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Abstract. In this work, we introduce the n-formal sequents and the formal numbers defined

with the help of the second order logic. We give many concrete examples of formal numbers

and n-formal sequents with the Peano’s axioms and the axioms of the real numbers. Shortly,

a sequent is n-formal iff the sequent is composed by some closed hypotheses and a n-formal

formula (an explicit sub-formula with one free variable which is only true with the unique

natural number n), and no sub-sequent are composed by some closed sub-hypotheses and

a m-formal explicit sub-formula with m > 1. The definition is motivated by the intuition

that the “nature’s hypotheses” do not carry natural numbers or ”hidden natural numbers”

except for the numbers 0 and 1, i.e., they can be used in a n-formal sequent. Moreover, we

postulate at second order of logic that the “nature’s hypotheses” are not chosen randomly:

the “nature’s hypotheses” are the only hypotheses which give the largest formal number

NZ = 1497. The Goldbach’s conjecture, the Dubner’s conjecture, the Polignac’s conjecture,

the Firoozbakht’s conjecture, the Oppermann’s conjecture, the Agoh-Giuga conjecture, the

generalized Fermat’s conjecture and the Schinzel’s hypothesis H are reviewed with this new

(second order logic) formal axiom. Finally, three open questions remain: Can we prove that

a natural number is not formal? If a formal number n is found with a function symbol f

where its outputs values are only 0 and 1, can we always replace the function symbol f by a

another function symbol f̃ such that f̃ = 1 − f and the new sequent is still n-formal? Does

a sequent exist to make a difference between the definition of the n-formal sequents and the

following variant of that definition: we look at the explicit sub-formulas of φ which induce

the m-formal formulas instead of looking at the explicit sub-formulas of φn−formal which

are m-formal formulas?
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1. Introduction

The present paper is motivated by the consequences (in number theory and in funda-

mental physics) of the definition of a formal number and a n-formal sequent, the (second

order logic) formal axiom and the (second order logic) formal hypothesis on the “nature’s

hypotheses” (the required hypotheses to explain the physical measurements). The conse-

quences are: The Goldbach’s conjecture, the Dubner’s conjecture, the Polignac’s conjec-

ture, the Firoozbakht’s conjecture, the Oppermann’s conjecture, the Agoh-Giuga conjecture,

the generalized Fermat’s conjecture (which requires computational resources which are not

reached today even for checking the simplest case: a = 2 and b = 1) and the Schinzel’s hy-

pothesis H (which requires computational resources which are not reached today for checking

about
(
π (NZ) 2NZ

)NZ cases) are solved by the (second order logic) formal axiom and the

“nature’s hypotheses” are generated by the formal hypothesis on the “nature’s hypotheses”.

From researches in fundamental physics, the formal numbers and the n-formal sequents

definitions arise from the intuition that the “nature’s hypotheses” do not carry natural num-

bers or ”hidden natural numbers” except for 0 and 1, i.e. the “nature’s hypotheses” can

be used in a n-formal sequent. Shortly, a sequent is n-formal iff the sequent is composed by

some closed hypotheses and a n-formal formula (an explicit sub-formula with one free variable

which is only true with the unique natural number n), and no sub-sequent are composed by

some closed sub-hypotheses and a m-formal explicit sub-formula with m > 1. Moreover, we

postulate (at second order of logic) that the “nature’s hypotheses” are not chosen randomly:

the “nature’s hypotheses” are the only hypotheses which give the largest formal number

NZ = 1497.

The paper is organized as follow: firstly, we present the notations used throughout this

paper. Secondly, we define what is an explicit sub-formula in order to define what is a formal

number and a n-formal sequent. Thirdly, we present some formal number examples. Fourthly,

we present the Goldbach’s conjecture, the Dubner’s conjecture, the Polignac’s conjecture,

the Firoozbakht’s conjecture, the Oppermann’s conjecture, the Agoh-Giuga conjecture, the

generalized Fermat’s conjecture and the Schinzel’s hypothesis H as n-formal sequents. Fifthly,

we present the (second order logic) formal axiom, the (second order logic) hypothesis on the

“nature’s hypotheses” and their consequences. Sixthly, we ask ourselves three open questions

about the formal numbers. Seventhly, we present some larger formal number examples.

Eighthly, we present some formal number examples with the axioms of the real numbers and

ninethly, the conclusion and the acknowledgment.

2. Notations

In the present paper:

1- We omit some parentheses and parenthesis labels to improve the readability but they

are necessary for writing the related explicit formulas and explicit sub-formulas.
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2- We use the formula φ→ ψ instead of the formula ¬φ ∨ ψ to improve the readability.

However the strict explicit sub-formulas of the formula φ→ ψ are φ, ψ, ¬φ, and φ∨ψ
instead of only φ and ψ.

3- We use the formula t1 = t2 instead of the formula R= (t1, t2) to improve the readabil-

ity. However the strict explicit sub-formulas of the formula t1 = t2 are only t1 and t2
instead of t1, t2, t1 = and = t2.

4- If the formula φ is previously defined, the formula φ[y/x] is a shortcut for the formula

φ written with the variable y instead of the variable x with respect to the explicit

sub-formulas of φ[y/x].

3. Definitions

Let consider a language L∪LPeano of first order logic which contains the language needed

for the Peano hypotheses.

Let introduce the necessary preliminary definitions and lemmas:

1- Preliminary definitions and lemmas about the explicit sub-formulas of a formula φ:

a- A formula φ containing l pair of parentheses is an explicit formula iff the ith open-

ing parenthesis and the corresponding ith closing parenthesis are labeled unam-

biguously with respect to the other parentheses with an injection f : {1, ..., l} ⊂

N −→ N such that: ...

(
f(i)

....

