetitive integrals of ex: a0 (e

x), a0 (ex) + a1 (e
x − 1), a0 (ex) + a1 (e

x − 1) +
a2 (e

x − x− 1) , a0 (ex)+a1 (e
x − 1)+a2 (e

x − x− 1)+a3
(
ex − 1

2x
2 − x− 1

)
, etc.. Instead I prefer to change

a little bit the point of view, but still stick to the idea presented in Section 2.3.
Let me assume that the order of the approximation N is given in advance. I present here an example

where a function h has N − 1 derivatives vanishing at x0 = 0, and only following derivatives are not zero.
Then I will interpret the derivative h(N) as the function g from Section 2.3 and lower order derivatives of h
as integrals of g.

The example is
h = [sin (x)]2n+1 + [sin (x)]2n , 2n = N.

This function has N − 1 derivatives vanishing at the origin, the Nth is different from zero. The derivatives

8



(a) f (x) = (x− 1)2 (b) f (x) = e(x−1)

(c) f (x) = sin (x− 1) (d) f (x) = ln (x)

Figure 5: Approximations of four test functions with TL10(x) =
∑10

i=0
ai
xi (example five).

behave as follows5:
M∑
i=0

ai [sin (x)]
M−i [cos (x)]i

d
dx→

M∑
i=0

bi [sin (x)]
M−i [cos (x)]i ,

where
bi = (1− δi,0) (M − i+ 1) ai−1 − (1− δi,M ) (i+ 1) ai+1.

To respect the usual approximation degree, I chose N = 10 (n = 5):

h = [sin (x)]11 + [sin (x)]10 .

5This relation can be represented by a M + 1 dimensional matrix Q in the coefficient space. Its elements are (indices start
with “0”):

• if (j = i+ 1) then Qij = −j

• else if (i = j + 1) then Qij = −QM−i,M−j

• else Qij = 0.

In general this matrix cannot be inverted. It is because some functions [e.g. sin2 (x)] do not have the primitive function in the
form of a sum of products of trigonometric powers. However, for M odd, the matrix can be explicitly inverted W = Q−1 and
the primitive function calculated. The coefficients are:

• if (i = j) then Wij = 0

• else if (i > j) then Wij = −WM−i,M−j

• else:

– if (i is odd) then Wij = 0

– else:

∗ if (j is even) then Wij = 0

∗ else Wij = A
B

, where A = (j−1)!!
i!!

and B = (M−i)!!
(M−j−1)!!

.

Interestingly, even if M is even, one can integrate sina (x) cosb (x) if both, a and b are odd. For this case one however needs to
use the matrix W̃ = 1

2
W and proceed analogically (here W is a matrix built according to the given algorithm).
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The function g then takes the form:

g =

11∑
i=0

αi [sin (x)]
11−i [cos (x)]i +

10∑
i=0

βi [sin (x)]
10−i [cos (x)]i

with αi and βi:

i αi βi

0 -79549811 -46063360
1 0 0
2 3003336710 1514960640
3 0 0
4 -11603988000 -4904524800
5 0 0
6 9514169280 3149798400
7 0 0
8 -1696464000 -381024000
9 0 0
10 39916800 3628800
11 0 -

The integrals of g can be obtained through

gIi = h(10−i)

and formally the series takes the form

TL10(x) =
10∑
i=0

aigIi (x) .

Each function gIi might have up to 11+12=23 additive terms. However all of them have the same structure
and only differ in coefficients. They can be therefore effectively summed up, so that the whole expression for
TL10(x) has at most 23 terms. This can be usually further shortened by trying to factorize an appropriate
powers of sin or cos6.

The value and the first ten derivatives of the function g at x0 = 0 are

derivative order derivative value
0 3628800
1 39916800
2 -798336000
3 -11416204800
4 116237721600
5 2117705990400
6 -14280634368000
7 -326823111014400
8 1610191341158400
9 45823744187020800
10 -173115586215936000

The approximations are constructed in accordance with what was presented in Section 2.3, they are
shown in Figure (6).

6Let me remark that even though the expression can by still considered long, it might be quite suited for computer calcula-
tions. When approximating the function at some point x1, one needs to do only two “long” calculations of sin (x1) and cos (x1).
The rest to get to the value of T lN (x1) consists in doing a rather small number of multiplications (higher powers of sin and cos)
and additions.
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(a) f (x) = x2 (b) f (x) = ex

(c) f (x) = sin (x) (d) f (x) = ln (x+ 1)

Figure 6: Approximations of four test functions with TL10(x) =
∑10

i=0 aigIi (x) (example six).

4 Discussion, conclusion

In this text I presented some recipes and examples of Taylor-like approximations. A waste space for additional
work remains. One might want to:

• become more explicit and rigorous (find and prove coefficients as function of the derivative order),

• study properties of expansions, their convergence (its speed, radius),

• propose other, maybe more elegant expansions.

When I decided to dig into the idea of Taylor-like approximations, I hoped to find nice and simple expansions
with rapid convergence. This task was only partially achieved. Judging by constructed examples, the most
rapid convergence seems to be found in the case of sum of inverses for x > 1 (example five) and exponential-
weighted polynomials (example one). However, even these two approximations can hardly compete with
Taylor polynomials. In addition, in many situations it is difficult to find a general expression for derivatives
as function of the derivative order.

In cases of bounded functions used for expansion (arctan (x) , x√
x2+1

), one might hypothesize about better
convergence properties, with the function value not “so easy” to go to infinity.

Even though I can hardly think of an immediate application, one might still hope that one of the presented
examples might be suited for some particular tasks and problems one wants to solve in mathematics or physics.
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