
An Alternative Approach of Evaluating the
Validity of Perturbative Calculations with

Respect to Convergence of Power Series based
on Polynomials for the Inverse Function.

Andrej Liptaj∗

Study of the Convergence of Perturbative Power Series

Abstract
Results of perturbative calculations in quantum physics have the form

of truncated power series in a coupling constant. In order to evaluate the
uncertainty of such results, the power series of the inverse function are
constructed. These are inverted and the difference between the outcome
of this procedure and the initial power series is taken as uncertainty.

Introductory note: This text was previously published on Scribd1.

1 Introduction
Results in quantum field theories are often based on perturbative calculations
and have the form of power series built in a coupling constant. The coefficients
of these series come from evaluation of corresponding Feynman diagrams. This
is in general a difficult task and therefore only few first terms of the series are
usually available. One might trust the result if the coupling is small, one might
trust the result less if the coupling is rather big. The latter situation unfor-
tunately occurs in present quantum field theories, an example is the quantum
chromodynamics (QCD). Here the coupling becomes large for processes with
small momentum transfer. One can hardy apply standard mathematical cri-
teria to rigorously evaluate the convergence of such series since these criteria
require some general knowledge about the coefficient behavior (for all coeffi-
cients) which is not available. The standard criteria to evaluate the convergence
if only a truncated result2 σN (α) =

∑n=N
n=0 cnα

n is available are
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2The Greek letter σ here stands for a general function.
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• The size of the parameter α. If α ≪ 1 then one usually trusts the result.

• Ratios of consecutive terms rn = (cnα
n)/(cn−1α

n−1). If for all n one has
|rn| ≪ 1 then one usually trusts the result.

• The influence of the last known term LN =
∣∣(cNαN )/σN

∣∣. If LN ≪ 1
then one usually trusts the result. One often assigns an error of the order
of

∣∣cNαN
∣∣ to σ.

In this text I would like to present an additional, alternative criterion. The
criterion exploits the idea of Taylor series, a coefficient cn in series can be
related to the n-th derivative of σ(α) = σ∞(α) at α = 0: cn = 1

n!
dnσ
dαn |α=0. This

approach is justified because of the one-to-one correspondence, the evaluation
of Feynman graphs can be (equivalently) regarded as the calculation of the
derivatives of σ at α = 0 (free theory).

2 Inverse Function Series
To avoid the confusion between higher derivatives and powers it is convenient
to adopt the notation

fn =
dn

dxn
f(x)|x=x0 , gn =

dn

dyn
g(y)|y=y0 ,

where f is a differentiable function, g is the inverse function of f : g(f(x)) =
f(g(x)) = x and y0 = f(x0). Higher order derivatives of g can be expressed in
terms of the derivatives of f by mean of the formula

g1 =
1

f1
,

gn = lim
∆x→0

n!
∆x− Σn−1

i=1
1
i! (gi)

[
Σn

j=1
1
j! (fj)(∆x)j

]i
[
Σn

i=1
1
i! (fi)(∆x)i

]n , (1)

which is in a recursive and limit form. The explicit expressions for the first four
derivatives of g are

g1 =
1

f1
, g2 = − f2

(f1)3
, g3 =

3(f2)2 − (f1)(f3)

(f1)5
,

g4 = −15(f2)3 − 10(f1)(f2)(f3) + (f1)2(f4)

(f1)7
.

The Taylor expansion for the inverse function is then

g(y1) = g(y0)+(g1)(y1−y0)+
1

2!
(g2)(y1−y0)

2+ . . . = x0+
∞∑
i=1

1

i!
(gi)(y1−y0)

i.