)
f(i)

... .

b- Preliminary lemma:

Every formula φ can be written as an explicit formula.

c- An explicit formula ψ is an explicit sub-formula of a formula φ iff the formula

ψ is an explicit formula and ψ is a sub-sequence of the symbol sequence of the

formula φ written as an explicit formula.

d- Preliminary lemma about the explicit sub-formulas of a formula φ:

An explicit sub-formula of an explicit sub-formula of a formula φ is an explicit

sub-formula of the formula φ.

2- Preliminary definition about the n-formal formulas:

A formula φn−formal is a n-formal formula iff φn−formal is a closed formula and a

formula φ exists such that:

φn−formal ≡ φ[fs(...fs(︸ ︷︷ ︸
n times

c0 )...)︸︷︷︸
n times

/x]
∧ ∃!y

(
φ[y/x]

)
.(3.1)

We rewrite the previous equation without the shortcut symbol ∃!:

φn−formal ≡ φ[fs(...fs(︸ ︷︷ ︸
n times

c0 )...)︸︷︷︸
n times

/x]
∧ ¬∃y∃y′

(
¬y = y′ ∧ φ[y/x] ∧ φ[y′/x]

)
.(3.2)

The main definition: a sequent (see the previous equation),

Γ,ΓPeano ` φn−formal(3.3)

is a n-formal sequent and n is a formal number iff:
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1- the hypotheses Γ,ΓPeano are closed formulas and the formula φn−formal is a n-formal

formula,

2- and for every closed and explicit sub-formula ∆,∆Peano of the hypotheses Γ,ΓPeano
and for every m-formal and explicit sub-formula ψm−formal of the formula φn−formal
such that:

∆,∆Peano ` ψm−formal(3.4)

then, m = 0 or m = 1 or (∆ ≡ Γ and ∆Peano ≡ ΓPeano and ψm−formal ≡ φn−formal).

4. Some formal number examples

We give in this section some examples of formal numbers. Firstly, we write the prelim-

inary formulas satisfied by the following function symbols:

1- If required, we add to the hypotheses of the n-formal sequents the following formulas

satisfied by the prime function symbol fPrime:

∀x (∃y∃z (¬y = fs (c0) ∧ ¬z = fs (c0) ∧ x = f× (y, z))→ fPrime (x) = c0)

∀x (¬∃y∃z (¬y = fs (c0) ∧ ¬z = fs (c0) ∧ x = f× (y, z))→ fPrime (x) = fs (c0)) .(4.1)

2- If required, we add to the hypotheses of the n-formal sequents the following formulas

satisfied by the sub-function symbol gσ1−id and the function symbol fσ1−id which

gives the sum of proper divisors:

∀x (gσ1−id(x, fs (c0)) = c0)

∀x∀y (∃z (x = f× (y, z))→ gσ1−id (x, fs (y)) = f+ (gσ1−id(x, y), y))

∀x∀y (¬∃z (x = f× (y, z))→ gσ1−id (x, fs (y)) = gσ1−id(x, y))

∀x (fσ1−id(x) = gσ1−id(x, x)) .(4.2)

Trivially, 0 and 1 are formal numbers with the following formulas φ:

φ ≡ x = c0 and φ ≡ x = fs (c0) .(4.3)

2 is a formal number with the following formula φ:

φ ≡ x = f+ (fs (c0) , fs (c0))(4.4)

or for instance, the following formula φ:

φ ≡ ∀y (x < y ∨ y = x ∨ y = c0 ∨ y = fs (c0)) .(4.5)

In order to prove that some other natural numbers are formal, we use the prime function

fPrime (see 4.1):

3 is a formal number with the following formula φ (see 4.1):

φ ≡∀y (¬y = c0 ∧ ¬y = fs (c0) ∧ fPrime (y) = c0 → x < y)∧
¬∃x′

(
x < x′ ∧ ∀y

(
¬y = c0 ∧ ¬y = fs (c0) ∧ fPrime (y) = c0 → x′ < y

))
.(4.6)

4 is a formal number with the following formula φ (see 4.1):

φ ≡¬x = c0 ∧ ¬x = fs (c0) ∧ fPrime (x) = c0∧
¬∃x′

(
x′ < x ∧ ¬x′ = c0 ∧ ¬x′ = fs (c0) ∧ fPrime

(
x′
)

= c0

)
.(4.7)
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In order to prove that some other natural numbers are also formal, we use the function fσ1−id
(see 4.2):

6 is a formal number with the following formula φ (see 4.2):

φ ≡ ¬x = c0 ∧ fσ1−id(x) = x ∧ ¬∃x′
(
x′ < x ∧ fσ1−id(x′) = x′

)
.(4.8)

5. Conjectures which induce monster formal numbers if counterexamples

exist

In the previous section, we introduced some formal numbers that are small and easy to

find. In this section, we examine how some monster formal numbers can be produced if some

conjectures are false. Firstly, we write the preliminary formulas satisfied by the following

function symbols:

1- If required, we add to the hypotheses of the n-formal sequents the following formulas

satisfied by the unary inverse function symbol f−1
s :

∀x
(
¬x = c0 → fs

(
f−1
s (x)

)
= x

)
∀x
(
x = c0 → f−1

s (x) = c0

)
.(5.1)

2- If required, we add to the hypotheses of the n-formal sequents the following formulas

satisfied by the subtraction function symbol f−:

∀x∀y (y < x→ f+ (f− (x, y) , y) = x)

∀x∀y (¬y < x→ f− (x, y) = c0) .(5.2)

3- If required, we add to the hypotheses of the n-formal sequents the following formulas

satisfied by the twin prime function symbol fTwin (see 4.1 and 5.1):

∀x
((
fPrime

(
f−1
s (x)

)
= fs (c0) ∧ fPrime (fs (x)) = fs (c0)

)
→ fTwin (x) = fs (c0)

)
∀x
(
¬
(
fPrime

(
f−1
s (x)

)
= fs (c0) ∧ fPrime (fs (x)) = fs (c0)

)
→ fTwin (x) = c0

)
.(5.3)

4- If required, we add to the hypotheses of the n-formal sequents the following formulas

satisfied by the ceiling prime function symbol fCP (see 4.1):

∀x∃y (fCP (x) = y ∧ fPrime (y) = fs (c0) ∧ ¬∃z (x < z ∧ z < y ∧ fPrime (z) = fs (c0))) .

(5.4)

5- If required, we add to the hypotheses of the n-formal sequents the following formulas

satisfied by the function symbol fp−Prime which give the nth prime number (see 4.1)

fp−Prime (c0) = c0

∀x (fp−Prime (fs (x)) = fCP (fp−Prime (x))) .(5.5)

6- If required, we add to the hypotheses of the n-formal sequents the following formulas

satisfied by the coprime function symbol fCoprime:

∀x∀x′
(
∃y∃z∃z′

(
¬y = 1 ∧ x = f× (y, z) ∧ x′ = f×

(
y, z′

))
→ fCoprime

(
x, x′

)
= c0

)
∀x∀x′

(
¬∃y∃z∃z′

(
¬y = 1 ∧ x = f× (y, z) ∧ x′ = f×

(
y, z′

))
→ fCoprime

(
x, x′

)
= fs (c0)

)
.

(5.6)
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7- If required, we add to the hypotheses of the n-formal sequents the following formulas

satisfied by the power function symbol f∧:

∀x∀y (y = c0 → f∧ (x, y) = fs (c0))

∀x∀y (¬y = c0 → f∧ (x, fs (y)) = f× (f∧ (x, y) , x)) .(5.7)

5.1. Goldbach’s conjecture. If required, we add to the hypotheses of the n-formal sequents the

following formulas satisfied by the sub-function symbol gGoldbach−1 and the function symbol

fGoldbach−1 which gives the minimal number of prime numbers necessary to express a natural

number as a sum of prime number minus one (see 4.1 and 5.2):

∀x∀y (fPrime (y) = fs (c0)→ gGoldbach−1(x, y) = c0)

∀x∀y

(
(¬y = c0 ∧ ¬y = fs (c0) ∧ fPrime (y) = c0)→ ∃z

(z < y ∧ fPrime (z) = fs (c0) ∧ gGoldbach−1(x, y) = fs (gGoldbach−1(x, f− (y, z))) ∧ ¬∃z′(
z′ < y ∧ fPrime

(
z′
)

= fs (c0) ∧ gGoldbach−1(x, f−
(
y, z′

)
) < gGoldbach−1(x, f− (y, z))

))

∀x (fGoldbach−1(x) = gGoldbach−1(x, x)) .

(5.8)

If a first counterexample mZ exists for the Goldbach’s conjecture [Hel13], we can show that

mZ is a formal number with the following formula φ (see the previous equation):

φ ≡¬x = c0 ∧ ¬x = fs (c0) ∧ ∀y (y < x→ fGoldbach−1(y) < fGoldbach−1(x))∧
∀y (x < y → ¬fGoldbach−1(x) < fGoldbach−1(y)) .(5.9)

5.2. Dubner’s conjecture. If required, we add to the hypotheses of the n-formal sequents

the following formulas satisfied by the sub-function symbol gDubnerMin−1 and the function

symbol fDubnerMin−1 which gives the minimal number of min twin prime number necessary

to express a natural number as a sum of min twin prime number minus one (see 5.2 and 5.3):

∀x∀y (fTwin (fs (y)) = fs (c0)→ gDubnerMin−1(x, y) = c0)

∀x∀y

(
(¬y = c0 ∧ ¬y = fs (c0) ∧ fTwin (fs (y)) = c0)→ ∃z

(z < y ∧ fTwin (fs (z)) = fs (c0) ∧ gDubnerMin−1(x, y) = fs (gDubnerMin−1(x, f− (y, z)))

∧ ¬∃z′
(
z′ < y∧

fTwin
(
fs
(
z′
))

= fs (c0) ∧ gDubnerMin−1(x, f−
(
y, z′

)
) < gDubnerMin−1(x, f− (y, z))

))

∀x (fDubnerMin−1(x) = gDubnerMin−1(x, x)) .

(5.10)

We consider a first variant of the Dubner’s conjecture [Dub00]:

Every even even number strictly larger than 4208 is the sum of two min twin prime

numbers.
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If the Goldbach’s conjecture [Hel13] is true and if the first variant of the Dubner’s

conjecture [Dub00] is true, we can show that mZ = 4208 is a formal number with the

following formula φ (see the previous equation):

φ ≡¬x = c0 ∧ ¬x = fs (c0) ∧ ∀y (x < y → fDubnerMin−1(y) < fDubnerMin−1(x)) .(5.11)

If required, we add to the hypotheses of the n-formal sequents the following formulas satisfied

by the sub-function symbol gDubnerMax−1 and the function symbol fDubnerMax−1 which gives

the minimal number of maxi twin prime numbers necessary to express a natural number as

a sum of max twin prime numbers minus one (see 5.2 and 5.3):

∀x∀y
(
fTwin

(
f−1
s (y)

)
= fs (c0)→ gDubnerMax−1(x, y) = c0

)
∀x∀y

((
¬y = c0 ∧ ¬y = fs (c0) ∧ fTwin

(
f−1
s (y)

)
= c0

)
→ ∃z

(z < y ∧ fTwin
(
f−1
s (z)

)
= fs (c0) ∧ gDubnerMax−1(x, y) = fs (gDubnerMax−1(x, f− (y, z)))

∧ ¬∃z′
(
z′ < y∧(

f−1
s

(
z′
))

= fs (c0) ∧ gDubnerMax−1(x, f−
(
y, z′

)
) < gDubnerMax−1(x, f− (y, z))

))

∀x (fDubnerMax−1(x) = gDubnerMax−1(x, x)) .