One may consult [1] for more details.
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3 An Alternative Evaluation of the Series Con-
vergence

Let τ(β) be the inverse function of σ(α). With respect to the previous section
one can establish the correspondence σ ↔ f , τ ↔ g, α ↔ x, β ↔ y, α0 = 0 ↔ x0

and β0 = σ(0) ↔ y0. In addition let us adopt the following notations (still
keeping the notation from the previous section)

σN (α) = σ(0) +
N∑
i=1

1

i!
(σi)αi, τN (β) =

N∑
i=1

1

i!
(τi)(β − β0)

i

and

sN (α) = [τN (α)]
−1

,

the last expression meaning that sN is the inverse function of τN . In general3
sN ̸= σN , however one expects4 s∞ = σ∞ = σ because the inverse of the inverse
function is the initial function. The comparison of sN and σN is the main idea
of this text. The first N derivatives of both functions at α = 0 are equal (by
construction). In the context where one relates the derivatives at α = 0 with
the Feynman diagrams, one may interpret both functions as corresponding to
the same (truncated) series of Feynman diagrams. Both function sN and σN are
supposed to approximate the “true” function σ and the difference between them
comes for higher orders. The functions σN have vanishing derivatives of the or-
der greater then N at α = 0 (by construction). Higher-then-N order derivatives
of functions sN do not need to vanish, since only derivatives of polynomials van-
ish at some order and sN are not polynomials. Actually, one may think of many
possibilities how to construct arbitrary functions tN such that they have the
same derivatives as σN at α = 0 up to the order N . However in these cases one
usually implicitly introduces some arbitrary behavior of higher-then-N order
derivatives at α = 0. I would like to stress that in the presented approach there
is no assumption on the behavior of these higher derivatives, and if they come
out not to be zero it is entirely due to the the procedure of inverting the Taylor
polynomial for the inverse function, expecting that the result approximates σ.
In this sens the procedure is “canonical”.

To study the convergence of the series σN one can do the following

• Plot the graphs of sN and σN and see for which α = αx the curves start
to significantly split one from another. There is (obviously) no objective
criterion to make this judgment, a suggestion would be to plot both func-
tions in an orthonormal coordinate system5 and judge by eye. If one in
his physics calculations uses a value of α = α1 and if αx < α1 then one

3σN is a polynomial whereas sN is the inverse function of a polynomial, which is in general
not a polynomial.

4On condition that the appropriate Taylor series converge.
5To avoid the judgment to be biased by an inappropriate coordinate system, for example

logarithmic.
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should be careful about the result. If α1 < αx than one might want to
trust the result.

• Calculate the difference dN = |sN − σN | at α = α1 which one uses in his
physics calculations. If the difference is small compared to the values of
the functions sN and σN (for example dN/(0.5×sN +0.5×σN ) ≪ 1) then
one might trust the result. If not, one may be careful about the result.

• One might assign an error ∆σ = dN to the calculated value: σ(α1) =
σN (α1)± dN .

It is not straightforward to invert the function τN in order to obtain sN that
one needs to plot the corresponding graph and to calculate sN (α1). One might
use numerical methods for that purpose.

The presented approach offers one additional interesting option: It might
happen that the series τN have better convergence then the series σN and thus
one would prefer the value sN (α1) as the result rather then σN (α1). It is possible
to illustrate such a situation on basic mathematical functions. Let f(x) = ln(x),
g(y) = f−1(y), x0 = 1, y0 = f(x0) = 0 and let us evaluate f(x) at x = x1 = 3
using Taylor series. It is a mathematical fact that the Taylor series for ln(x)
with the development at x0 = 1 do not converge for x = 3 because the radius of
convergence is 1. Thus the problem is well-posed (the value for ln(3) exists and
is finite), but the method of solving it fails (series diverge). However if one here
applies the “method of inverse function” one gets, thanks to the formula 1, the
development of f−1(y) at y0 = 0 . It happens that f−1(y) ≡ exp(y) and it is
well-known that the Taylor polynomials for the exponential function converge
to this function for each y ∈ ℜ. Numerically inverting the (convergent) series
for g = f−1(y) one obtains a prediction for f(x) =

(
f−1

)−1
(x) and thus one

can predict the value for f(x1) = ln(3).
This example demonstrates that for certain functions the Taylor series of the

function itself might diverge for a distant argument, however the series of the
inverse function might converge everywhere. And thus, inverting one more time,
one gets prediction for the initial function that converges on a bigger interval
then the function’s Taylor series.

It may be however difficult to put this method into practice for truncated
series because, unlike in the presented example, one has not the theoretical
control over the function and its inverse function. The suggestion would be to
study the series σN and τN using the criteria given in the Introduction and with
respect to these criteria use either σN (α1) or sN (α1) as the result.