(5.12)

We consider a second variant of the Dubner’s conjecture [Dub00]:

Every even number strictly larger than 4208 is the sum of two max twin prime numbers.

If the Goldbach’s conjecture [Hel13] is true and if the second variant of the Dubner’s

conjecture [Dub00] is true, we can show that mZ = 4208 is a formal number with the following

formula φ (see previous formula):

φ ≡¬x = c0 ∧ ¬x = fs (c0) ∧ ∀y (x < y → fDubnerMax−1(y) < fDubnerMax−1(x)) .(5.13)

If required, we add to the hypotheses of the n-formal sequents the following formulas satisfied

by the weak twin prime function symbol fWTwin(see 5.1 and 5.3):

∀x
(
¬
(
fTwin

(
f−1
s (x)

)
= c0 ∧ fTwin (fs (x)) = c0

)
→ fWTwin (x) = fs (c0)

)
∀x
((
fTwin

(
f−1
s (x)

)
= c0 ∧ fTwin (fs (x)) = c0

)
→ fWTwin (x) = c0

)
.(5.14)

If required, we add to the hypotheses of the n-formal sequents the following formulas satisfied

by the sub-function symbol gDubner−1 and the function symbol fDubner−1 which gives the

minimal number of prime numbers necessary minus one when a natural number is expressed
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as a sum of prime numbers (see the previous equation):

∀x∀y (fWTwin (y) = fs (c0)→ gDubner−1(x, y) = c0)

∀x∀y

(
(¬y = c0 ∧ ¬y = fs (c0) ∧ fWTwin (y) = c0)→ ∃z

(z < y ∧ fWTwin (z) = fs (c0) ∧ gDubner−1(x, y) = fs (gDubner−1(x, f− (y, z))) ∧ ¬∃z′(
z′ < y ∧ fWTwin

(
z′
)

= fs (c0) ∧ gDubner−1(x, f−
(
y, z′

)
) < gDubner−1(x, f− (y, z))

))

∀x (fDubner−1(x) = gDubner−1(x, x)) .

(5.15)

If the Goldbach’s conjecture [Hel13] is true and if the first and second variants of the Dubner’s

conjecture [Dub00] are false, we can show that mZ = 4208 is a formal number with the

following formula φ (see the previous equation):

φ ≡¬x = c0 ∧ ¬x = fs (c0) ∧ ∀y (x < y → fDubner−1(y) < fDubner−1(x)) .(5.16)

5.3. Polignac’s conjecture. If required, we add to the hypotheses of the n-formal sequents

the following formulas satisfied by the Polignac function symbol fPolignac which gives the

difference between the two next prime numbers of a natural number (see 5.2 and 5.4):

∀x (fPolignac (x) = f− (fCP (fCP (x)) , fCP (x))) .(5.17)

If a first counterexample mZ exists for the Polignac’s conjecture [dP51], we can show that

mZ is a formal number with following formula φ (see the previous equation):

φ ≡¬x = c0 ∧ ¬x = fs (c0)∧
∃y (fPolignac (x) = y ∧ ¬∃z (x < z ∧ fPolignac (x) = fPolignac (z)))∧
¬∃x′

(
x′ < x ∧ fPolignac

(
x′
)

= y ∧ ¬∃z
(
x′ < z ∧ fPolignac

(
x′
)

= fPolignac (z)
))

.(5.18)

Since the set of prime numbers is infinite, the following explicit sub-formula will not work

(see 5.2 and 5.4):

∀x (fPolignac (x) = f− (fCP (x) , x)) .(5.19)

5.4. Firoozbakht’s conjecture. If a first counterexample mZ exists for the Firoozbakht’s con-

jecture [20004], we can show that mZ is a formal number with the following formula φ (see

5.5):

φ ≡¬x = c0 ∧ ¬f∧ (fp−Prime (fs (x)) , x) < f∧ (fp−Prime (x) , fs (x))∧
∀x′
(
x′ < x→ f∧

(
fp−Prime

(
fs
(
x′
))
, x′
)
< f∧

(
fp−Prime

(
x′
)
, fs
(
x′
)))

.(5.20)

5.5. Oppermann’s conjecture. We define the first variant of the Oppermann’s conjecture

[vsOFS83]:

For all natural numbers x such that x > 1, there is at least one prime number between

x(x− 1) and x2.



AN INTRODUCTION TO THE n-FORMAL SEQUENTS AND THE FORMAL NUMBERS 9

If a first counterexample mZ exists for the Oppermann’s conjecture [vsOFS83], we can

show that mZ is a formal number with the following formula φ (see 4.1 and 5.1):

φ ≡¬x = c0 ∧ ¬x = fs (c0) ∧ ¬∃y
(
f×
(
x, f−1

s (x)
)
< y ∧ y < f× (x, x) ∧ fPrime (y) = fs (c0)

)
∧ ¬∃x′¬∃y

(
x′ < x ∧ f×

(
x′, f−1

s

(
x′
))
< y ∧ y < f×

(
x′, x′

)
∧ fPrime (y) = fs (c0)

)
.

(5.21)

If a first counterexample mZ exists for the Oppermann’s conjecture [vsOFS83] and the first

variant of the Oppermann’s conjecture [vsOFS83] is true, we can show that mZ is a formal

number with the following formula φ (see 4.1 and 5.1):

φ ≡ ¬x = c0 ∧ ¬x = fs (c0)∧

¬∃y∃y′
(
f×
(
x, f−1

s (x)
)
< y ∧ y < f× (x, x) ∧ f× (x, x) < y′ ∧ y′ < f× (x, fs (x))∧

fPrime (y) = fs (c0)) ∧ ¬∃x′¬∃y∃y′(
x′ < x ∧ f×

(
x′, f−1

s

(
x′
))
< y ∧ y < f×

(
x′, x′

)
∧ f×

(
x′, x′

)
< y′ ∧ y′ < f×

(
x′, fs

(
x′
)
∧

fPrime (y) = fs (c0))) .

(5.22)

5.6. Agoh-Giuga conjecture. If required, we add to the hypotheses of the n-formal sequents

the following formulas satisfied by the Giuga sub-function symbol gGiuga and the Giuga

function symbol fGiuga(see 4.1, 5.1 and 5.7):

∀x (gGiuga (x, c0) = fs (c0))

∀x∀y
(
gGiuga (x, fs (y)) = f+

(
gGiuga (x, y) , f∧

(
y, f−1

s (x)
)))

∀x

(
(fPrime (x) = fs (c0)→ ∃y (fs (gGiuga (x, x)) = f× (x, y)))→ fGiuga = fs (c0)

)

∀x

(
¬ (fPrime (x) = fs (c0)→ ∃y (fs (gGiuga (x, x)) = f× (x, y)))→ fGiuga = c0

)
.(5.23)

If mZ is the last natural number where the Agoh-Giuga conjecture [Giu51] is true, we can

show that mZ is a formal number with the following formula φ (see the previous equation):

φ ≡ fGiuga (x) = c0 ∧ ¬∃x′
(
x′ < x ∧ fGiuga

(
x′
)

= c0

)
.(5.24)

5.7. Generalized Fermat’s conjecture. We define the generalized Fermat’s conjecture [Rie11]:

Let be some natural number a and c, there is an infinite number of natural numbers b

such that ab + cb is a prime number.

If mZ is the last number where the generalized Fermat’s conjecture [Rie11] for some

fixed natural number a and c is true and every explicit sub-formulas which are equivalent to

the Generalized Fermat’s conjecture [Rie11] with the fixed natural number a′ and c′ are true

, we can show that mZ is a monster formal number with the following formula φ (see 4.1 and
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5.7):

φ ≡fPrime (f+ (f∧ (na, x) , f∧ (nc, x))) = fs (c0)∧
¬∃x′

(
x < x′ ∧ fPrime

(
f+

(
f∧
(
na, x

′) , f∧ (nc, x′))) = fs (c0)
)
∧

¬∃x′′
(
x′′ < x ∧ fPrime

(
f+

(
f∧
(
na, x

′′) , f∧ (nc, x′′))) = fs (c0)∧

¬∃x′
(
x′′ < x′ ∧ fPrime

(
f+

(
f∧
(
na, x

′′) , f∧ (nc, x′′))) = fs (c0)
))

,(5.25)

where na = fs(...fs(︸ ︷︷ ︸
a times

c0 )...)︸︷︷︸
a times

and nc = fs(...fs(︸ ︷︷ ︸
c times

c0 )...)︸︷︷︸
c times

.

If we can show that the generalized Fermat’s conjecture is true for many fixed natural

numbers a and c, we can show that mZ is a formal number with the following formula φ (see

4.1 and 5.7):

φ ≡∃y

(
fPrime (f+ (f∧ (na, y) , f∧ (x, y))) = fs (c0)∧

¬∃x′
(
x < x′ ∧ fPrime

(
f+

(
f∧ (na, y) , f∧

(
x′, y

)))
= fs (c0)

))
∧

¬∃x′′∃y

(
x′′ < x ∧ fPrime

(
f+

(
f∧ (na, y) , f∧

(
x′′, y

)))
= fs (c0)∧

¬∃x′
(
x′′ < x′ ∧ fPrime

(
f+

(
f∧ (na, y) , f∧

(
x′, y

)))
= fs (c0)

))
.(5.26)

If we can show that the generalized Fermat’s conjecture is true for many fixed natural numbers

a, we can show that mZ is a formal number with the following formula φ (see 4.1 and 5.7):

φ ≡∃y∃z

(
fPrime (f+ (f∧ (x, y) , f∧ (z, y))) = fs (c0)∧

¬∃x′
(
x < x′ ∧ fPrime

(
f+

(
f∧
(
x′, y

)
, f∧ (z, y)

))
= fs (c0)

))
∧

¬∃x′′∃y∃z

(
x′′ < x ∧ fPrime

(
f+

(
f∧
(
x′′, y

)
, f∧ (z, y)

))
= fs (c0)∧

¬∃x′
(
x′′ < x′ ∧ fPrime

(
f+

(
f∧
(
x′, y

)
, f∧ (z, y)

))
= fs (c0)

))
.(5.27)

5.8. Schinzel’s hypothesis H. If required, we add to the hypotheses of the n-formal sequents

the following formulas satisfied by the r polynomials function symbol fi,Schinzel of maximal
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degree d (see 5.7):

∀x ((5.28)

f1,Schinzel (x) = f+ (f+ (...f+ (f× (a10, f∧ (x, b0)) , f× (a11, f∧ (x, b1))) ...) , f× (a1d, f∧ (x, bd)))

...

fr,Schinzel (x) = f+ (f+ (...f+ (f× (ar0, f∧ (x, b0)) , f× (ar1, f∧ (x, b1))) ...) , f× (ard, f∧ (x, bd)))

)

where aij = fs(...fs(︸ ︷︷ ︸
a(i,j) times

c0 )...)︸︷︷︸
a(i,j) times

and bi = fs(...fs(︸ ︷︷ ︸
i times

c0 )...)︸︷︷︸
i times

.