I will try to demonstrate all mentioned techniques on the concrete example
that follows.
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Figure 1: Functions σ3 (dashed line) and s3 (full line).

4 Example
The perturbative QCD contributions to the semi leptonic branching ratio of the
tau lepton can be written [2]

RpQCD
τ = 3.058

[
1 +

αS

π
+ 5.2

(αS

π

)2

+ 26.4
(αS

π

)3

+ . . .

]
.

To avoid changing once more the notation let us use the notation from previous
section with σ(α) ≡ RpQCD

τ (α). Thus one has

σ3(α) = 3.058 + 0.973× α+ 1.611× α2 + 2.604× α3

and the corresponding derivatives at α = 0 are σ1 = 0.973, σ2 = 3.222 and
σ3 = 15.622. Using the formula 1 it is possible to calculate the derivatives of
the inverse function τN (β) at β0 = σ(α = α0 = 0) = 3.058. One gets τ1 = 1.027,
τ2 = −3.494, τ3 = 18.246 and

τ3(β) = 1.027× (β − 3.058)− 1.747× (β − 3.058)2 + 3.041× (β − 3.058)3.

Finally one needs to numerically invert the function τ3 to get s3. The functions
σ3(α) and s3(α) are depicted on the Figure 1 . The formula for RpQCD

τ was in
the ref. [2] used to extract the value of αS from the measurement. Here I will
consider the value of αS to be fixed, αS = α1 = 0.35. One has σ3(0.35) = 3.708
and s3(0.35) = β1 = 3.479. Following the suggestions given in the previous
section one observes

• The graphs for σ3(α) and s3(α) start to split one from another around
αx = 2.5 (judging by eye). One has αx < α1 and thus one may expect a
non-negligible error on the result.
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• Subtracting σ3(0.35) and s3(0.35) one gets d3 = 0.229. One observes
d3/(0.5× s3 + 0.5× σ3) = 0.064, the error does not seem to exceed 10%.

• The result could be written RpQCD
τ (αS = 0.35) = 3.708± 0.229.

One can finally study the convergence of σN and τN using the criteria from the
Introduction.

• The size of the parameter in which the series are built: One has α1 =
0.35 < 0.421 = (β1−3.058), so the series σN seem to be better convergent
then τN .

• Ratios of consecutive terms: One gets |rσ2| = 0.579 < 0.716 = |rτ2| and
|rσ3| = 0.566 < 0.733 = |rτ3|. This criterion also suggests that the series
σN converge better then τN .

• The influence of the last term: The calculations lead to Lσ3 = 0.030 and
Lτ3 = 0.649. This criterion strongly favors6 the result based on σN .

Using the techniques described in this text one would use σN to make prediction
for RpQCD

τ and one would claim the result to be RpQCD
τ (αS = 0.35) = 3.708±

0.229. One can notice that the error is much smaller then what one gets using
the “last known term” criterion. This might seem dangerous, one could however
argue that the error of the order of the last known term is overestimated.

5 Summary and Conclusion
In this text I presented an alternative way of evaluating the convergence of the
power series coming from perturbative calculations in quantum field theories. It
might be regarded as an additional way of assigning the error on the perturbative
result besides existing approaches. The idea is to construct Taylor series for
the inverse function which behave, after inverting them, similar to the initial
function at the point of the series development. They however differ when the
argument gets distant from the development point. This difference is taken as
the uncertainty. The nice feature of this method is that it does not require any
further ad hoc assumptions on (unknown) higher order contributions and is in
this sens canonical.

The presented approach also opens an interesting possibility to use for the
prediction inverted Taylor polynomials of the inverse function instead of the
original power series. I have shown on a simple mathematical function (loga-
rithm) that at least from the mathematical point of view such a situation can
occur. It is an opened question whether such situation can happen within the
framework of perturbative calculations in physics and if yes how to recognize it.

6The series σN are however strongly “helped” by the absolute term c0 = 3.058 which is
missing in τN and which increases the denominator in the calculation of Lσ3.
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