Since the r polynomials fi,Schinzel are irreducible, the polynomial coefficients aij satisfy

the first following constraint (see the previous equation):

(@xf1,Schinzel (x) = c0) ∧ ... ∧ (@xfr,Schinzel (x) = c0) .(5.29)

Since the product of the r polynomials fi,Schinzel has not a fixed prime divisor, the polynomial

coefficients aij satisfy the second following constraint (see 5.29):

@x∀y∃z

(
fPrime (x) = fs (c0)∧

f× (f× (...f× (f1,Schinzel (y) , f2,Schinzel (y)) ...) , fr,Schinzel (y)) = f× (x, z)

)
.(5.30)

If mZ is the last number where the Schinzel’s hypothesis H [Guy04] for some fixed polynomial

is true and every explicit sub-formulas which are equivalent to the Schinzel’s hypothesis H

[Guy04] for some fixed polynomials are true, we can show that mZ is a monster formal number

with the following formula φ (see 4.1 and 5.29):

φ ≡fPrime (f1,Schinzel (x)) = fs (c0) ∧ ... ∧ fPrime (fr,Schinzel (x)) = fs (c0)∧

@x′
(
x < x′ ∧ fPrime

(
f1,Schinzel

(
x′
))

= fs (c0) ∧ ... ∧ fPrime
(
fr,Schinzel

(
x′
))

= fs (c0)
)
.

(5.31)

We build new formulas for new monster formal numbers like in the generalized Fermat’s

conjecture:

If we can show that the Schinzel’s hypothesis H [Guy04] is true for a fixed number of

polynomial r, a fixed maximal degree d, many fixed polynomial coefficients aij and some

running polynomial coefficients aij , we can show that mZ is a monster formal number with

a formula φ.

We build new formulas for new monster formal numbers like in the generalized Fermat’s

conjecture:

If we can show that the Schinzel’s hypothesis H [Guy04] is true for a fixed number of

polynomial r, many maximal degrees d and the running polynomial coefficients aij , we can

show that mZ is a monster formal number with a formula φ.

Finally, we build new formulas for new monster formal numbers like in the generalized

Fermat’s conjecture:
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If we can show that the Schinzel’s hypothesis H [Guy04] is true for many numbers of

polynomial r, the running maximal degree d and the running polynomial coefficients aij , we

can show that mZ is a monster formal number with a formula φ.

6. The second order logic formal axiom and the second order logic

hypothesis on the “nature’s hypotheses”

We introduce one important axiom on formal numbers and one important hypothesis

on “nature’s hypotheses” at second order logic for both of them:

The (second order logic) formal axiom:

Any formal number is smaller or equal to NZ = 1497.

The (second order logic) hypothesis on the “nature’s hypotheses”:

The hypotheses of any NZ-formal sequent are the “nature’s hypotheses” which explain

the physical measurements.

Some consequences:

1- The physical measurements confirm but do not prove that the “nature’s hypotheses”,

the mathematical explorations over the formal numbers confirm but do not prove

that NZ is the largest formal number and they do not prove but confirm that the

hypotheses of any NZ-formal sequent are the “nature’s hypotheses” which explain

the physical measurements.

2- The Goldbach’s conjecture, the Polignac’s conjecture, the Firoozbakht conjecture’s,

the Oppermann’s conjecture, the Agoh-Giuga conjecture, the generalized Fermat’s

conjecture (which requires computational resources which are not reached today even

for checking the simplest case: a = 2 and b = 1) and the Schinzel’s hypothesis

H (which requires computational resources which are not reached today for checking

about
(
π (NZ) 2NZ

)NZ cases) are true and the Dubner’s conjecture is false. Moreover,

27 is a formal number since the Goldbach’s conjecture is true.

3- A paper is under preparation in order to present the nature’s unified theory where its

hypotheses are the hypotheses of a NZ-formal sequent (NZ would be the number of

different particles) and to show that any obvious variant of the nature’s unified theory

requires some hypotheses which give a formal number strictly smaller than NZ .

7. Some open questions about the n-formal sequents and the formal numbers

1- Can we show that a natural number n is not formal? The difficulty is to prove that

there is no n-formal sequent among an infinite set of possible sequents which give the

formal number n.

2- If a formal number n is found with the help of a function symbol f where its output

values are only 0 and 1, can we replace the function symbol f by a function symbol

f̃ such that f̃ = 1− f and the new sequent is still n-formal?

3- Does a sequent exist to make a difference between the definition of the n-formal

sequents and the following variant of that definition: we look at the explicit sub-

formulas of φ which induce the m-formal formulas instead of looking at the explicit

sub-formulas of φn−formal which are m-formulas?
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8. Extra: some larger formal number examples

In this section, with the help of the formulas satisfied by the symbol function fPrime
joined to the hypotheses of some n formal sequents, we try to reach the closest formal number

(1024 in the present section) to the largest one NZ = 1497. Firstly, we write the preliminary

formulas satisfied by the following function symbols:

1- If required, we add to the hypotheses of the n-formal sequents the following formulas

satisfied by the sub-function symbol gσ0−1 and the function symbol fσ0−1 which gives

the number of proper divisor of a natural number:

∀x (gσ0−1(x, fs (c0)) = c0)

∀x∀y (∃z (x = f× (y, z))→ gσ0−1 (x, fs (y)) = fs (gσ0−1(x, y)))

∀x∀y (¬∃z (x = f× (y, z))→ gσ0−1 (x, fs (y)) = gσ0−1(x, y))

∀x (fσ0−1(x) = gσ0−1(x, x)) .(8.1)

2- If required, we add to the hypotheses of the n-formal sequents the following formulas

satisfied by the highly composite function symbol fHC (see the previous equation):

∀x (∀y ((¬y = c0 ∧ y < x)→ fσ0−1 (y) < fσ0−1 (x))→ fHC(x) = fs (c0))

∀x (¬ (∀y (¬y = c0 ∧ y < x)→ fσ0−1 (y) < fσ0−1 (x))→ fHC(x) = c0) .(8.2)

3- If required, we add to the hypotheses of the n-formal sequents the following formulas

satisfied by the Euler’s totient sub-function symbol gΦ and the Euler’s totient function

symbol fΦ which gives the number of coprime numbers below it (see 5.6):

∀x (gΦ(x, fs (c0)) = c0)

∀x∀y (fCoprime (x, y) = fs (c0)→ gΦ (x, fs (y)) = fs (gΦ(x, y)))

∀x∀y (fCoprime (x, y) = c0 → gΦ (x, fs (y)) = gΦ(x, y))

∀x (fΦ(x) = gΦ(x, x))(8.3)

4- If required, we add to the hypotheses of the n-formal sequents the following formulas

satisfied by the highly coprime function symbol fHCP (see the previous equation):

∀x (∀y ((¬y = c0 ∧ y < x)→ fΦ (y) < fΦ (x))→ fHCP (x) = fs (c0))

∀x (¬∀y ((¬y = c0 ∧ y < x)→ fΦ (y) < fΦ (x))→ fHCP (x) = c0) .(8.4)

5- If required, we add to the hypotheses of the n-formal sequents the following formulas

satisfied by the sub-function symbol gσ1−1 and the function symbol fσ1−1 which gives

the sum of divisors minus one of a natural number (see 5.1):

∀x (gσ1−1(x, fs (c0)) = c0)

∀x∀y
(
(¬y = fs (c0) ∧ ∃z (x = f× (y, z)))→ gσ1−1 (x, y) = f+

(
gσ1−1(x, f−1

s (y)), y
))

∀x∀y
(
¬ (¬y = fs (c0) ∧ ∃z (x = f× (y, z)))→ gσ1−1 (x, y) = gσ1−1(x, f−1

s (y))
)

∀x (fσ1−1(x) = gσ1−1(x, x)) .(8.5)
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With the concept of complement, we can show that 10 is a formal number with the following

formula φ (see 8.2 and 8.4):

φ ≡ fHC (x) = c0 ∧ fHCP (x) = fs (c0) ∧ ¬∃y (y < x ∧ fHC (x) = c0 ∧ fHCP (x) = fs (c0))

(8.6)

and we can show that 24 is a formal number with the following formula φ (see 8.2 and 8.4):

φ ≡ fHC (x) = fs (c0) ∧ fHCP (x) = c0 ∧ ¬∃y (y < x ∧ fHC (x) = fs (c0) ∧ fHCP (x) = c0) .

(8.7)

In order to find much larger formal number, we use the concept of amicable numbers:

1- 220 is a formal number with the following formula φ (see 8.5):

φ ≡ ∃y (x < y ∧ fσ1−1 (x) = fσ1−1 (y)) ∧ ∀z (z < x→ ¬∃y (z < y ∧ fσ1−1 (z) = fσ1−1 (y))) .

(8.8)

2- 284 is a formal number with the following formula φ (see 8.5):

φ ≡ ∃y (y < x ∧ fσ1−1 (x) = fσ1−1 (y)) ∧ ∀z (z < x→ ¬∃y (y < z ∧ fσ1−1 (z) = fσ1−1 (y))) .

(8.9)

3- 503 is a formal number with the following formula φ (see 8.5):

φ ≡∃y∃z

(x = fσ1−1 (y) ∧ x = fσ1−1 (z)) ∧ ∀w (w < x→ ¬∃y∃z (w = fσ1−1 (y) ∧ w = fσ1−1 (z))) .

(8.10)

9. Extra bis: some formal number examples with the axioms of the real

numbers

In this section, with the help of the formulas satisfied by the axioms of the real numbers

joined to the hypotheses of some n-formal sequents, we try to reach the closest formal number

(1024 in the present section) to the largest one NZ = 1497. Firstly, we write the preliminary

formulas satisfied by the following function symbols:

1- If required, we add to the hypotheses of the n-formal sequents the following formulas

satisfied by the natural number function symbol fN:

fN (c0) = fs (c0)

∀x (fN (x) = fs (c0)→ fN (fs (x)) = fs (c0))

∀x (fN (x) = c0 → fN (fs (x)) = c0) .(9.1)

2- If required, we add to the hypotheses of the n-formal sequents the following formulas

satisfied by the integer part function symbol fIP (see the previous equation):

∀x (∃n (fN (n) = fs (c0) ∧ ¬n < x ∧ x < fs (n) ∧ fIP (x) = n)) .(9.2)

3- If required, we add to the hypotheses of the n-formal sequents the following formulas

satisfied by the ceiling function symbol fCeiling (see 9.1):

∀x (∃n (fN (n) = fs (c0) ∧ x < n ∧ ¬fs (n) < x ∧ fCeiling (x) = n)) .(9.3)
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4- If required, we add to the hypotheses of the n-formal sequents the following formulas

satisfied by the negative function symbol f−

∀x∃y (f+ (x, y) = c0 ∧ f− (x) = y)

∀x¬∃y∃y′
(
¬y = y′ ∧ f+ (x, y) = c0 ∧ f+

(
x, y′

)
= c0

)
.(9.4)

5 If required, we add to the hypotheses of the n-formal sequents the following formulas

satisfied by the factorial function symbol f! (see 5.1 and 9.1):

∀n (fN (n) = fs (c0) ∧ n = c0 → f! (n) = fs (c0))

∀n

(
fN (n) = fs (c0) ∧ ¬n = c0 → f! (n) = f×

(
n, f!

(
f−1
s (n)

)))
.(9.5)

6 If required, we add to the hypotheses of the n-formal sequents the following formulas

satisfied by the exponential series function symbol gexp (see 5.1 and 5.7):

∀x (gexp (x, c0) = c0)

∀x∀y

(
gexp (x, fs (y)) = f+

(
gexp (x, y) , f× (f∧ (x, y) , f−1 (f! (y)))

))
.(9.6)

7 If required, we add to the hypotheses of the n-formal sequents the following formulas

satisfied by the exponential function symbol fexp (see 9.1 and the previous equation):

∀ε∃N∀n

(
(0 < ε ∧N < n ∧ fN (N) = fs (c0) ∧ fN (n) = fs (c0))

→ (gexp (x, n) < fexp (x) ∧ fexp (x) < f+ (ε, gexp (x, n)))

)
.(9.7)

We suppose we can define the Lebesgue integral or the Riemann integral formally in order to

define the function f√π/2 in a formal form (see 5.7, 9.1, 9.4 and 9.7):

∀n
(
fN (n) = fs (c0) ∧ ¬n = c0 → f√π/2 (n) =

∫ ∞
0

fexp (f− (f∧ (x, n))) dx

)
.(9.8)

We can define the real number
√
π/2 formally with the following formula φ:

φ ≡ ∃n
(
fN (n) = fs (c0) ∧ x = f√π/2 (n)

)
∧ ¬∃n

(
fN (n) = fs (c0) ∧ f√π/2 (n) < x

)
.(9.9)

Sketch to prove that 5 and 7 are formal numbers: The (n− 1)-sphere of radius R and center

~r can be defined formally by imposing a maximum volume for a fixed surface in Rn or a

minimum surface for a fixed volume. By defining a formal n-cube with vertex coordinates

(±1, ...,±1)︸ ︷︷ ︸
n times

and taking the biggest (n−1)-sphere inside it, we can find the n which maximize

the volume V (n) or the surface S (n) of the (n− 1)-sphere: 5 or 7.

Therefore, we can also define formally the real numbers 16π3/15 and 8π2/15 with the

following formula φ:

φ ≡ ∃n (fN (n) = fs (c0) ∧ x = S (n)) ∧ ¬∃n′
(
fN
(
n′
)

= fs (c0) ∧ x < S(n′)
)
,(9.10)

and the following formula φ

φ ≡ ∃n (fN (n) = fs (c0)→ x = V (n)) ∧ ¬∃n′
(
fN
(
n′
)

= fs (c0) ∧ x < V (n′)
)
.(9.11)
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We can also define formally the real number e with the following formula φ:

φ ≡ x = fexp (fs (c0)) .(9.12)

For some formal real numbers x and x′, we can show that n is a formal number with the

following formula φ:

φ ≡ ∃m∃p∃q (fN (n) = fs (c0) ∧ fN (m) = fs (c0) ∧ fN (p) = fs (c0) ∧ fN (q) = fs (c0)∧

f× (p, f∧ (x, n)) = f×
(
q, f∧

(
x′,m

))
∧ fCoprime (p, q) = fs (c0) ∧ fCoprime (m,n) = fs (c0)

)
.

(9.13)

For some formal real numbers x and x′, we can show that p is a formal number with the

following formula φ:

φ ≡ ∃n∃m∃q (fN (n) = fs (c0) ∧ fN (m) = fs (c0) ∧ fN (p) = fs (c0) ∧ fN (q) = fs (c0)∧

f× (p, f∧ (x, n)) = f×
(
q, f∧

(
x′,m

))
∧ fCoprime (p, q) = fs (c0) ∧ fCoprime (m,n) = fs (c0)

)
.

(9.14)

Therefore, from the formal real numbers,
√
π/2, 16π3/15, 8π2/15 and the help of the two last

formulas, we deduce that 2, 3, 4, 6, 15, 128 and 1024 are formal numbers.

Finally, with the help of the integer part function fIP and the ceiling function fCeiling
on the formal real number 16π3/15, we deduce that 33 and 34 are formal numbers.

10. Conclusion

This paper may open a new area in second order logic with some important conse-

quences in number theory and in fundamental physics if we do not notice contradictions

between the (second order logic) formal axiom and other well known axioms, and we do not

observe experimental contradictions between the hypotheses to produce the largest formal

number found and the experimental measurements. It is the first paper that give a hint

to solve the Goldbach’s conjecture, the Dubner’s conjecture, the Polignac’s conjecture, the

Firoozbakht’s conjecture, the Oppermann’s conjecture, the Agoh-Giuga conjecture, the gen-

eralized Fermat’s conjecture (which requires computational resources which are not reached

today even for checking the simplest case: a = 2 and b = 1) and the Schinzel’s hypothesis

H (which requires computational resources which are not reached today for checking about(
π (NZ) 2NZ

)NZ cases) with only one (second order logic) formal axiom and to generate the

“nature’s hypotheses” with only one (second order logic) hypothesis.

Since I am not a mathematician and I am a lonely human, I may have overseen some

mistakes (especially, I could miss an explicit sub-formula in the present paper or do not

noticed that a sequent is not formal or my approach to the generalized Fermat’s conjecture

and the Schinzel’s hypothesis H are sensitive to some mistakes since it is one level more of

abstraction from the other conjectures). Moreover, NZ may change after the publication of

the next paper about the unified theory of nature. Please send me an email (see it below the

references) for any mistake noticed in the present paper. Every ideas or comments related to

the present paper are also very welcome.
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